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a b s t r a c t

Novel coronavirus respiratory disease COVID-19 has caused havoc in many countries across the globe.
In order to contain infection of this highly contagious disease, most of the world population is
constrained to live in a complete or partial lockdown for months together with a minimal human-
to-human interaction having far reaching consequences on countries’ economy and mental well-being
of their citizens. Hence, there is a need for a good predictive model for the health advisory bodies
and decision makers for taking calculated proactive measures to contain the pandemic and maintain
a healthy economy. This paper extends the mathematical theory of the classical Susceptible–Infected–
Removed (SIR) epidemic model and proposes a Generalized SIR (GSIR) model that is an integrative
model encompassing multiple waves of daily reported cases. Existing growth function models of
epidemic have been shown as the special cases of the GSIR model. Dynamic modeling of the parameters
reflect the impact of policy decisions, social awareness, and the availability of medication during the
pandemic. GSIR framework can be utilized to find a good fit or predictive model for any pandemic. The
study is performed on the COVID-19 data for various countries with detailed results for India, Brazil,
United States of America (USA), and World. The peak infection, total expected number of COVID-
19 cases and thereof deaths, time-varying reproduction number, and various other parameters are
estimated from the available data using the proposed methodology. The proposed GSIR model advances
the existing theory and yields promising results for continuous predictive monitoring of COVID-19
pandemic.

© 2021 ISA. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

There are many mathematical approaches for the modeling
nd analysis of the spread of infectious, contagious, or both
ypes of diseases in the human population. The mathemati-
al models provide important information such as the basic
eproduction number, threshold values, contact, removal and
eath rates. These models help in the estimation of key pa-
ameters and evaluation of the sensitivities to changes in these
arameters on the pandemic spread or containment. This in-
ormation about any contagious disease in regions, communi-
ies, countries, and across the globe can help in devising better
trategies for controlling the transmission. Epidemic models have
een used for the analysis of disease spread, forecast, identi-
ying trends, planning, evaluation, implementation, optimizing
arious resources for testing, detection and prevention using
he therapy, medication, and other disease control programs [1].
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Studies [1–4] have developed a number of epidemic models
and have also derived the epidemic threshold value, namely
the reproduction number, that if exceeded beyond a critical
value leads to an epidemic outbreak. These models can ana-
lyze and predict an outbreak of a specific disease. The classic
Susceptible–Infected–Removed (SIR) model and its variants such
as Susceptible–Exposed–Infected–Removed (SEIR), Susceptible–
Exposed–Infected–Recovered–Susceptible (SEIRS), passively im-
mune SEIR (MSEIR), Susceptible–Infected–Recovered–Dead (SIRD)
and many more models such as SIRS, SEIS, SI, SIS have been
widely used in the literature for epidemic modeling and predic-
tion.

The classical SIR model, proposed by Kermack–McKendrick
[2], consists of a set of three coupled differential equations which
describe the dynamics of the pandemic over time using the S, I ,
nd R compartments. It has been utilized to describe the vari-
tions of the infected individuals from the epidemics of severe
cute respiratory syndrome (SARS), middle east respiratory syn-
rome (MERS) and influenza A virus subtype (H1N1) [5–9]. The
IR model allows a one-way movement from susceptible to in-

ectious to removed. This seems reasonable for an infectious
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isease that is transmitted from human to human, while the
ecovery provides a lasting resistance [10,11]. Recently, the SIR
odel and its variants have been used to model the COVID-19
andemic [10,12–14].
COVID-19 is a viral disease rapidly spreading to various parts

f the globe. It has many symptoms such as cough, sore throat,
ever, and difficulty in respiration. Initially, some cases of COVID-
9 were reported from Wuhan, China in December 2019. Subse-
uently, it spread rapidly to other countries. Millions of people
ave been infected by this virus globally and many more have
ost their jobs, livelihoods, and businesses. There is a continuous
truggle for medical and other basic necessities, particularly, in
ountries where COVID-19 reached initially because the countries
ere not prepared for its lethal impact and rapid spread. Such an
mergency in this pandemic now or later for any other disease
equires immediate corrective actions for humans. COVID-19 is
highly contagious disease and is known to spread by coming

n contact with viruses through air and other common surfaces
ontaminated by infected persons. It is believed that this virus
ay survive over air and on many surfaces for several hours and,

herefore, utmost precautions are required to avoid the spread
f the disease. Since the onset of the disease, the World Health
rganization (WHO) has been providing advisories and detailed
nformation from time-to-time [15].

Resumption of the travel, economic, and other activities, along
ith high stress on the healthcare facilities can be better man-
ged and utilized by developing suitable mathematical models for
nderstanding, estimating and predicting the spread of pandemic.
he classical SIR model is used in [16] to understand the outbreak
f COVID-19 in China. In order to predict the expected number
f deaths by considering data from India, a regression analysis
pproach is used in [17]. An autoregressive integrated moving
verage model is used in [18] for the prediction of infected cases
n Italy. The long short-term memory (LSTM) model is employed
n [19] for estimating the number of cases and analyzing the
fficacy of the lockdown and social isolation. The numbers of
aily cases of infection and death vary due to multiple reasons
ncluding the highly random nature of the pandemic, the number
f testing, and the reporting mechanism. Hence, the trend and
ariability analysis of the data using the discrete cosine trans-
orm (DCT) based Fourier decomposition method (FDM) [20,21]
ollowed by Gaussian mixture model (GMM) for COVID-19 pre-
iction has been used recently in [22]. The FDM is based on DCT
hat works as an optimal transform for the first order Gauss–
arkov random signals and has been proved useful in various
pplications [23–26]. Authors in [27] presented predictions re-
ated to the spread of COVID-19 disease in Italy, France, and
hina. In order to help the authorities respond to COVID-19
pidemics, a case study is performed in [28] for the identification
f situational information from the social media. In [29], a data-
riven SIR model is implemented to estimate various parameters
n order to predict the size and end-dates of COVID-19 pan-
emic in different parts of the globe. Modeling of COVID-19
pidemic and study of the implementation of population-wide
nterventions in Italy is performed in [30]. Using LSTM networks,
orecasting of COVID-19 transmission is performed for Canada
n [31]. The estimation of the duration of outbreaks and its
urning point in various countries is performed using the gamma
ixture model (Γ MM) in [32], while the logistic growth model

s used for the predictions of pandemic size and end-dates in [29,
3]. Recently, some studies [10,12,13] have been performed to
odel the reproduction number as a time-varying parameter
sing the SIR model.
This work advances the mathematical theory of SIR modeling

f pandemic and proposes a Generalized SIR (GSIR) model. The
lassical SIR model is a special case of the proposed GSIR model
hich encompasses many distinct features. The main contribu-
ions of this study are as follows:
32
Fig. 1. Block diagram of the classical SIR model.

1. This study identifies the limitations of the classical SIR
model (refer Section 2) and proposes a new GSIR model as
a solution to these. Although the present study focuses on
only improvising the SIR model, the proposed methodology
can be easily extended for the other variants of the SIR
model.

2. GSIR model is an integrative model that captures the pan-
demic data via distinct waves that emerge and vanish
during the time period studied.

3. Although GMM, Γ MM, and logistic growth functions have
been used for COVID-19 modeling and prediction, their
connection with the SIR model is not established so far.
In fact, the solution of the classical SIR model is computed
numerically using the available epidemic data. We demon-
strate that the logistic, GMM, Γ MM and other growth
functions are the special solutions of the constituent waves
of the proposed GSIR model.

4. Unlike the classical SIR model, the GSIR solution leads to
time-varying parameters that grow or decay over time.
Furthermore, the GSIR model presents a closed form solu-
tion of all the system parameters, which is not available
in the SIR model. The dynamic profile of these parameters
captures the impact of policy decisions and awareness
such as social or physical distancing (sotancing), lockdown,
medication, vaccination, and other measures.

5. The classical SIR model is an initial-value problem and
does not ensure end/final boundary conditions for different
functions of susceptible, infected, and removed. The pro-
posed GSIR model ensures both initial and final conditions
and overcomes this limitation of the SIR model.

6. The proposed modeling approach can also be easily ex-
tended for the other variants of the classical SIR model such
as SEIR, SEIRS, MSEIR, SIRS, SIRD, SEIS, SI, and SIS.

We have used the proposed GSIR model to predict the total
umber of cases, deaths, end-dates and other parameters for
he pandemic in India, Brazil, and USA. The rest of this study is
rganized as follows. Section 2 presents the classical SIR epidemic
odel. Section 3 discusses the model proposed in this work and
efines various parameters associated with the GSIR model. Re-
ults and discussions are presented in Section 4. Finally, Section 5
resents the conclusion and future scope of the study.

. The classical SIR epidemic model

In this section, we discuss the classical Susceptible–Infected–
emoved (SIR) model. The classical SIR epidemic model [1,2], as
hown via a block diagram in Fig. 1, is defined by the following
nitial-value problem

dS(t)
dt

=
−βI(t)S(t)

N
, S(0) = S0 ≥ 0, (1a)

dI(t)
dt

=
βS(t)I(t)

N
− γ I(t), I(0) = I0 ≥ 0, (1b)

dR(t)
dt

= γ I(t), R(0) = R0 ≥ 0, (1c)
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here S(t), I(t), and R(t) are the numbers of susceptible, in-
fected, and removed (recovered and deaths) cases, respectively,
β is the contact/infection rate, and γ is the removal rate (1/γ
represents the average infectious period). The total population
size (a constant number) is obtained as

S(t) + I(t) + R(t) = N. (2)

It is evident from (1) that dS(t)
dt +

dI(t)
dt +

dR(t)
dt = 0. The SIR model

parameters β and γ along with the initial values S0, I0, R0 can
e estimated by minimizing ∥F (t)− F̂ (t, β, γ , S0, I0, R0)∥2, where

F (t) = I(t) + R(t) is the given total number of cases and F̂ (t) is
he total number of estimated cases by the SIR model at times
1, t2, . . . , tm.

In addition to the above parameters, another important pa-
ameter is the attack rate that is used to indicate the pace of the
pread of the viral disease. This parameter is represented by the
eproduction number and is denoted as R0. The value R0 > 1
ndicates that the infection growth (1b) is positive, R0 = 1
ndicates flattening of the infection, while R0 < 1 indicates that
he outbreak will gradually disappear. This value depends on the
ign of dI(t)

dt

⏐⏐⏐
t=0

. From (1b), it is evident that if βS0
Nγ

− 1 is greater

han zero, dI(t)
dt

⏐⏐⏐
t=0

will be positive indicating an increase in the

number of cases reported daily over time, leading to epidemic.
Thus, R0 =

βS0
Nγ

with a value greater than 1 indicates epidemic.

In reality, both β and γ are functions of time because they
change with awareness, hygiene, social distancing, lockdown,
medication, vaccination, and other measures. However, the clas-
sical SIR model assumes these parameters to be constant, which
is one of the biggest limitations of this model. Likewise, it is
worthwhile to compute and track the reproduction number at
all time points instead of computing only at the beginning. This
tracking can be very helpful because policy related changes will
eventually translate into this number showing whether the pan-
demic is increasing (R0(t) > 1) or decreasing (R0(t) < 1) and
hence, corrective measures can be taken.

We enumerate the following limitations of the classical SIR
model:

1. Generally, SIR model assumes all parameters β , γ , and R0
to be constant, while in real scenario, these parameters
would be changing with time.

2. The solution to the model is computed numerically and
hence, the model has limited tracking and prediction abil-
ity.

3. Initial infected population I(0) is small at the beginning of
the pandemic. At the end of the pandemic, its final value
should be zero, i.e., I(∞) = 0, which is not ensured in the
classical SIR model.

4. Initial removed population, R(0) = 0, because there is
no recovery at the very beginning of the pandemic. Once
the pandemic is over, there must be complete removal
by recovery and deaths. Thus, R(∞) = K , where K =∫

∞

0 I(t) dt , is the total number of population infected over
the entire period of the pandemic. However, this is also not
ensured in the classical SIR model.

5. Initial susceptible population, S(0) = N − I(0), is close
to the total population N . Since dS(t)

dt is a negative-valued
function of time, S(t) ≥ 0 is also a decreasing function of
time. Therefore, its final value must be zero, i.e., S(∞) = 0.
However, this is not ensured in the classical SIR model.

From the theory of differential calculus, it is well-known that
n nth order differential equation satisfies n boundary conditions.
he classical SIR model depicted by (1) is a set of three first-
rder differential equations. Hence, this model can satisfy only
33
three conditions. In this model, these boundary conditions have
been chosen to be the three initial conditions (S(0) = S0, I(0) =

0 and R(0) = R0). Thus, the SIR model is also known as the
nitial-value problem. The final conditions are not satisfied in
he classical SIR model. Our proposed GSIR model ensures both
nitial and final conditions. Further, we assert that the initial
usceptible population S0 is continuously interacting or coming
n contact with the infected cases. Hence, in the long run, almost
ll susceptible persons will get infected and thus, N = K . In other
ords, practically, the susceptible population does not include
hose (i) who are not coming in contact (or interacting) with the
nfected cases, and (ii) who are immune and may be interacting
ith the infected cases.
The proposed GSIR model addresses all the above limitations

f the classical SIR model, is a much more generic model, and can
elp with better modeling and tracking ability.

. The proposed generalized SIR (GSIR) model

In this section, we present the proposed GSIR model. During
OVID-19, the number of cases kept increasing and decreasing
ver time. The daily reported cases change with different mea-
ures being taken by the governments. Hence, in the GSIR model,
e assume that multiple waves of varying peak amplitude and
hape emerge and vanish over time. The following equations
apture the P number of waves in the GSIR model as

dS(t)
dt

= −

P∑
i=1

βiIi(t)Si(t)
Ni

, S(0) = S0 ≥ 0, (3a)

dI(t)
dt

=

P∑
i=1

(
βiIi(t)Si(t)

Ni
− γiIi(t) − ℓi

)
, I(0) = I0 ≥ 0, (3b)

dR(t)
dt

=

P∑
i=1

(γiIi(t) + ℓi) , R(0) = R0 ≥ 0, (3c)

where ℓi is a constant and,

S(t) =

P∑
i=1

Si(t), I(t) =

P∑
i=1

Ii(t), (4a)

(t) =

P∑
i=1

Ri(t), N =

P∑
i=1

Ni. (4b)

The block diagram of this proposed GSIR model is shown in
ig. 2.

.1. GSIR model using the logistic growth model

First, we present the framework with a single wave, i.e., with
= 1 and its modeling via the logistic growth model. We use the
SIR model equations in (3) and present the theory that presents
he closed form solutions of all the system parameters.

Logistic growth model (LGM) is often used in epidemiology to
odel the spread of the infection. Here, the number of infections

nitially grow exponentially, but later decline as the numbers
pproach the population’s carrying-capacity, where the carrying
apacity is denoted as the number of people that can be infected
ventually in a population. The cumulative number of infections
n the tth day, denoted as C(t), using the LGM [34,35], can be
ritten as

(t) =
K

1 + Ae−rt , (5)

where K is the carrying capacity, A denotes the number of persons
initially infected, and r is the growth rate. Corresponding to this
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odel, the number of infected persons on the tth day, I(t), is
iven by

(t) =
dC(t)
dt

=
K Are−rt

(1 + Ae−rt )2
. (6)

For any country, the numbers reported on day-0 (day of ref-
erence) are those that are active on that day. Hence, these are
the cumulative numbers until that day and are equal to C(0).
ubstituting t = 0 in (5) and (6), we obtain C(0) = C0 =

K
1+A

hat implies A =
K
C0

− 1, while C∞ = K . Also, C(0) − ϵ = I(0).
(0) =

KAr
(1+A)2

, and A =
K
C0

− 1. The values of K , A, r , C0 and I0 are

etermined from the curve fitting of the available data. Further,
e assume that R0 = 0 and hence, S0 = N − I0.
Solving for dI(t)/dt from (6) above and equating to the R.H.S.

f (3b), we obtain

dI(t)
dt

=
β

N
S(t)I(t) − γ I(t) − ℓ =

2
K
(1 + Ae−rt )I2(t) − rI(t). (7)

Rearranging terms in (7), we obtain the number of susceptible
persons as

S(t) =
2N
Kβ

(
1 + Ae−rt) I(t) +

(
γ +

ℓ

I(t)
− r

)
N
β

, (8)

where

γe(t) = γ +
ℓ

I(t)
(9)

is the effective removal rate that is a function of time. The first
term γ is a constant and the second term is inversely proportional
to I(t). As the number of infections decrease and approach zero at
large t , the removal rate γe(t) increases to a large value because
every person in the population is either recovered or removed by
this time. In other words, at very large t = T for T equivalent to
∞, RT = K and IT = ST = 0. The susceptible population at any
time t can be written as

S(t) = N − I(t) − R(t). (10)

Thus, from (8) and (10), we obtain the expression of β as a
unction of time

(t) =
N

[ 2
K

(
1 + Ae−rt

)
I(t) + γe(t) − r

]
. (11)
N − I(t) − R(t) o

34
The initial behavior of the epidemic depends on whether the
numbers decline or increase, or on the sign of dI(t)

dt

⏐⏐⏐
t=0

, i.e.,

dI(t)
dt

⏐⏐⏐
t=0

=
β0S0I0

K
− γ I0 − ℓ =

(
β0S0
K

− γe0

)
I0, (12)

here β0 and γe0 denote the values of β(t) and γe(t), respectively,
t t = 0. For pandemic, dI(t)

dt

⏐⏐⏐
t=0

> 0. This implies that γe0 <

β0S0
K or the reproduction number R0 =

β0S0
Nγe0

> 1. In general,

t is worthwhile to track the sign of dI(t)
dt

⏐⏐⏐
t=0

or the value of

the reproduction number R0(t) at time t for the monitoring of
pandemic. Since for pandemic dI(t)

dt > 0, we obtain the below
expression of the reproduction number, from (3b) and (7), as a
function time

R0(t) =
β(t)S(t)
Nγe(t)

=

2
K (1 + Ae−rt )I(t) + γe(t) − r

γe(t)
. (13)

Next, we solve for the removed person R(t) from (3c) and
obtain

R(t) =

∫
(γ I(t) + ℓ) dt = γ C(t) + ℓt + b. (14)

Substituting the initial condition R(0) = 0 and the final condi-
ion R(T ) = K in (14), we obtain b = −γ C0, ℓ = (K−γK+γ C0)/T .
o derive N , we evaluate (10) at T , i.e., 0 = N − 0− K and obtain
= K .
We utilize the above GSIR model to fit the data. In the above

quations, γ is the only free parameter. The value of 1/γ can
e set to be equal to the mean infection time as known for
he disease. In general, the number of infections I(t) for any
country will fit into multiple waves. Once the data is fitted and
the number of waves extracted, we will substitute those waves
individually in the GSIR model (3) and estimate the parameters
for every ith constituent wave.

The composite logistic growth model can be written as [34,35]

C(t) =

P∑
i=1

Ki

1 + Aie−ri(t−τi)
, (15)

here the number of waves P , and the four parameters (Ki, Ai, ri,
τi) for each wave are estimated by minimization of the objective
unction, which is the sum of squares of residuals [29,33,36]. The
inimization uses the simplex search method [37] to estimate
ptimal values of these unknown model parameters.
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.2. GSIR model using the Gaussian growth function

Next, we model I(t) using the Gaussian growth function. Here,
he number of infected persons I(t) on the tth day is given by

(t) = α e−
(t−µ)2

2σ2 , (16)

here µ denotes the mean and σ 2 denotes the variance of the

Gaussian function, while I0 = α e−
µ2

2σ2 . Thus, using (3b), we obtain
solution of I(t), which is the GMM, as follows

(t) =

P∑
i=1

Ii(t) =

P∑
i=1

αi exp
(

−
(t − µi)2

2σ 2
i

)
, (17)

here regression parameters αi, µi and σi are the amplitude,
mean and standard deviation, respectively. The removed popu-
lation R(t) is obtained from (3c), similar to (14), as

R(t) =

P∑
i=1

Ri(t) =

P∑
i=1

(∫
(γiIi(t) + ℓi) dt

)

=

P∑
i=1

(γiGi(t) + ℓit + bi) , (18)

where Gi(t) =
∫ t

−∞
α e

−
(τ−µi)

2

2σ2
i dτ . Substituting the initial condi-

tion, Ri(0) = 0, and the final condition, Gi(T ) = Ni = Ri(T ), in
18), we obtain bi = −γGi(0), ℓi = (Ni − γiNi + γiGi(0))/T .

The susceptible population is obtained from (2), (17) and (18)
s

(t) =

P∑
i=1

Si(t) =

P∑
i=1

[Ni − Ii(t) − Ri(t)] . (19)

his shows that as t → ∞, Ii(t) → 0, Ri(t) → Ni and Si(t) reduces
o zero.

Solving for dI(t)/dt from (16) and equating to the R.H.S. of
3b), we obtain
dI(t)
dt

=

(β(t)
N

S(t) − γe(t)
)
I(t) =

(µ − t
σ 2

)
I(t). (20)

On simplifying (20), we obtain the expression of the number
of susceptible persons S(t) on the tth day as

S(t) =

(µ + σ 2γe(t) − t
σ 2β(t)/N

)
. (21)

For the case with multiple waves, i.e., P > 1, we can write

S(t) =

P∑
i=1

Si(t) =

P∑
i=1

(
µi + σ 2

i γei(t) − t
σ 2
i βi(t)/Ni

)
, (22)

here βi(t) and γei(t) are the infection and removal rates, respec-
ively, of the ith wave. This implies that the overall susceptible
population S(t) is a superposition of multiple waves {Si(t)}Pi=1
that are emerging and vanishing over time. From (19) and (22),
time-varying βi(t) is obtained as

βi(t) =

(µi + σ 2
i γei(t) − t

Ni − Ii(t) − Ri(t)

) Ni

σ 2
i

. (23)

inally, similar to (13), time-varying reproduction number is ob-
ained as

0ic(t) =
βi(t)Si(t)
γei(t)Ni

, (24)

here from (9)

ei(t) = γi +
ℓi

, (25)

Ii(t) p

35
and for each i, γi is a free parameter that affects all parameters,
waves R(t) and S(t), but does not affect I(t).

3.3. GSIR model using the gamma growth function

Next, we attempt to find the solution for the Gamma growth
function into the GSIR model. Here, the number of infected period
on the tth day, I(t), is given by

(t) = ρ tκ−1e−λt , κ > 0, λ > 0, (26)

here ρ, λ, and κ are the regression parameters of the gamma
growth function. Physically, λ and κ represent the rate and shape,
respectively, of the gamma function. For P waves, we obtain I(t)
in terms of the Gamma mixture model (Γ MM) as

(t) =

P∑
i=1

Ii(t) =

P∑
i=1

ρi tκi−1e−λit , κi > 0, λi > 0. (27)

The Erlang (κi ∈ Z+, a positive integer), exponential (κi = 1),
and chi-squared (replacing κi −1 with ki/2−1 and λi = 1/2) dis-
tributions are special cases of the gamma distribution. Further, by
modeling each wave in the R.H.S. of (3b) as

(
βi(t)Si(t)

N − γei(t)
)

=

κi−1
t − λi

)
H⇒ Si(t) =

(
γei(t) − λi +

κi−1
t

)
N

βi(t)
with t > 0.

General comments: Another interesting model, namely, the
Gaussian-Gamma mixture model (GΓ MM) can be obtained by
combining (17) and (27) piecewise or group-wise or both as

I(t) =

P1∑
i=1

ρi tκi−1e−λit +

P∑
i=P1+1

αi exp
(

−
(t − µi)2

2σ 2
i

)
. (28)

Following the above procedure, various other mixture model
f the distributions (e.g., beta, Kumaraswamy, Irwin–Hall, Gum-
el, Fréchet and Weibull) can be easily obtained, simply be-
ause solution of the differential equation (3b) depends on the
odeling of the individual waves.

.4. Computation of the composite parameters with multiple waves

So far, we have observed that there could be multiple waves.
ence, we computed the composite parameters for P waves.
rom (1) and (3), we observe that the composite (overall) in-
ection rate βc(t), removal rate γc(t) and reproduction number
0c(t) can be obtained as

βc(t) =

∑P
i=1

βi(t)Si(t)Ii(t)
Ni

S(t)I(t)/N
, (29a)

γc(t) =

∑P
i=1 (γiIi(t) + ℓi)

I(t)
, (29b)

and R0c(t) =
βc(t)

∑P
i=1 Si(t)

γc(t)
∑P

i=1 Ni
(29c)

respectively, where composite S(t), I(t), and N are presented in
4). The computation of the above parameters is valid for any
rowth function or for any general mixture growth model, where
he constituent waves can be modeled using different types of
rowth functions.

. Results and discussion

In this section, we present the results of the GSIR model using
he Logistic growth model for COVID-19 infection. We have pre-
ented results related to daily cases for Brazil, India, USA, World,
nd daily World deaths. First, we analyze the data of Brazil. We
resent the comparative results of SIR modeling (Fig. 3) and GSIR
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Fig. 3. SIR model fitting for Brazil (actual data: March 6 to July 28, 2020). Top
subfigure: modeling of the total number of people infected; middle subfigure:
modeling of new cases reported on daily basis—the middle red curve shows
the fitted data, while the outer and inner red curves are at two standard
deviation away from the middle curve; and bottom subfigure: predicted versus
actual value of growth factor of daily cases computed as dC(t)/dt

C(t) × 100%. (For
nterpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)

odeling (Fig. 4) on the data of Brazil. The root mean squared
alue (RMSE) in fitting the data with SIR model (RMSE=22986)
s more than twice than that obtained (RMSE=10983) with the
SIR
model. In addition, the GSIR model of Fig. 4 shows multiple

andemic waves in Brazil data, while the SIR model is not able
o do so. As we observe from Fig. 3, the SIR model fits the daily
ew cases data with only one wave. Since the surge of new
ases emerge and vanish as the policy decisions of lockdown or
artial lockdown are taken to control the pandemic, it seems
nappropriate to fit the entire data within one wave. This is
lso the reason that the RMSE is very high with the SIR model
ompared to the GSIR model. Hence, overall, the GSIR model is
erforming better than the SIR model.
As shown by the GSIR model, there are four pandemic waves

n Brazil with the total number of expected cases to be approxi-
ately 3.37 million, estimated from the data as of 28 July, 2020.
irst wave has 142,942 cases with r1 = 0.1756, second wave is
ignificantly stronger than the first one with 1.1208e+06 cases
nd r2 = 0.1068, third wave is also strong (1.65e+06 cases)
ith r3 = 0.0932, and the estimated final wave is the weakest
ith 457644 cases and r4 = 0.1563 as shown in Fig. 4(a), while
he parameters are presented in Table 1. Plots of Si(t), Ii(t), Ri(t),
he corresponding reproduction number waves R0ic(t), and the
omposite reproduction number wave R0c(t) obtained from the
roposed model are shown in Fig. 4(b) and (c). Currently, the
verall growth factor of daily cases for Brazil is 1.69%.
Next, we present the results of India, USA, and World in

igs. 5–8, while the estimated parameters are presented in Ta-
le 1. We have used the MATLAB codes [29,33,38] for the esti-
ation of logistic model parameters, and downloaded COVID-19
ata from [39].
India has the world’s second largest population. There are two

andemic waves in India and the total number of expected cases
re approximately 4.5 millions, estimated from the data as of
8 July, 2020. The first wave is relatively small (438,003 cases),
hile the second wave is significantly strong (4.0681e+06 cases)
s shown in Fig. 5(a) and Table 1. Infection growth rate of the
irst wave (r1 = 0.061) is similar to the second wave (r2 =
.063). Plots of Si(t), Ii(t), Ri(t), the corresponding reproduction

36
umber waves R0ic(t), and the composite reproduction number
ave R0c(t) obtained from the proposed model are shown in
ig. 5(b) and (c). Currently, the overall growth factor of daily cases
or India is 3.4% (from the blue line of the bottom third subfigure
f Fig. 5(a)), which is highest among the considered countries.
Further, we observe from Fig. 5(b) and (c) that India attained

ts first peak of daily reported cases on May 6, 2020 (64th day
rom March 3) when the value of R01c(t) = 1.05 > 1, the
second peak of daily reported cases on July 9, 2020 (129th day
from March 3) when the value of R02c(t) = 1.054 > 1, and the
composite peak of daily reported cases on July 18, 2020 (137th
day from March 3) when the value of R0c(t) = 1.04 > 1. Our
analysis predicts that the compositeR0c(t) will decline below one
on the 164th day, i.e., August 13, 2020, when the predicted value
of daily reported cases is also going to attain its peak. Hence,
although the second wave of I2(t) is still picking up as on 28th
uly, the trend of R0c(t) indicates that the downward journey
of the pandemic began on 18th July, 2020. Further, the current
trends predict that R0c(t) will attain its minimum with a value
of 0.945 on the 200th day, i.e., on September 19, 2020. Thus,
policymakers need to ensure that trend does not pick up from
this ebb beyond Sep 19, 2020. Since another wave has not started
yet, it shows that the pandemic can be controlled if people follow
precautions as advertised.

On further studying the pattern of R0c(t) Fig. 5(c) in the con-
text of policy decisions taken and the predicted parameters, we
note that the two waves emerged in early March 2020. While the
first wave (with τ0 = 0 day) picked up immediately, the second
wave (with τ1 = 0.8 day) took off very slowly. The first wave
did not attain a very high peak because the spread of corona was
contained by the national lockdown announced shortly, i.e., on
March 22, 2020. Since the lockdown continued and there were
stringent restrictions in the areas where the first few corona cases
appeared, these lockdown duration and restrictions forced this
wave to die out. The value ofR01c(t) attained its peak around May
06, but started declining afterwards and fell below the value of 1
somewhere around 30th May 2020. It appears that a complete
lockdown from March to early May yielded the desired results.

Interestingly, some relaxations in lockdown were provided
on May 30, 2020. Around this time, the second wave took off
from ground. In May, Shramik trains were also started by the
Government of India and road transport was opened partially for
inter-state movement of people within India to facilitate return to
their respective home states. It is estimated that about 25 million
people moved inter-state within India. This movement might
have led to the spread of the disease to other regions and hence,
led to the second wave that took off from very low numbers in
the first week of June. At the same time, the number of tests per
day grew from 0.05 million per day to around 0.13 million per day
in the first week of June. By 16th July 2020, the number of tests
per day were more than 0.35 million per day. Hence, the number
of corona cases grew much bigger than the first wave owing to
(1) the movement of people and (2) due to the growing number
of tests and hence, detection of corona. Moreover, while people
in initially affected areas took more precautions, people of less
affected areas were relatively relaxed.

Unlock 1.0 was announced on June 08, 2020 and Unlock 2.0
was announced for July 01 to July 31 at the national level. As
a consequence, major restrictions and closure of all shopping
malls, cinema halls, schools, colleges, offices (work from home)
continued in July. Thus, we observe from the R02c(t) wave that
the downward journey from peak started on July 18, 2020 (137th
day), somewhere during the middle of the Unlock 2.0 phase. From
the above discussion, it is clear that the pandemic trends vis-à-vis
policy are easy to interpret with waves of R0ic(t) instead of the

waves of I(t). Hence, it is worthwhile to track R0ic(t) instead of
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Fig. 4. (a) Logistic model fitting for Brazil (actual data: March 6 to July 28, 2020) which shows there are four COVID-19 waves; (b) corresponding plots of Ii(t), Si(t)
nd Ri(t) using the proposed GSIR model and; (c) the corresponding R0c (t). In (a): Top subfigure: modeling of the total number of people infected; middle subfigure:
odeling of new cases reported on daily basis I(t)–the middle black curve shows the fitted data, while the outer and inner red curves are at two standard deviation
way from the middle curve; and bottom subfigure: predicted versus actual value of growth factor of daily cases computed as dC(t)/dt

C(t) × 100%. (For interpretation
f the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 1
Estimated parameters of multiple waves of integrative GSIR model shown in Eq. (15).
S.N. Parameters India, P = 2 Brazil, P = 4 USA, P = 4 World, P = 4 World deaths, P = 4

1 K1 438003 142942 808921 2.6723e+06 181988
2 r1 0.0615 0.1756 0.1675 0.1083 0.1357
3 C01 890 9.0231 6.8432 63.9908 1.6932
4 τ1 0 0 0 0 0
5 K2 4.068e+06 1.121e+06 3.2131e+06 3.8634e+06 145878
6 r2 0.063 0.1068 0.0830 0.08162 0.10580
7 C02 145.1 7.3187 7.2230 51.9018 1.1222
8 τ2 0.840 0.0022 11.4938 0.0529 1.544e−05
9 K3 – 1.6500e+06 505948 4.5714e+06 193723
10 r3 – 0.0932 0.1209 0.0953 0.0831
11 C03 – 5.2979 3.6811 38.5677 0.9406
12 τ3 – 9.9547 22.2229 50.2243 2.4858
13 K4 – 457644 612172 1.0164e+07 206070
14 r4 – 0.1563 0.1614 0.0918 0.0962
15 C04 – 5.8998 7.9578 24.4083 0.8063
16 τ4 – 11.0474 24.7327 65.0202 58.7741
w
only computing the constant value R0c at the beginning of any
pandemic.

Similar to India, four pandemic waves are observed in the data
of USA. The total number of expected cases are approximately
5.14 million, estimated from the data as of 28 July, 2020. First
wave has 808,921 cases with r1 = 0.1675, the second wave is
round four times stronger than the first one with 3.2131e+06
ases and r2 = 0.083, while the third wave is weaker with
505,948 cases and r3 = 0.120923. The estimated final wave is also
weak with 612172 cases and r4 = 0.1614 (Fig. 6(a) and Table 1).
lots of Si(t), Ii(t), Ri(t), the reproduction number waves R0ic(t),
nd the composite reproduction number wave R0c(t) obtained
rom the GSIR model are shown in Fig. 6(b) and (c). Currently,
he overall growth factor of the daily cases for USA is 1.16%.

For the world data, there are four pandemic waves and a total
umber of expected cases are approximately 21.27 millions, esti-
ated from the data as of 28 July, 2020. First wave is strong with
.67232e+06 cases and r1 = 0.1083, second wave is stronger
han the first one with 3.8634e+06 cases and r2 = 0.0816, third
ave is stronger than the first two waves with 4.571e+06 cases
= 0.0953, and the estimated final wave is the strongest one
3

37
ith 1.0164e+07 cases and r4 = 0.0918 as shown in Fig. 7(a) and
Table 1. Plots of Si(t), Ii(t), Ri(t), the corresponding reproduction
number waves R0ic(t), and the composite reproduction

number wave R0c(t) obtained from the proposed model are
shown in Fig. 7(b) and (c). Currently, the overall growth factor of
daily cases for the World is 1.49%. Similarly, there are four pan-
demic waves across the world for deaths, and the total number of
expected deaths are approx. 727,659, estimated from the data as
of 28 July, 2020. First wave has 181,988 deaths with r1 = 0.1357,
second wave is weaker than the first one with 145,878 deaths
and r2 = 0.1058, third wave is stronger than first two waves with
193,723 deaths with r3 = 0.0831, and the estimated final wave
is strongest with 206,070 deaths and r4 = 0.09625 as shown in
Fig. 8(a) and Table 1. Currently, the overall growth factor of daily
deaths for World is 0.74%.

5. Conclusions and future scope

The important conceptual innovations and fundamental con-
tributions of the study are as follows. First of all, we identified the
limitations of the classical SIR model and provided the solutions
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Fig. 5. (a) Logistic model fitting for India (actual data: March 3 to July 28, 2020) which shows there are four COVID-19 waves; (b) corresponding plots of Ii(t), Si(t)
and Ri(t) using the proposed GSIR model and; (c) the corresponding R0c (t). In (a): Top subfigure: modeling of the total number of people infected; middle subfigure:
modeling of new cases reported on daily basis I(t)–the middle black curve shows the fitted data, while the outer and inner red curves are at two standard deviation
away from the middle curve; and bottom subfigure: predicted versus actual value of growth factor of daily cases computed as dC(t)/dt

C(t) × 100%. (For interpretation
f the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 6. (a) Logistic model fitting for USA (actual data: February 15 to July 28, 2020) which shows there are four COVID-19 waves; (b) corresponding plots of Ii(t), Si(t)
nd Ri(t) using the proposed GSIR model and; (c) the corresponding R0c (t). In (a): Top subfigure: modeling of the total number of people infected; middle subfigure:
odeling of new cases reported on daily basis I(t)–the middle black curve shows the fitted data, while the outer and inner red curves are at two standard deviation
way from the middle curve; and bottom subfigure: predicted versus actual value of growth factor of daily cases computed as dC(t)/dt

C(t) × 100%. (For interpretation
f the references to color in this figure legend, the reader is referred to the web version of this article.)
or the same. Next, we extended the mathematical theory of
he classical Susceptible–Infected–Removed (SIR) epidemic model
nd proposed Generalized SIR (GSIR) model that satisfies six
oundary conditions (the three existing initial conditions and the
hree new final conditions) without modeling the SIR model with
set of second-order differential equations. We have shown that
he existing growth function models of epidemics such as the
ogistic, Gaussian and gamma functions are the special cases of
he GSIR model. The GSIR solution led to time-varying parame-
ers that grow or decay over time. Closed-form expressions are
resented for all the system waves of susceptible, infected and
emoved populations as well as for the parameters of infection
ate, removal rate, and the reproduction number. The second
rder modeling allows control on the terminal conditions, i.e., to
38
achieve the expected goal at a certain time, while the time vary-
ing parameters show a better tractability with policies. Thus,
the pandemic controlling agencies can utilize this model and
specify terminal conditions of pandemic with appropriate policies
in place that can help achieve those targets while tracking this
model.

In this study, the GSIR framework is utilized as a data-driven
approach for predictive monitoring of COVID-19 pandemic, al-
though it can be used to model any pandemic. Using the proposed
model, study is performed on the COVID-19 data of various coun-
tries with detailed results for Brazil, India, USA, and World. The
proposed GSIR model advances the existing theory of SIR model
and provides better results compared to the SIR model. GSIR
model can be utilized for continuous predictive monitoring of
COVID-19 pandemic across the world. With a closer study of the
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Fig. 7. (a) Logistic model fitting for World (actual data: December 31, 2019 to July 28, 2020) which shows there are four COVID-19 waves; (b) corresponding plots
of Ii(t), Si(t) and Ri(t) using the proposed GSIR model and; (c) the corresponding R0c (t). In (a): Top subfigure: modeling of the total number of people infected;
middle subfigure: modeling of new cases reported on daily basis I(t)–the middle black curve shows the fitted data, while the outer and inner red curves are at two
standard deviation away from the middle curve; and bottom subfigure: predicted versus actual value of growth factor of daily cases computed as dC(t)/dt

C(t) × 100%.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 8. Logistic model fitting for World deaths (actual data: January 9 to July
28, 2020) that shows there are four COVID-19 death waves. Top subfigure:
modeling of the total number of deaths; middle subfigure: modeling of new
deaths reported on daily basis–the middle black curve shows the fitted data,
while the outer and inner red curves are at two standard deviation away from
the middle curve; and bottom subfigure: predicted versus actual value of growth
factor of daily deaths. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

lockdown periods of India during COVID-19 pandemic and the
trends of the corresponding reproduction number waves, it is
emphasized that tracking of these time-varying parameters can
prove very helpful for decision makers to control any pandemic.

We have considered three well-known and widely-used
growth models, namely logistic, Gaussian and gamma functions
to derive explicit mathematical relations for the GSIR model.
However, the proposed model is generic and one can choose any
function (e.g., beta, Kumaraswamy, Irwin–Hall, Gumbel, Fréchet,
39
and Weibull, etc.) to model the infected population that satisfies
the initial and final conditions. In the literature, there are many
probability density functions. In this work, we have carried out
explicit derivations for three growth functions, and implemented
one of these (the logistic function) to obtain results through
MATLAB coding. Therefore, two interesting future directions of
the study are: (i) to consider various possible functions and
develop a mathematical method or an algorithm to select the best
one and (ii) to extend the proposed study for the other variants
of the classical SIR model such as SEIR, SEIRS, MSEIR, SIRS, SIRD,
SEIS, SI, and SIS.
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