Skip to main content
. 2021 Feb 15;104:107184. doi: 10.1016/j.asoc.2021.107184

Table 9.

Comparison of CoVNet-19 with other state-of-the-art methods.

Reference study Model architecture X-ray dataset 2-Class accuracy 3-Class accuracy
Ioannis D. et al. [7] VGG19 224 COVID +,
504 Normal.
700 Pneumonia
98.75% 93.48%

Wang et al. [8] COVID-Net network 183 COVID +,
8066 Normal,
5538 COVID -
N/A 93.33%

Asif Iqbal Khan et al [9] CoroNet 290 COVID +,
1203 Normal.
1590 Pneumonia
99.00% 95.00%

Narin et al. [10] ResNet50 50 COVID +,
50 COVID -
98.00% N/A

Sethy et al. [11] ResNet50 + SVM 25 COVID +,
25 COVID -
95.38% N/A

Ozturk et al. [12] DarkCovidNet 127 COVID +,
500 Normal,
500 Pneumonia
98.08% 87.02%

Ezz El-Din Hemdan [16] VGG19 25 COVID +,
25 COVID -
90.00% N/A

Mesut Tougaçar et al. [18] MobileNetV2+ SqueezeNet + SVM 295 COVID +,
65 Normal,
98 Pneumonia
N/A 99.27%

Ferhat Ucar et al. [19] Deep Bayes SqueezeNet 76 COVID +,
1583 Normal,
4290 Pneumonia
N/A 98.30%

Mahesh Gour [42] Stacked CNN 270 COVID +,
1139 Normal,
1355 Pneumonia
N/A 92.74%

Proposed Model CoVNet-19 1628 COVID +
2341 Normal,
2345 Pneumonia
99.71% 98.28%

**N/A: Authors did not perform the specified classification.