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A B S T R A C T   

Within half a year, COVID-19 spreads to most countries in the world, as well as posed a great threat to the public 
health of human beings. The implementation of non-pharmaceutical intervention (NPI), including travel ban, 
proved to be an effective way for controlling the epidemic spreading, e.g., the ban of inter-city transportation 
stops transporting virus through passengers between cities. However, travel ban could significantly impact many 
industries, e.g. tourism and logistics, thus jeopardizing the regional economy. This paper focus on assisting the 
national or regional government to make dynamic decisions on restricting and recovering intercity multi-modal 
travel services. Our model can characterize impacts of inter-city traffic on the spread of the COVID-19, as well as 
on the regional economy. By applying a reinforcement learning approach, we develop an online optimization 
model to identify the modal-specific travel banning strategy that can balance the epidemic control as well as the 
negative impacts on regional economy. The numerical study based on a network of multiple cities in China shows 
that the proposed approach can generate better strategies compared with some existing methods.   

1. Introduction 

In 2020, the outbreak of COVID-19 became a disaster for all human. 
The outbreak was first detected in December 2019. Soon, the WHO 
began to declare the outbreak as a Public Health Emergency of Inter-
national Concern (PHEIC) on January 30. By the end of July, nearly 15 
million people were infected and over 500 thousand people died 
worldwide. More than 4 million people have been infected in the United 
States and 150 thousand have died. In the early stage, the Non- 
pharmacological interventions (NPI), including travel ban, social 
distancing, school closure and emergency response, seem to be the only 
effective way to prevent and slow down the pandemic of diseases when 
the vaccine is under research. For instance, public transportation in-
creases the risk of person-to-person contact and aggravates the spread of 
the epidemic across cities or countries. Travel restrictions are helpful to 
control the risk of epidemic spreading. Wuhan adopted the travel ban on 
Jan.23th right after the outbreak before the Chinese New Year. Wuhan 
restricted the intercity traffic and closed the airports, railway stations 
and the highway. The travel ban had been effective until April 8, two 
weeks after the declaration of indigenous pandemic interruption. Many 
studies suggested that Wuhan’s travel restrictions had a positive effect 

on controlling the spread of COVID-19. Some studies indicated that the 
travel quarantine of Wuhan delayed the overall epidemic progression in 
mainland China (Chinazzi et al., 2020; Tian et al., 2020). Leung et al. 
(2020) found the reproduction number, denoted by Rt, decreased sub-
stantially in all selected cities and provinces since control measures were 
implemented, and have since remained below 1, which indicates the 
epidemic has been controlled. With travel restriction (no imported 
exposed individuals to Beijing), the number of infected individuals in 
seven days will decrease by 91.14% in Beijing, compared with the sce-
nario of no travel restriction (Tang et al., 2020). With the pandemic of 
COVID-19 around the world, many other countries also adopted the 
travel ban or traffic restriction to protect people from COVID-19. For 
example, Australians have followed the urgings of National Cabinet and 
all levels of government, to limit travel and social contact, which has 
thus far resulted in a “flattening of the curve” (Beck and Hensher, 2020). 
At the same time, almost all the airline companies reduced flights, and a 
larger reduction in air travel through airports in a large part of the cu-
mulative incidence area would lead to a gradual decrease in the risk flow 
(Nakamura and Managi, 2020). In addition to governance decisions, 
individual actions are also important. But individuals do not internalize 
the external cost of infection risks they impose on others and the health 
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care system when making their own travel (social-activity) decisions; In 
order to induce individual travel decision-makers to internalize this 
external cost, the government actions are necessary (Oum and Wang, 
2020). 

However, with the achievement of epidemic control, the whole so-
ciety is paying a big price for various NPIs. The complex dynamic social- 
economic system needs mobility, and a long time travel ban haves direct 
and indirect impacts on many businesses, such as tourism, restaurants 
and cinemas, leading to more unemployment. The evidence is given by 
some latest studies. For example, Guan et al. (2020) shows that 
COVID-19 control measures affected the global supply-chain and caused 
losses and the complexity of global supply chains magnified losses 
beyond the direct effects of COVID-19. Also, other studies show differ-
ences in strictness of such measures and the rapidity with which gov-
ernments have imposed and relaxed the measures have a divergent 
impact on public health and economic losses (Wells et al., 2020; Inoue 
and Todo, 2019). In fact, many cities and organizations around the 
world are calling for hope to resume transportation and production as 
soon as possible. It is a critical decision for government to figure out 
when to recovery traffic to restart the intercity mobility. Therefore, it is 
important to understand the dynamics of the spreading of epidemic, in 
particular to estimate the risk of transmission over time, and analyze the 
effect of the control policies. This paper focuses on the evaluation of 
travel ban policies with different levels of strictness considering the 
balance between epidemic control and economic development. A 
network-based epidemic spreading model is established, in which each 
node represents a city. The link between nodes represents the connec-
tion between cities, and different travel modes as well as mode choice 
process are considered. The paper proposes a reinforcement-learning 
(RL)-based multi-modal decision-making framework under uncer-
tainty. The RL-based framework tends to find a policy that helps to make 
a balance between public health risk prevention and economic devel-
opment. The paper also evaluates various potential epidemic control 
strategies from the public health intervention side, and make a com-
parison between RL-based approach and some traditional control 
policies. 

The rest of the paper is organized as follows. Section 2 elaborates on 
the framework of the methodology, the network formulation, and the 
epidemic transmission model. Section 3 introduces the RL-based deci-
sion-making framework and its execution procedure. Section 4 presents 
a series of case studies, including three virtual city networks with 
different sizes, and a real city network containing 15 cities, and the 
experiments illustrate epidemic spreading across the cities and the effect 
of different travel ban policies. In Section 5, we conclude the paper and 
offer some policy implications. 

2. Methodology 

2.1. City network modeling 

2.1.1. Network setting 
We adopt a directed graph G ≡ (N ,E ) to represent the network of 

cities, in which N is the finite set of nodes and E ⊆N × N × M is the set 
of directed arcs, where M stands for the travel mode. For a pair of nodes 
n and n′ , we have (n, n′

,m) ∈ E if and only if there is a link connecting 
these two nodes such that the people can move directly from city n to 
city n′ by traffic mode m. For each node n ∈ N , we can find a set of its 
successor nodes φ(n), i.e. φ(n) ≡ n′

: (n,n′

,m) ∈ E . 

2.1.2. Node representation 
Each node stands for a city, and every node has a label, Ln, which 

owns 3 attributes. Ln = (On,X n,P n). On represents the location of city n. 
X n is the compartment set, i.e., X n = {Sn,En,In,Hn,Rn,Dn}, and the sum 
of elements in X n equals to the population of city n. P n are the set of 
parameters in epidemic model, i.e., P n = {βn, σn, γn}, and the 

parameters will be explained in section 2.2. 

2.1.3. Link representation 
The link l in network stands for a kind of travel mode from one city to 

another. Each link has 4 attributes, i.e., l(n,n′
,m) = (dl, tl, cl,Cl). dl is the 

distance between city n and city n′ . tl, cl,Cl are the travel time, travel cost 
and capacity from city n to city n′ by mode m, respectively. 

2.2. Epidemic modeling 

The modeling of epidemic spreading is a tool that has been used to 
study the mechanisms by which diseases spread, to predict the future 
course of an outbreak, and to evaluate strategies to control an epidemic. 
The most popular epidemic model is the compartment model (Kermack 
and McKendrick, 1927), in which the population is assigned to different 
compartments with labels. People can transfer between compartments. 
The order of the labels usually shows the flow patterns between the 
compartments. The setting of labels is different for different diseases, 
common labels include S, I, and R (Susceptible, Infectious, Recovered). 
In the study of COVID-19, the susceptible-exposed-infectious-recovered 
(SEIR) model (Aron and Schwartz, 1984), shown in Fig. 1, is one of the 
most adopted methods. The population is divided into four different 
compartments, susceptible (denoted by S, the people who are able to 
contract the disease), exposed (E, the people who have been infected by 
the disease but not yet infectious), infectious (I, the people who are 
capable of transmitting the disease), and removed (R, the people who 
have recovered with immunization or died). And the people progress 
between those four compartments. SEIR model and its improved version 
have widely used in COVID-19 related research (Kucharski et al., 2020; 
Wu et al., 2020; Chen et al., 2020). In this paper, an improved SEIR 
model is coupled into the network model as one integrated part. When 
considering the travel of infected people between cities, we also consider 
the risk of people being infected in the city and on transportation. 
However, the infection characteristics in cities and transportation are 
still slightly different, and we adopt a distinction in the model. 

To be more in line with the actual situation, we improve the base 
model and develop an extended SEIHRD model, since in practice we can 
only find infected persons by nucleic acid testing (NAT), and there are 
always some patients who are not effectively identified. The new 
compartment H represents patients who have been admitted to the 
hospital. And compartment I represents the unreported infected person. 
Compartment R stands for the recovered person and compartment D 
stands for the dead. We distinguish between compartment I and 
compartment H, because those who have been found infected will be 
sent to the hospital, and they will not move to other cities, let alone 
infect others. Undetected infections, including hidden infections and 
undetected overt infections, will become the source of infection. At the 
same time, the cure rate and death rate are related to whether the 
infected person is hospitalized or not. 

Fig. 2 shows how people progress each compartment in SEIHRD 
model. The rate of spreading is associated with the probability of 
transmitting disease between the susceptible people (S) and the exposed 
people (E), which is controlled by the infectious rate β. Besides, the 
exposed people are also infectious in case of COVID-19, so we use βE and 
βI to represent the infectious rate of exposed people and infected people, 

Fig. 1. Basic SEIR model diagram.  
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respectively. The rate of exposed people (E) becoming infected person 
(I) and hospitalized patients (H) is defined as the incubation rate, σI and 
σH. At last, the cure rate and mortality rate of untreated patients and 
hospitalized patients are different, denoted by γID, γIR, γHD, γHR. Because 
the period for the pandemic of COVID-19 control we focus on is only 
several months, the effect of birth rate or death rate on the population is 
ignored, and the change of population in each city is only affected by the 
travel between cities. MS

i,j,m represent the susceptible people who move 
from city i to city j by mode m. Eqs. (1)–(6) mathematically depict the 
entire progress dynamics. 

dSi

dt
= −

βESiEi

Ni
−

βISiIi

Ni
−
∑

j

∑

m
MS

i,j,m +
∑

k

∑

m
MS

k,i,m (1)  

dEi

dt
=

βESiEi

Ni
+

βISiIi

Ni
− (σI + σH)Ei −

∑

j

∑

m
ME

i,j,m +
∑

k

∑

m
ME

k,i,m (2)  

dIi

dt
= σIEi − (γIR + γID)Ii −

∑

j

∑

m
MI

i,j,m +
∑

k

∑

m
MI

k,i,m (3)  

dHi

dt
= σHEi − (γHR + γHD)Ii (4)  

dRi

dt
= γIRIi + γHRHi (5)  

dDi

dt
= γIDIi + γHDHi (6)  

where N = S+ E+ I+ H+ R+ D. 
The spreading of COVID-19 not only occurs in cities. Some evidence 

shows that COVID-19 is also very easy to spread within public trans-
portation, and the risk of spreading is related to the capacity and the 
crowdedness. As a result, the SEIHRD diagram we apply in our city 
network can be divided into two categories, node-based SEIHRD, and 
link-based SEIHRD. The node-based model is adopted to describe the 
epidemic situation inside the city, while the link-based model is used to 
describe the risk of the epidemic spreading in public transportation, like 
the airplane, HST, coach and private car. Although there is no hospital 
on buses, considering that the infected person with severe symptoms 
will be sent for treatment after getting off the buses, we also consider the 
H part. 

2.2.1. Time-varying infection rate 
To control the pandemic of epidemic, the government implemented a 

series of public health intervention policies, i.e. emergency response and 
social distancing, which is an important factor affecting the spreading of 
epidemic. However, the strength of these measures is difficult to be 
accurately quantified. We used a truncation function to describe the 
change of infectious rate β. tfree is the time for the government to initiate 
the first-level response. Before taking any prevention policies, β keeps as 
a constant. After that, β decays exponentially with time, approaching 
zero. This setting is in accordance with some relevant studies on SARS 

(Ni, 2009). With the assumption of the monotonically decreasing 
infection rate, one outbreak or independent outbreaks of the pandemic is 
considered in the epidemic model. For the scenario with independent 
outbreaks, we can apply the model at the beginning of each outbreak. 

βt =

{
β, if t ≤ tfree
βexp

(
− ξ

(
t − tfree

))
, if t > tfree

(7)  

where β is the initial infectious rate, ξ are the parameters controlling the 
exponential decay speed. 

2.3. Travel demand modeling 

For the sake of simplification, we presently assume that the travel 
demand between cities follows the gravity model. The intensity of travel 
demand between the two cities is proportional to the population of the 
two cities and inversely proportional to the square of the distance. Also, 
we have a random number ηi,j

t , which follows a normal distribution, to 
model the randomness. A city will have a certain percentage of people 
leaving the city, which is a random number. The distribution of travel 
demand is related to the population of destinations. We denote Wi,j

t as 
the travel demand from city i to city j in t day, and it is calculated by Eq. 
(8): 

Wi,j
t =Gηi,j

t
ZiZj

d2(i, j)
(8)  

where Zi,Zj is the population of city i and city j, respectively. d(i, j) is the 
distance between city i and city j. G is a scaling parameter. 

2.4. Travel ban action 

As one of the primary method to control the epidemic pandemic, 
travel ban is adopted by many governments. Define binary variables al

t 

such that al
t = 1 if link l under mode m is open at time t, and al

t = 0 
otherwise. We set two scenarios to perform travel ban. 

2.4.1. Scenario I 
In scenario I, the government tends to perform the policies when they 

are needed. In other words, the government will decide both when to 
perform travel ban policies and when to cancel the policies as well as 
recover the traffic. At the same time, the opening and closing of the 
travel ban can only be performed once in the entire period. All links are 
assumed to be open at the beginning. Eqs. 9–11 shows the travel ban 
under Scenario I. 

∑T

t=1

(
al

t − al
t− 1

)
= 0 (9)  

∑T

t=1

⃒
⃒al

t − al
t− 1

⃒
⃒= 2 (10)  

al
t ∈{0, 1} ∀t ∈ T (11)  

2.4.2. Scenario II 
In some cases, the outbreak of COVID-19 is a very urgent event, and 

the government should take all the available policies as soon as possible. 
In Scenario II, we assume all the travel is banned as soon as possible, and 
the government only needs to decide whether to cancel the policies and 
recover travel. Eqs.12–14 shows the travel ban under Scenario II. 

∑T

t=1

(
al

t − al
t− 1

)
= 1 (12)  

∑T

t=1

⃒
⃒al

t − al
t− 1

⃒
⃒= 1 (13) 

Fig. 2. SEIHRD model diagram.  
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al
t ∈{0, 1} ∀t ∈ T (14)  

2.5. Mode choice and travel demand transfer 

We consider multi-modal transportation between cities. Because of 
the travel ban, the compensation phenomenon between transportation 
modes is considered in our model. If a transportation mode stops oper-
ating, the traffic originally allocated to that mode will be transferred to 
other modes. Taking high-speed train (HST) and aircraft as an example, 
if the aircraft is banned, a large part of passengers will change their 
choice to travel on HST. The flow between two cities is associated with a 
vector f l

t to characterize the distribution in different modes, where f l
t =

{f l
t : m∈ M }. 
Furthermore, each mode of transportation has the capacity limit. If 

the passengers who choose certain transportation exceed the capacity 
limit, their needs will not be met. We adopt an improved multinomial 
logit model (MNL) to describe the choice of travelers. In the traditional 
MNL model, travelers are characterized by their utility Ul

t. Assuming 
that Ul

t has a deterministic part Vl
t in terms of the travel cost cl

t and the 
travel time tl

t , and a random error εt distributed with a Gumbel distri-
bution, it is possible to know that the mode choice probability follows a 
multinomial logit such that: 

Ul
t =Vl

t + εl
t (15)  

Vl
t = cl

t + ρtl
t (16)  

where ρ are the travelers’ average time value, where we use social 
average hourly income. Then the mode m ∈ M choice probability, pl

t, 
satisfy: 

pl
t =

exp
{

Vl
t

}

∑
m∈M exp

{
Vl

t

} (17) 

Denote f l
t as the mode specify flow. Considering the capacity 

constrain, that is, f l
t ≤ Cl, we propose a multiple traffic distribution 

method. It can also be treated as a dynamic ticketing process. Every 
passenger chooses a mode with the probability pl

t. If the number of 
passengers choosing a certain mode reaches its capacity, the extra pas-
sengers can only choose from other modes that have not reached the 
capacity. At last, all travelers have successfully chosen a mode, or all 
modes have no remaining capacity. The mode choice is shown in Al-
gorithm 1. 

Algorithm 1. Travel mode choice and demand transfer   

2.6. Economic growth impact modeling 

The implementation of the Non-pharmaceutical Intervention (NPI) 
has a side effect on business and the economic system. The tool should 
be of interest to policymakers and others who wish to use it to under-
stand the potential impacts of the travel ban on health and economic 
outcomes in their communities. Then they weigh the trade-offs between 
various policies and decide when and how these interventions can be 
relaxed. Travel ban helps to prevent the spreading of epidemic, but it 
also hinders economic development. 

Our society and economic system are so complex that it is hard to 
directly calculate the system loss. So we use some approximate methods. 
Mobility, represented by traffic turnover, brings about the circulation of 
regional businesses and personnel and promotes consumption and in-
dustry development. Some evidence from existing studies also suggest 
this, for example, ShunLi et al. (2005) showed that GDP and traffic 
turnover volume in China have a granger co-integration relationship, 
and Donzelli (2010) found that the spreading of the traffic demand in-
creases the rate of international tourism, generates new jobs and im-
proves the income of the area. Taking the direct impact of mobility on 
regional consumption into account, we take Total Retail Sales of Con-
sumer Goods (TRSCG), denoted by E, as an economic indicator. At the 
same time, we adopt traffic turnover volume, denoted by g,gl

t = f l
t dl, as 

the traffic indicator. We assume the economic impact is a convex func-
tion of traffic turnover volume. Considering a series of other economic 
factors, we construct an econometric model and analyze the impact of 
variables by regression. The economic growth contributed by traffic 
turnover volume can be calculated through the studying of marginal 
effect. The approximate economic growth function is shown in Eq. (18). 

Et =F
(
Xg,X1,…,Xn

)
(18)  

where Xg is the traffic turnover volume, X1,…,Xn are other economic 
factors. And the marginal economic growth contributed by traffic 
turnover volume, denoted by ΔE, can be calculated by Eq. (19). 

ΔEt =
dF

(
Xg,X1,…,Xn

)

dXg

∑

l∈L

∑

m∈M

gl
t (19)  

2.7. Objective function 

For the policymakers, there are two goals they hope to achieve 
through implementing a travel ban. The first goal is to avoid the 
spreading of epidemic, which can be simplify treated as minimizing the 
number of confirmed patients, to make sure the cumulative number of 
infections is as few as possible. At the same time, they hope that the side 
effect of interventions, which can be treated as the effect on economic 
growth, can be as little as possible. 
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Hence, taking above consideration into account, the objective func-
tion can be formulated as Eq. (20): 

τH

∑

n∈N

∑

t∈T

Hn
t + τD

∑

n∈N

∑

t∈T

Dn
t −

∑

t∈T

ΔEt (20)  

where Hn
t is the new confirmed cases at time step t in city n. In objective 

function, the first two terms 
∑

n∈N

∑

t∈T

Hn
t and 

∑

n∈N

∑

t∈T

Dn
t stands for the total 

number of confirmed cases and deaths, respectively. The last term 
∑

t∈T

ΔEt stands for the total economic growth contributed by traffic 

turnover volume, which is hoped to be maximized. τH is the average 
treatment cost for a epidemic patient, and τD stands for death loss, which 
emphasizes the importance of saving lives though it is not the actual 
expenditure. The goal of the entire decision-making process is to mini-
mize the above objective function. 

3. Reinforcement-learning-based decision making framework 

3.1. Motivation and setting 

The dynamic travel ban decision problem is hard to solve directly. 
This is because the governors can only make policies based on previous 
and current epidemic data, and the actions made in any stage have an 
impact on the future state, which should be considered in the decision- 
making process. Owing to the stochasticity of traffic and epidemic 
pandemic, we cannot formulate the problem of determining the travel 
ban into a compact form. The next subsection will introduce an online 
framework for deciding the travel ban policy based on the reinforcement 
learning technique. 

3.2. Online travel ban policy determination 

The travel ban decision process can be treated as a Markov Decision 
Process (MDP). Considering the entire period for epidemic spreading, it 
can be divided into several days t1, t2,….tn ∈ T , and each day is a de-

cision interval. At the start of each interval, the government decides the 
status of each link with different mode, close or open, and within the 
day, the status remains unchanged. The states in day t are defined as a 

vector St =

(
Ht− 1

n +Ht− 1
n′

2

⃒
⃒
⃒
⃒l(n,n′

,m) ∈ L E

)

, where 
Ht− 1

n +Ht− 1
n′

2 stands for the 

average number of new hospitalized patients of the cities on both side of 
link l(n,n′

,m) in day t − 1. And we define H0
n as the initial number of the 

hospitalized patients. St is a |L E|-dimensional vector, in which |L E| is 
the cardinality of the link set. Also, the actions in day t are defined as a 
vector At = (al

t
⃒
⃒l∈ L E), where al

t ∈ {0,1} is the status of link l in day t, 
and 1 means open while 0 means close. S and A stand for the set for S, 
A, respectively. 

The policymakers decide policies based on the current number of 
confirmed cases. This process can be simulated as a learning process. 
The agent behaves in an environment according to a policy that specifies 
how the agent selects action at each state, in which policy π gives a map: 
S→A. The goal of the agent is to find a best policy π∗ to maximize the 
long-term expected cumulative reward at current time. To solve such a 
problem, a common objective is to learn an action-value function Qπ(S,A), 
where Qπ(S,A) = Eπ{

∑+∞
i=0 μirt+i

⃒
⃒St = S,At = A}, where 0 < μ < 1 is a 

discount factor. The learning process seeks to find a solution for the 
Bellman equation V∗(S) = max

π
{Eπ{r + μV∗(S′

)}}, where V(S) =

max
A∈A

Q(S,A) and S’ is the next state. 

The problem is defined on the network, the dimension of space for 
action will reach 2|L E |, which is so large that can not be solved with 
traditional tabular methods. We present a framework of Twin Delayed 
Deep Deterministic Policy Gradient (TD3) (Fujimoto et al., 2018) for 
online determination of travel ban policy in each day based on the above 
definitions. TD3 is based on Actor-Critic (AC) framework and the AC 
method originate from Deep Q-Learning (DQN). AC method and its 
improved version have been widely applied in online decision-making 
problems, such as taxi dispatching (Kim et al., 2020) and adaptive 
traffic signal control (Aslani et al., 2017). TD3 avoids overestimation 
and reduces function approximation error of the AC method by delaying 

Fig. 3. The execution of RL framework.  
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policy updates. 
In day t, we define the reward as the sum of the economic growth 

contributed by traffic turnover volume and economic loss caused by 
confirmed cases and deaths in this interval, which is shown in Eq. (21). 
The total expected discount reward return R =

∑T
t=0μt rt . During the 

training process, TD3 also uses experience replay to sample previous 
transitions randomly, and thereby smooths the training distribution over 
many past behaviors. 

rt =ΔEt − τH

∑

n∈N

Hn
t − τD

∑

n∈N

Dn
t (21) 

We follow the research in Fujimoto et al. (2018) and create two critic 
networks Qθ1 ,Qθ2 as well as an actor network πφ as well as their target 
network Qθ1

′ ,Qθ2
′ ,πφ′ . Clipped double-Q learning by two critic networks 

will help to avoid the overestimation of Q-value, which is shown in Eq. 
(22). At the same time, the parameters of the target network and actor 
network θ1

′

, θ2
′

,φ1
′

,φ will be frozen for a fixed number of iterations 
while updating the critic network θ1, θ2 by gradient descent to address 
variance and enhance the stability of the algorithm. In this paper, all the 
networks are 3-layer fully connected network, in which the hidden layer 
has 256 cells. 

y= r + μmin
i=1,2

Qθi
′ (S′

, πφ1 (S
′

)) (22) 

The experience tuple (S,A, rt , S′

) is stored in the replay memory, and 
our algorithm samples uniformly at random from memory when per-
forming updates. The update of critics Qθ follows Eq. (23), and that of 
actors follows Eq. (24). We use Adam’s algorithm (Kingma and Ba, 
2014) as the optimizer. The detailed procedure for our TD3 imple-
mentation is provided in Algorithm 2. 

θi←min
θi

K − 1
∑(

y − Qθi (S,A)
)2 (23)  

∇φJ(φ)=N − 1
∑

a= πφ(S)∇φπφ(S) (24)  

Algorithm 2. Dynamic decision of travel ban policies with TD3   

3.3. Execution procedure 

The last subsection introduces the executive procedure to synthesize 
the proposed RL framework with the solving framework for dynamically 
determining the travel ban and recovering policies. For the imple-
mentation, we first need to establish a simulation environment for the 
city network considering epidemic pandemic and people moving. The 
detailed execution procedure is illustrated in Fig. 3. As observed, there 
are two key components in the framework, i.e., emulator, and RL brain. 
During the total studying period, the city network model coupled with 
the SEIHRD model continues to simulate the epidemic spreading pro-
cess. First, the travel demand is generated by some demand models (e.g., 
the gravity model shown in Eq. (8)). After applying the travel ban from 

Table 1 
Epidemic model parameters.  

Parameter Description Value Source 

βI  The infectious rate contracting 
infected people 

0.7 Li et al. (2020) 

κ The ratio of βI and βE  1 Wu (2020) 
βE  The infectious rate contracting 

latent people 
κβI  Calculation 

βAir  The infectious rate in airplane 1.1 Author assumption 
βHST  The infectious rate in HST 0.9 Author assumption 
βCoach  The infectious rate in coach 0.7 Author assumption 
βCar  The infectious rate in car 0 Author assumption 
DI  Latency period 3.69 Li et al. (2020) 
DR  Infectious period 3.47 Li et al. (2020) 
δ Reporting rate 0.14 Li et al. (2020) 
σI  The incidence of unreported 

patient 
(1 − δ)/
DI  

Calculation 

σH  The incidence of hospitalized 
patient 

δ/DI  Calculation 

γIR  The cure rate of unreported 
patient 

0.85/DR  Partly author 
assumption 

γID  The fatality rate of unreported 
patient 

0.15/DR  Partly author 
assumption 

γHR  The cure rate of hospitalized 
patient 

0.99/DR  Partly author 
assumption 

γHD  The fatality rate of hospitalized 
patient 

0.01/DR  Partly author 
assumption 

ξ Infectious rate decay parameters 0.1 Curve fitting  
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the RL brain, the network updates the link status and finishes the travel 
mode choice process. Then, those traveling people enter the link-based 
SEIHRD model while other people staying in cities enter node-based 
SEIHRD model. All the SEIHRD models are established separately and 
are independent of each other to consider the differences between cities 
and links. At last, the traveling people enter their target city, and the 
whole city network updates situation as well as calculates current 
reward. From the policymaker side, the RL brain receives the situation of 
epidemic spreading as the state, and then gives the current time travel 
ban policy (every link is open or not) to the city network. When one step 
simulation is over, the city network returns the reward. 

4. Numerical examples 

4.1. Test settings 

In this section, we perform a variety of experiments to test the per-
formance of our proposed travel ban decision framework for gaining 
some insights. We evaluate the solutions on the metrics of cumulative 
reward defined by Eq. (21). 

4.1.1. Epidemic model settings 
The parameters setting reflects the characteristics of the disease as 

well as has an important impact on the performance of the epidemic 
model. As humans’ understanding of COVID-19 is constantly in prog-
ress, the current selection of parameters is only given by the existing 
literature or news. The epidemic model parameter setting is shown in 
Table 1. Asymptomatic patients can infect others, but there is no evi-
dence supporting the infectivity of the asymptomatic patient is weaker 
than infectious patient(Wu, 2020), and we take κ = 1. At the same time, 
the cure rate and fatality rate of unreported patients and hospitalized 
patients (reported patients) are different. As of July 30, the country with 
the highest crude fatality rate (death cases/confirmed cases) was 
Yemen, at 28.35%, followed by France at 16.33%. So we estimate that 
the fatality rate of unreported patients is 15%. Without a run on medical 
resources, the fatality rate of hospitalized patients is much lower than 
unreported patients. In early March, the fatality rate of patients in other 
provinces in China except Hubei was 0.86%. So we estimate the fatality 
rate of hospitalized patients is 1%. 

However, there is no study to carefully analyze the infection rate on 
different travel tools. We set the infection rate of different modes ac-
cording to the crowdedness and capacity of different modes as well as 
referring to the city infection rate. We set βAir > βHST > βCoach > βCar. 
Among those three collective transits, the airplane is the most crowded 
(economic class). Although the capacity of HST is the highest (consid-
ering all the cabins), the probability of people moving across cabins is 
not high. The vast majority of coach services are for short trips; coach 
passengers normally arrive at the station for a short time, and the in-
fectious risk at the station is much lower than the airport or railway 
station. The research from Zhang et al. (2020) also suggests that flights 
contribute the most to confirmed cases, followed by HST and coach. For 
the private car, we assume the βCar = 0 because the car can take up to 5 

people, and it is generally not shared with strangers for intercity traffic. 
Besides, the infectious rate in transportation will not decay. 

4.1.2. Economic growth model settings 
We have established an econometric model to study the marginal 

contribution of traffic turnover to economic growth. We use Total Retail 
Sales of Consumer Goods (TRSCG) as the dependent variable and Public 
Finance Expenditure (PFE, denoted by XF), Profits of Industrial Enter-
prises (PIE, denoted by XI), Total Import and Export (TIE, denoted by 
XE), total traffic turnover volume (denoted by Xg) as the explanatory 
variable. Mobility can well promote the development of the consumer 
industry. PFE reflects government intervention in society as well as the 
country’s macroeconomic situation. PIE affects the level of disposable 
income. TIE reflects international trade, which affects a lot of industries 
in China. We collected monthly data of China from 2010 to 2019, a total 
of 120 observations, and regressed the model. The results indicate that 
Xg has a significant impact on the TRSCG (p = 0.019). We estimate the 
marginal effect of Xg, denoted by wg, and calculate the marginal eco-
nomic growth from Xg by ΔEt = wgΔXg. Besides, according to the public 
information,1 the average treatment cost in China τH and death loss τH 
are set as 32 thousand yuan and 200 thousand yuan, respectively. 

The setting of wg, τH, τD affects the objective function. It also reflects 
the importance government places on economic development and 
epidemic control. The sensitivity analysis is conducted in section 4.2. 

4.1.3. RL model settings 
The setting of parameters affects the performance of RL algorithm, 

which is shown in Table 2. We adjust the learning rate in different 
scenarios for better learning performance. The total studying period is 
50 days, and the number of training iterations is 500. 

4.1.4. Epidemic and traffic data 
We select 15 metropolises in China and collect the epidemic data (the 

number of confirmed cases, recovered cases, and death cases) as well as 
the intercity traffic data. The epidemic data is from the National Health 
Commission (NHC), and the traffic data can be collected from the Baidu 
immigration index. We collect the epidemic and traffic data from 
Jan.23th to Mar.13th (50 days), which involves a complete outbreak and 
the control process of COVID-19 in China. Facing the pandemic of 
COVID-19, most provincial governments initiated the first-level 
response and considered to perform a travel ban around Jan.23th, 
while millions of people were moving across the cities to return to their 
hometown. It was the day when Wuhan, the first city to report the 
COVID-19 case, cut off traffic connections with outside. About 50 days 
later, the COVID-19 pandemic in China had been roughly controlled. 
Another two weeks later, the Chinese government declared the indige-
nous pandemic interruption on Mar.28th. 

4.2. Experiments on hypothetical city networks 

4.2.1. Virtual city network construction 
Firstly we perform our model in some virtual city networks. How-

ever, there may not have a direct road connection between some pairs of 
cities, i.e., the graph representing the network is not necessarily a 
complete graph. Some studies have pointed out that the terrestrial 
transportation network, such as railway network or highway network, is 
a type of small-world network (Aldrich et al., 2015; Viana & da Fontoura 
Costa, 2011). Also, the small-world network architecture is used to 
describe a real-world application for a next-generation airline network 
(Sawai, 2012). The small-world network is a type of mathematical graph 
in which most nodes are not neighbors of one another, but the neighbors 

Table 2 
Parameter settings for TD3.  

Parameter Value 

Learning rate 0.001–0.005 
Discount factor 0.99 
Training batch size 64 
Policy delay 2 
Target smoothing coefficient 0.05 
Min replay buffer size 150 
Max replay buffer size 5000 
Training batch size 64 
Step size (day) 50 
Number of iterations 500  

1 Source: https://baijiahao.baidu.com/s?id=1671090168528 
252190&wfr=spider&for=pc. 

Y. An et al.                                                                                                                                                                                                                                       

https://baijiahao.baidu.com/s?id=1671090168528252190&amp;wfr=spider&amp;for=pc
https://baijiahao.baidu.com/s?id=1671090168528252190&amp;wfr=spider&amp;for=pc


Transport Policy 104 (2021) 29–42

36

of any given node are likely to be neighbors of each other and most 
nodes can be reached from every other node by a small number of hops 
or steps. In the existing literature, there are a lot of kinds of small-world 
networks, among which the best-known family was proposed by Watts 
and Strogatz (1998), called Watts-Strogatz (WS) network. A WS network 
is defined to be a network where the typical distance between two 
randomly chosen nodes (the number of steps required) grows propor-
tionally to the logarithm of the number of nodes N in the network. The 
WS network is constructed process can be described by Algorithm 3. 

Algorithm 3. WS network construction   

We use the WS network to represent the traffic connections between 
cities. We generate three networks with N = 10,15,20,K = 4, β = 0.6 
and name them WS-10, WS-15, WS-20. Fig. 4 illustrates three city net-
works, which have 40, 60, 80 directed arcs, respectively. 

Other information about the city is randomly generated within a 
certain range. The location of each node is generated randomly, and the 
distance between the two cities is calculated from their locations. The 
city population is a random number from 0.5 to 10 million. The travel 
demands between cities are generated by the gravity model introduced 
in section 2.3. The initial number of confirmed cases varies from 0 to 30. 
The time for the government to initiate the first-level response tfree is set 
as 0. The travel time and ticket price of different travel modes are 
generated according to the distance between the two cities. 

4.2.2. Real city network construction 
In order to show the model’s ability to apply in the real world, we 

select 15 metropolises in China and construct a real city network, named 
Real-15. The population, location, initial confirmed cases and the time 
to start first-level emergency response are shown in Table 3. The start 
day is Jan. 23th, 2020. Considering that those cities are all metropolises, 
transportation is very convenient, so we assume the Real-15 is a fully- 
connected network. 

At the same time, we collect the epidemic data (the number of 
confirmed cases, cure cases and death cases) and the traffic data. 
Although the immigration index is collected from vehicle data, it reflects 
the travel intensity in different cities. 

Fig. 5 shows the change of migration index in the whole studying 
period. The migration index quickly decays to 0 in all the cities, espe-

Fig. 4. The illustration of WS network.  

Table 3 
Information of 15 metropolises.  

City name Population 
(104)  

Longtitude Latitude Initial confirmed 
cases 

tfree  

Beijing 2154 116.41 39.90 44 0 
Shanghai 2428 121.47 31.23 20 1 

Guangzhou 1531 113.26 23.13 7 0 
Shenzhen 1344 114.06 22.54 15 0 
Chengdu 1658 104.07 30.57 7 1 

Hangzhou 1036 120.16 30.27 6 2 
Chongqing 3124 106.55 29.56 54 1 

Wuhan 1121 114.31 30.59 495 1 
Xian 1000 108.94 34.34 2 2 

Tianjin 1562 117.20 39.08 5 1 
Nanjing 850 118.80 32.06 3 2 

Zhengzhou 1035 113.63 34.75 3 2 
Changsha 839 112.94 28.23 8 0 
Shenyang 832 123.43 41.81 2 2 
Qingdao 950 120.38 36.07 3 2  
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Fig. 5. Migration index of 15 cities.  
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Fig. 6. The calibration result of 15 cities.  
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Fig. 7. The comparison of benchmark policies in 15 cities.  
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cially in Wuhan because of the travel ban. And a lot of cities tried to 
recover intercity traffic in early March. Some southeastern cities. like 
Guangzhou, Shenzhen, and Chengdu, are recovering particularly fast. 
The Baidu map can also provide the share rate of migration index on 
different destination cities. Based on the migration index, sharing rate 
and standard volume, we can estimate the daily traffic demand between 
all cities during the whole period. 

4.2.3. Epidemic model calibration 
According to the real epidemic data and traffic data, we can calibrate 

our epidemic model for every city. The comparison between real data 
and simulation results is shown in Fig. 6. The curve of cumulative 
confirmed cases fits well in most cities. We note that the curves produced 
by the SEIHRD model is smooth, but the real curves may not be as 
smooth due to some incidents, such as statistical errors, changes in 
diagnostic criteria, etc. 

4.2.4. Experiments result analyses 
In three virtual city networks, the travel demand is generated by the 

gravity model shown in Eq. (8). In the real city model, the travel demand 
is calculated by the average travel demand from Jan.17th to Jan.19th. It 
is multiplied by a random number to reflect the randomness of demand. 

We design two benchmark policies for comparison, i.e., all-ban 
policy and no-ban policy. Under the all-ban policy, all the links are 
close in the whole period, and the traffic turnover volume is zero. 
Conversely, all the links keep open under the no-ban policy and the 
traffic turnover volume is maximized. Fig. 7 illustrates the comparison 
between all-ban policy and no-ban policy in Real-15. Because very strict 

travel restrictions were implemented in real life, the number of 
confirmed cases under the all-ban policy is similar to the actual situa-
tion. However, if the no-ban policy is implemented, the number of 
infected people in cities other than Wuhan will rise sharply. Therefore, 
the travel ban can well prevent the spreading of the epidemic among 
different cities. 

The RL framework is implemented in city network WS-10, WS-15, 
WS-20 and Real-15. The learning performance in WS-10 is shown in 
Fig. 8. The TD3 method converges well after 300 epochs. We set the 
higher objective function value of all-ban and no-ban policies as the 
benchmark, and we can find that the RL framework can find a better 
policy outperforming the benchmark with obvious improvements. 

Table 4 shows the comparison result of travel ban policies produced 
by the RL framework and benchmark policies. As mentioned above, we 
introduce two travel ban scenarios. In scenario I, the government de-
cides both the close time and recovery time. In scenario II, the govern-
ment only decides the recovery time. RL-SCO1 and RL-SCO2 stand for 
the RL strategies under scenario I and scenario II, respectively. It can be 
found that all-ban policy is slightly better than no-ban policy, and the 
policies applied in actual situations in Real-15 is better than no-ban and 
all-ban policies. However, the policies given by the RL framework beats 
all the benchmarks in all networks. In WS-10, the policy from RL-SCO1 
achieves a lower number of confirmed cases while ensuring some 
mobility. In WS-15, RL-SCO2 gives the best policy, traffic turnover 
volume is guaranteed with slightly increasing confirmed cases. In WS- 
20, RL-SCO1 guarantees traffic turnover volume at the expense of a 
small increase in confirmed cases. In Real-15, RL-SCO1 and RL-SCO2 
achieve nearly the same objective function value, though the policies 
are different. In short, the RL framework helps to come up with a better 
travel ban policy, which can increase the value of the objective function 
by 1.31%–5.46%. 

The setting of parameters in the objective function has a great effect 
on the decision. The values of wg, τH, τD reflect the importance placing on 
epidemic control and economic development, also affect our evaluation 
of the policy. Table 5 shows the sensitivity analysis in WS-15 under All- 

Fig. 8. Convergence of TD3 framework online for travel ban policy decision.  

Table 4 
Tabular comparison of learned policies and benchmark.  

Network Policy Obj(106)  Confirmed cases(103)  Turnover(109)  Improvement 

WS-10 All ban − 1475.12 38.61 0.00 \ 
No ban − 1478.66 39.70 19.90  

RL-SCO1 ¡1436.21 37.79 4.38 2.64% 
RL-SCO2 − 1439.98 37.80 2.52 2.38% 

WS-15 All ban − 2052.70 53.29 0.00 \ 
No ban − 2216.61 60.00 30.73  

RL-SCO1 − 2002.33 52.41 6.19 2.45% 
RL-SCO2 ¡1984.13 52.35 11.82 3.34% 

WS-20 All ban − 2652.22 69.13 0.00 \ 
No ban − 2708.81 73.67 30.07  

RL-SCO1 ¡2507.47 66.36 10.78 5.46% 
RL-SCO2 − 2510.63 66.17 8.28 5.34% 

Real-15 All ban − 2311.43 54.67 0.00 \ 
No ban − 2295.67 61.16 89.89  

Real − 2284.22 54.75 10.38  
RL-SCO1 ¡2254.24 55.10 25.65 1.31% 
RL-SCO2 − 2254.25 56.55 44.36 1.31%  

Table 5 
Sensitivity analysis for parameters in objective function.  

ObjAllban − ObjNoban⃒
⃒ObjNoban

⃒
⃒

wg  

− 60% − 30% +0% +50% +100% 

τH, τD  − 60% 7.39% 4.51% 1.44% − 4.14% − 10.39% 
− 30% 8.97% 7.39% 5.77% 2.93% − 0.09% 
+0% 9.58% 8.50% 7.39% 5.49% 3.51% 
+50% 10.05% 9.34% 8.62% 7.39% 6.13% 
+100% 10.28% 9.76% 9.22% 8.32% 7.39%  
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ban and No-ban policies. The values of wg, τH, τD will not affect the 
simulation result under two benchmark policies, but change the value of 
the objective function. We changed these values from a decrease of 60% 
to an increase of 100%. The number in the table represents the 
improvement of the All-ban policy compared to the No-ban policy. The 
upper right part of the table represents the case that economic opera-
tions are very important while the epidemic prevention and control are 
relatively not urgent, and in that case, No-ban policy is better. On the 
contrary, the case in the lower left part of the table puts epidemic pre-
vention first. In this case, it would be better to adopt the All-ban policy. 

By analyzing the learned policy, we can also understand its charac-
teristics. Fig. 9 illustrates the learned best policy in WS-15 under sce-
nario II. The x-axis is time and the y-axis is the percent of open links in 
each day. The policy makes the open rate increase with time. However, 
we can observe that the open rate of the private car keeps the highest 
while that of HST is the lowest. The result suggests that we can develop 
different policies for different travel modes, for example, consider 
removing highway restrictions first. 

At the same time, we find some characteristics of the early open link. 
Fig. 10 illustrates the bar-plot of link demand in the middle period in 
WS-10. Some links with low demand are recovered first. The result 
suggests that we can consider recovering low demand traffic links, 
which can guarantee the necessary economic connections without too 
much risk of the epidemic spreading. 

4.2.5. Lessons learned from post COVID-19 world 
The pandemic of COVID-19 has greatly affected the economic 

development and people’s daily lives across the world. Public transport 
increases the risk of people-to-people contact and aggravates the spread 
of COVID-19 across cities. It is important for the government to take 
effective policy intervention to reduce epidemic damage. Meanwhile, 
the travel restriction also disrupts a wide range of industries (e.g., retail 
sales, tourism, entertainment, etc.), causing the recession of the national 
economy. For example, China’s GDP in the first quarter fell by 5.3% 
compared to the same period last year. Therefore, it is very important to 
develop effective policy-making criteria and implement them prudently 
for balancing the above sides. 

In post COVID-19 world, on the one hand, the pandemic of COVID-19 
continues one after another almost in every corner of the world. In 
countries such as Spain, France and Switzerland,2 strict travel restriction 

policies are being implemented. From SARS(2003), MERS(2015) to 
COVID-19(2019), mankind is still facing threats from many other in-
fectious diseases (e.g. Ebola, Zika, H7N9). With the availability of big 
data nowadays, data-driven decision-making becomes crucial for gov-
ernments. In the early stages, epidemiologists can obtain some key pa-
rameters of the infectious disease as well as some characteristics from 
the confirmed cases, including infectious rate β. With the key informa-
tion, the model can simulate inter-city spreading and provide useful 
suggestions for travel managers. At the same time, with the proposed 
methodology and numerical experiments, we can learn that:  

• Cutting off all the traffic connections is essential in the early stages of 
the severe spread of the epidemic.  

• Highway can be considered the first to recover because traveling 
with private cars owns the least cross-infection probability.  

• HST, airplane, and coach should be carefully considered reopen 
because the clustering risk still exists; it may be infected not only 
during the trip but also at the stations with potentially huge crowd.  

• Some traffic links with relatively low demands can be recovered first, 
as they can guarantee necessary economic connections without too 
much risk of the epidemic spreading. 

5. Conclusions 

This paper develops a methodological framework for multi-modal 
dynamic travel ban policy determination under the pandemic of 
epidemic to balance epidemic control and regional economic develop-
ment. Coupled with SEIHRD epidemic model, we develop a city network 
model containing multi-modal traffic between cities. By applying node- 
based and link-based epidemic models, the city network model takes the 
risk of infection in cities and transportation into account. Base on MNL, 
an mode choice model is established to allocate demand under capacity 
constraints. At the same time, mobility plays an important role in the 
social-economic system as well as has a direct or indirect effect on many 
industries. We establish a model to estimate the marginal economic 
growth contributed by traffic turnover volume in order to demonstrate 
the trade-off between the control of epidemic spreading and economic 
loss. 

For supporting the dynamic decision-making, we develop an RL- 
based framework for online multi-modal travel ban decision. We 
adopt TD3 as the RL algorithm to reduce variance and avoid over-
estimation. We construct three virtual city networks using WS network, 
WS-10, WS-15, WS-20. as well as a real city network Real-15. The 
calibration results indicate that our model fits well with realistic data. 

Fig. 9. Analysis of learned travel ban policy.  Fig. 10. Demand distribution of the recovered links.  

2 https://www.forbes.com/sites/alexledsom/2020/12/13/december-eu-tra 
vel-restrictions-by-country-christmas-quarantine-and-covid-19-test-require 
ments/?sh=7711c7de3f15. 
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We adopt all-ban and no-ban policies as the benchmarks. The policies 
given by the RL framework outperform any benchmark and increase by 
1.31%–5.46% in four city networks in terms of the objective function, 
which considers the losses caused by the spread of the epidemic and the 
economic growth contributed by traffic turnover volume. At the same 
time, the learning result indicates that differentiating policies for 
different intercity travel modes can be considered. 

This study introduces the RL framework in network-level epidemic 
modeling and considers the online multi-modal travel ban decision 
problem. Our study only provides a preliminary sketch; several exten-
sions can be made in future studies. First, some additional policies 
considering the feature of the complex network can be studies. Second, 
the economic growth model can be further enhanced for mining the 
microscopic mechanisms to achieve better estimation on actual cases. 
Third, our numerical example only considers the realistic cases in China, 
but now the balance between epidemic control and economic mainte-
nance is an urgent issue faced by most of governments around the world. 
Lastly, the current-adopted epidemic model only considers one-wave 
spreading, and how to extend it to incorporate multi-wave cases re-
mains a valuable and challenging topic to be investigated in the future. 
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