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A B S T R A C T   

The angiotensin-converting enzyme 2 (ACE2) receptor has been proved for SARS-CoV-2 cell entry after auxiliary 
cellular protease priming by transmembrane protease serine 2 (TMPRSS2), but the co-effect of this molecular 
mechanism was unknown. Here, single-cell sequencing was performed with human conjunctiva and the results 
have shown that ACE2 and TMPRSS2 were highly co-expressed in the goblet cells with genes involved in im-
munity process. This identification of conjunctival cell types which are permissive to virus entry would help to 
understand the process by which SARS-CoV-2 infection was established. These finding might be suggestive for 
COVID-19 control and protection.   

The emerging coronavirus disease (COVID-19) caused by severe 
acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has pushed 
several countries into public health emergency all over the world 
(Al-Qahtani, 2020). COVID-19 patients demonstrate symptoms of fever, 
dry cough, dyspnea, and fatigue that can develop to pneumonia (Cas-
cella et al., 2020; Pal et al., 2020). SARS-CoV-2 is infectious and it is 
transmitted mainly by inhaling aerosols or droplets released by the 
infected ones, appearing to be more transmissible than either severe 
acute respiratory syndrome (SARS) or middle east respiratory syndrome 
(MERS) (Hui, 2017; Koh et al., 2020). It was well known SARS was 
primarily transmitted through contact with mucous membranes in the 
eyes, mouth, or nose (Hui and Zumla, 2019). But the modes of trans-
mission of SARS-CoV-2 have been key knowledge gaps (Luo et al., 
2020). Since the outbreak of SARS-CoV-2, clinicians were speculating 
that the disease could also be transmitted by the conjunctiva, underlying 
the need for further investigations on its potential transmission path-
ways (“Beijing Daily of a doctor Guangfa Wang’s SARS CoV-2 infection. 
http://www.bjnews.com.cn/news/2020/01/23/678189.html,” n.d.; Lu 
et al., 2020). SARS-CoV-2 was detected in the tears and conjunctival 

secretions of patients with SARS-CoV-2 infection(Xia et al., 2020). 
Further investigation found conjunctival congestion in 0.8% of patients 
was with laboratory-confirmed SARS-CoV-2 infection (Guan et al., 
2020). Noticeably, Deng et al. inoculated rhesus macaques with 
SARS-CoV-2 conjunctivally and showed that infection via the conjunc-
tival route is possible in primates(Deng et al., 2020). 

SARS-CoV-2 is assumed to gain cell entry through the angiotensin- 
converting enzyme 2 (ACE2) receptor after auxiliary cellular protease 
priming by transmembrane protease serine 2 (TMPRSS2) (Hoffmann 
et al., 2020). RNA sequencing analysis have proved that ACE2 was 
expressed in human conjunctival tissue, especially in diseased con-
junctiva (li et al., 2020). But the cell types and molecular mechanism for 
the process of cell entry was unknown. Single-cell sequencing has shown 
that ACE2 and TMPRSS2 were co-expressed in nasal epithelial cells with 
genes involved in innate immunity (Lange et al., 2020). Therefore, 
identifying the conjunctival cell types that are permissive to virus entry 
would help to understand the process by which SARS-CoV-2 infection 
was established. 

Here we assessed ACE2 and TMPRSS2 expression in human 

* Corresponding author. 
** Corresponding author. Department of Ophthalmology, Fudan Eye & ENT Hospital, Shanghai, China. 
*** Corresponding author. Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China. 

E-mail addresses: chendongsheng@genomics.cn (D. Chen), jihongwu@fudan.edu.cn (J. Wu), qianjiang@fudan.edu.cn (J. Qian).   
1 These authors contributed equally to this work. 

Contents lists available at ScienceDirect 

Experimental Eye Research 

journal homepage: www.elsevier.com/locate/yexer 

https://doi.org/10.1016/j.exer.2021.108501 
Received 9 November 2020; Received in revised form 31 January 2021; Accepted 8 February 2021   

http://www.bjnews.com.cn/news/2020/01/23/678189.html
mailto:chendongsheng@genomics.cn
mailto:jihongwu@fudan.edu.cn
mailto:qianjiang@fudan.edu.cn
www.sciencedirect.com/science/journal/00144835
https://www.elsevier.com/locate/yexer
https://doi.org/10.1016/j.exer.2021.108501
https://doi.org/10.1016/j.exer.2021.108501
https://doi.org/10.1016/j.exer.2021.108501
http://crossmark.crossref.org/dialog/?doi=10.1016/j.exer.2021.108501&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Experimental Eye Research 205 (2021) 108501

2

Fig. 1. Single Cell Transcriptome Analysis of the Conjunctiva. (a) Schematic view of the experimental design. (b) Uniform Manifold Approximation and Projection 
for Dimension Reduction (UMAP) plot showing the cellular composition of conjunctiva. Cells are colored according to the cell types. (c) Violin plots showing the 
expression level of cell type specific marker genes.(d) Dot plots showing the expression ratio and the average expression of ACE2 (left) and TMPRSS2 (middle). The 
expression ratio is indicated by dots size while average expression is indicated by color. Bar plot showing the co-expression ratio (right) of ACE2 and TMPRSS2 in 
different cell types. (e) Violin plots showing the expression pattern of ACE2 and TMPRSS2 in each cell type and the significance of the difference between goblet cells 
and each other cell type (*: 0.01 < p≤0.05; **: 0.001 < p≤0.01; ***: p≤0.001). (For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 
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conjunctiva at single-cell level (Fig. 1a). To perform the analysis, two 
samples were collected from conjunctival tissue. Two subjects (one male 
and one female) were included in this study. Detailed information of 
each subject was listed in Table S1. All subjects gave their informed 
consent for inclusion before they participated in the study. The study 
was conducted in accordance with the Declaration of Helsinki, and the 
protocol was approved by Fudan Eye & ENT Hospital (2020044–1) 
following the Code of Ethics of the World Medical Association. 

Samples were collected during orbital exenteration surgery at 
normal sites of the donors’ conjunctiva. Following surgical resection, 
fresh tissue samples were immediately minced into small pieces, dis-
integrated with 0.25% trypsin (Gibco) at 37 ◦C for 10 min, treated with 
10% FBS to terminate digestion, and filtered through sterile 70 μm cell 
strainers (BD Falcon) to obtain single-cell suspension. The single-cell 
suspension was further treated with Red Blood Cell Lysis Buffer (Solar-
bio) for 10 min, centrifuged at 350 g for 5 min, and resuspended in 10% 
FBS for cell counting and viability assessment. 

Single-cell libraries from cell suspension were generated in the 10X 
Genomics V3 kit according to the manufacturer’s instructions. After 
performing the library conversions using the MGIEasy Universal DNA 
Library Preparation Reagent Kit, the libraries were sequenced on 
BGISEQ-500 sequencing platform. 

Raw sequencing data was processed by Cell Ranger 3.0.2 (10X Ge-
nomics). Then, Seurat 3.1.2(Stuart et al., 2019) was applied for down-
stream analysis. The gene expression matrices obtained from Cell 
Ranger were filtered based on the following criteria: (1) Genes detected 
in less than three cells were discarded; (2) Cells with genes number less 
than 200 were removed; (3) Cells with mitochondrial genes percentage 
greater than 10% were filtered out. After QC, a total of 34,382 high 
quality cells were acquired for analysis. 

Seurat 3.1.2(Stuart et al., 2019) was applied to perform unsupervised 
clustering. First, LogNormalize method was used to perform normali-
zation by a scale factor 100,000. Next we calculated the variance scores 
for each gene and defined the top 2000 genes as highly variable genes 
(HVGs). Then principal component analysis (PCA) was performed using 
HVGs and principal components (PCs) significance was calculated using 
JackStraw function. Following, clusters were identified using 
FindClusters function and visualized using RunUMAP. Besides, Dou-
bletFinder R package(McGinnis et al., 2019) was employed to identified 
and removed the doublet cells. Finally, we applied FindInte-
grationAnchors and IntegrateData functions to integrate these two 
sequencing libraries and performed the PCA dimensionality reduction 
and Uniform manifold approximation and projection (UMAP) visuali-
zation. The high-quality cells were grouped into nine cell types by UMAP 
(Fig. 1b, Table S2).(Li et al., 2020) (Luwei and Fen, 2020). 

Differentially expressed genes (DEGs) were identified using Fin-
dAllMarkers function implemented in Seurat. Genes with adjusted P- 
value (Bonferroni method) less than 0.05 were defined as DEGs 
(Table S3). GO term enrichment were performed employing R package 
clusterProfiler(Yu et al., 2012)and BH method was used for multiple test 
correction (Table S4). 

To annotate these clusters, we characterized several cell-type specific 
marker genes whose expression patterns and biological functions have 
been well characterized. For example, the representative cluster marker 
gene MUC16 and GCNT3 were highly and specifically enriched in the 
corresponding goblet cells, while CD2 and CD3D were enriched in the T 
cells (Fig. 1c). To allow users fully exploit our resources, the expression 
patterns of every single gene in each cell type is available in a freely 
accessible online platform https://db.cngb.org/VThunter/D2/. 

We found that ACE2 and TMPRSS2 showed the highest expression in 
conjunctival goblet cells, while the two genes were highly co-expressed 
in this cell type as well (Fig. 1d, Table S5). This result is consistent with 
previous finding that ACE2 and TMPRSS2 were co-expressed in nasal 
epithelial cells (Sungnak et al., 2020), indicating both conjunctival and 
nasal mucosa might function as the entry sites of SARS-CoV-2. To further 
characterize the differential expression between various cell types, we 

compared ACE2 and TMPRSS2 in a detailed view individually. Notably, 
both ACE2 and TMPRSS2 showed significantly higher expression in 
goblet cells relative to other cell types (p≤0.001) (Fig. 1e, Figure S1a).( 

Human ACE2 express together with innate immune genes in nasal 
goblet cells (Sungnak et al., 2020), to explore if this trend holds true in 
conjunctiva, we identified ACE2 positively correlated genes (adjusted p 
value≤0.05) in ACE2 expressing goblet cells. Genes with Pearson’s 
correlation coefficient more than 0 and adjusted P-value (Bonferroni 
method) less than 0.05 were defined as ACE2 positively correlated 
genes. Then ACE2 positively correlated genes were used to perform GO 
term enrichment. Intriguingly, we noticed that those genes were asso-
ciated with immunity process, covering a variety of biological pathways 
including “neutrophil degranulation” (C3/HSPA1A/SERPINA1/TCN1), 
“positive regulation of receptor-mediated endocytosis” (C3), “positive 
regulation of innate immune response” (HSPA1A/MUC15), “immune 
response-activating cell surface receptor signaling pathway” (EZR/-
MUC15), “positive regulation of inflammatory response” (PDCD4/C3) 
and “acute inflammatory response” (C3/SERPINA1) (Figures S1b-c, 
Tables S6-7). 

In conclusion, we classified the human conjunctival into various 
clusters at single-cell resolution, and annotated these cell types by 
marker genes. The transcriptome analysis proved ACE2 and TMPRSS2 
showed highest co-expression in certain cell types, especially goblet 
cells. These findings might be helpful to unravel SARS-CoV-2 trans-
mission, as well as infection prevention and control for the medical 
workers and civilians. 
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