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A B S T R A C T

Historically, the evidences of safety and efficacy that companies provide to regulatory agencies as support to the
request for marketing authorization of a new medical product have been produced experimentally, either in vitro
or in vivo. More recently, regulatory agencies started receiving and accepting evidences obtained in silico, i.e.
through modelling and simulation. However, before any method (experimental or computational) can be ac-
ceptable for regulatory submission, the method itself must be considered “qualified” by the regulatory agency.
This involves the assessment of the overall “credibility” that such a method has in providing specific evidence for
a given regulatory procedure. In this paper, we describe a methodological framework for the credibility as-
sessment of computational models built using mechanistic knowledge of physical and chemical phenomena, in
addition to available biological and physiological knowledge; these are sometimes referred to as “biophysical”
models. Using guiding examples, we explore the definition of the context of use, the risk analysis for the defi-
nition of the acceptability thresholds, and the various steps of a comprehensive verification, validation and
uncertainty quantification process, to conclude with considerations on the credibility of a prediction for a
specific context of use. While this paper does not provide a guideline for the formal qualification process, which
only the regulatory agencies can provide, we expect it to help researchers to better appreciate the extent of
scrutiny required, which should be considered early on in the development/use of any (new) in silico evidence.

1. Introduction

Modelling and simulation are standard practice in many industrial
sectors as support to the design and the de-risking (intended as the
evaluation of safety and performance) of new products. Computer
modelling and simulation of humans in both health and disease is a
powerful tool in biomedical research, augmenting experimental and
clinical research through detailed mechanistic and systematic in-
vestigations which are impossible with other means [1,2]. A large body
of research across biomedicine has expanded the credibility of model-
ling and simulation beyond academia, with dynamic activity also in
regulatory agencies and industry [3–5]. Thus, human in silico clinical
trials are now emerging as an important paradigm in the development
of medical therapies [6]. This class of trial exploits human-based

modelling and simulation technologies for virtual testing of pharma-
cological therapies [7] and devices [8]. In addition, modelling and si-
mulation is being used to reduce, refine and replace animal experi-
mentation [9,10], and even to replace bench tests [11,12]. Taking this
broad range of applicability into account, the term “in silico trials”
refers to the use of modelling and simulation in both the preclinical and
clinical evaluation of a new medical product.

A number of organizations formed in the past decade were critical to
enabling the use of modelling and simulation to develop the in silico
trials concept, primarily for medical devices. For example, the
American Society of Mechanical Engineers (ASME) VV-40-2018
“Verification and Validation in Computational Modeling of Medical
Devices” technical committee was established by the ASME Division of
Codes & Standards in 2010. In 2012, the Medical Device Innovation
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Consortium was formed as a public-private partnership between the US
Food & Drug Administration (FDA), the Center for Medicare & Medicaid
Services (CMS), the National Institutes of Health (NIH), the medical
device industry, not-for-profit organizations, and patient associations.
One of the first projects of this organization was the Computer
Modeling and Simulation Project, aimed to balance the desire for cer-
tain device performance with the need to reduce the delay in patient
access, using modelling and simulation as valid scientific evidence. In
2013, the European Commission launched a Support Action named
“Avicenna: A Strategy for In-Silico Clinical Trials”, that saw the parti-
cipation of over 600 experts from academia, industry, regulatory
agencies, and patient organisations. One goal of Avicenna was the
elaboration of a public research roadmap on the adoption of modelling
and simulation for regulatory purposes [13]. Thanks to these initiatives,
between late 2015 and 2016 both the US Congress and the European
Parliament made similar recommendations toward their respective
regulatory agencies (FDA in the USA, and The European Medicines
Agency, or EMA, in Europe) stressing the need to adopt in silico as-
sessment as part of the regulatory process. In 2016, the FDA Center for
Devices and Radiological Health (CDRH) published a first guidance on
“Reporting of Computational Modeling Studies in Medical Device
Submissions”.1 This was followed in 2018 by the publication of the
ASME V&V 40-2018 technical standard “Assessing Credibility of Com-
putational Modeling through Verification and Validation: Application
to Medical Devices”.2

Mechanistic in silico modelling is also rapidly evolving in the
pharmaceutical area. For example, specific to disease modelling, human
cardiac electrophysiology is one of the most advanced areas in phy-
siological modelling and simulation. Current human cardiac electro-
physiology models integrate detailed information on the dynamic pro-
cesses underlying cardiac electrical excitation from subcellular to whole
organ levels [14]. Utilizing these frameworks, modelling and simula-
tion studies have played a central role in the discovery of cardiac ar-
rhythmia mechanisms [15,16] and treatments such as electrical defi-
brillation [17].

Building on a high level of model maturity, in 2013 the
Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative was
proposed as a new strategy for the assessment of the pro-arrhythmic
risk of pharmaceutical compounds for regulatory purposes, and was
sponsored by the FDA, the Cardiac Safety Research Consortium (CSRC),
and the Health and Environmental Science Institute (HESI). CiPA has
become a global effort, involving many industry and academic partners,
in addition to regulators [18,3]. The main novelty proposed by CiPA
was the adoption of modelling and simulation for the characterization
of the torsadogenic effects of drugs, which is currently mostly ensured
by in vitro testing (herG assay), animal in vivo and clinical trials. Spe-
cifically, CiPA proposed in silico analysis of human ventricular elec-
trophysiology using high-throughput in vitro screening of drug effects
on multiple human ion channels for safety assessment of new phar-
maceutical compounds. This triggered ongoing inter-sectoral colla-
borations to define the standards required for the qualification of
models and simulations for CiPA, to identify and incorporate new
technologies for clinical and non-clinical applications, including re-
finement of ex vivo and in vitro assays and screens, in vivo models, non-
invasive clinical modalities, and in silico approaches.

As in silico methods are increasingly included in regulatory sub-
missions, it is the authors’ opinion that the research community should
agree on a certain level of scrutiny to be considered as a minimum

requirement when reporting in silico results either in peer-reviewed
publications or in regulatory submissions. To this end, one aim of this
paper is to provide an introduction to the model credibility evaluation
process introduced by the ASME VV-40-2018 standard. The paper will
also compare and contrast this evaluation process with a recent EMA
guideline on the reporting of physiologically based pharmacokinetic
(PBPK) modelling and simulations, which is the first guideline on pa-
tient-specific modelling and simulation published by the EMA3 and
shares key features with the ASME VV-40-2018 standard. Both sources
provide both a step-by-step overview of the credibility assessment of
predictive models that can be used to inform the planning, im-
plementation and assessment of in silico analyses, and the minimum
requirements for model qualification given the context of use and the
regulatory impact. We will also discuss possible generalizations to other
modelling techniques and contexts of use.

2. The ASME V&V 40 credibility assessment process

The ASME VV-40-2018 standard, ‘Assessing Credibility of
Computational Modeling through Verification and Validation:
Application to Medical Devices’, introduced the risk-informed cred-
ibility assessment framework shown in Fig. 1. The credibility assess-
ment process begins with a question of interest, which is generally
framed around a specific aspect of the functional performance of a
medical device that is linked to its safety and/or efficacy. In practice,
the question of interest can be answered with data generated through a
variety of pre-clinical (or clinical) experiments. For those questions that
may be addressed either entirely or in part with modelling and simu-
lation, the ‘Context of Use’ (COU) is the term used by the standard to
specify the role of modelling and simulation in addressing the question
of interest. These two terms (question of interest and COU) will be
described in more detail in Section 2.1. With a well-defined COU, the
model risk can be identified (Section 2.2); though the concept of model
risk is not novel to this standard, it takes an important role in this
discussion because of the potential impact of biomedical products (in-
cluding devices) on human health and safety. The model risk is then
used to establish credibility goals for the computational model (Section
2.3) that can be achieved through careful planning and execution of
model verification (Section 2.4) and validation (including uncertainty
quantification) (Section 2.5) activities. By evaluating the applicability
of the verification and validation activities to the COU (Section 2.6),
again mindful of the model risk, an assessment of whether there is
sufficient model credibility to support the COU can be made. Each of
these key steps will be described here in more detail.

2.1. Definition of the question of interest and context of use

As shown in Fig. 1, the risk-informed credibility process begins by
identifying a question of interest. The question of interest describes the
specific question, decision or concern that is being addressed with a
computational model. In other words, the question of interest lays out
the engineering question that is to be answered (at least in part) based
on a model. The next step is to define the context of use (or COU),
which establishes the specific role and scope of the model in addressing
the question of interest. The COU provides a detailed and complete
explanation of how the computational model output will be used to
answer the question of interest. The COU should also include a de-
scription of the other sources of evidence that will be used as part of the
decision, such as data from bench testing animal and human trial data,
and/or historical (registry) data.1 https://www.fda.gov/regulatory-information/search-fda-guidance-

documents/reporting-computational-modeling-studies-medical-device-
submissions.

2 https://www.asme.org/codes-standards/find-codes-standards/v-v-40-
assessing-credibility-computational-modeling-verification-validation-
application-medical-devices.

3 https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-
reporting-physiologically-based-pharmacokinetic-pbpk-modelling-simulation_
en.pdf.
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2.2. Risk analysis

The next step is to determine the model risk, which represents the
possibility that the model may lead to false or incorrect conclusions,
potentially resulting in one or more adverse outcomes. Examples of
adverse outcomes include a poor result for the patient, the need for re-
intervention by a clinician, or loss of company revenue or reputation.
As shown in Fig. 2, model risk is defined as a combination of model
influence and decision consequence, where:

- Model influence represents the contribution of the computational
model to the decision in relation to other available evidence. The
relative contribution of the device safety/efficacy evidence sourced
from a computational model increases from left to right on the x-axis
of Fig. 2. This element of risk is explicitly tied to the COU since that
is where the other sources of evidence used to make a decision about
device safety/efficacy are established.

- Decision consequence refers to the significance of an adverse out-
come resulting from an incorrect decision, i.e. the “severity” of the
adverse outcome if the decision based on the model is incorrect.
While decision consequence is not explicitly linked to the risk
classification of a device (i.e. Class I, II, or III), it follows that Class
III devices (representing the highest risk device classification in the
US) are more likely to rely on high-risk models versus Class I (i.e.
low risk) devices. This is reflected in the decision consequence be-
cause the severity of the incorrect decision is manifested here.

Model risk is a combination of model influence and of decision

consequence and reflects the risk associated with making a decision
based, at least in part, on the output of a computational model.

2.3. Establish credibility goals

Having identified the overall model risk, the next step in the risk-
informed credibility framework is to establish the credibility require-
ments for the computational model. As mentioned previously, model
credibility refers to the trust in the predictive capability of a compu-
tational model for a specific COU, where trust is established through the
collection of verification and validation (V&V) evidence and by de-
monstrating the applicability of those V&V activities to support the
model for the COU. Therefore, the objective of this step is to determine
a set of requirements such that the computational model has sufficient
credibility for the COU. To assist in this process, the ASME V&V 40
standard defines a set of credibility factors, which represent the con-
stituent elements of a credibility evaluation process. The user evaluates
each of these factors and must demonstrate that they will be able to
collect enough evidence such that the overall credibility of the com-
putational model is commensurate with the model risk.

Activities associated with establishing the credibility of a compu-
tational model can be sub-divided into three categories: verification,
validation (including uncertainty quantification), and applicability. The
credibility factors identified in the V&V 40 standard fall into these three
categories, which are briefly described in the remainder of this section.
The reader is referred to ASME VV-40-2018 for a complete description
of all credibility factors and to ASME VV-10-2007,4 ASME VV-20-
2009,5 Oberkampf and Roy [19], and Roache [20] for more detailed
information on model verification, validation, and uncertainty quanti-
fication.

2.4. Verification

The goals of verification are to ensure that the computer model and
simulation framework provides a faithful representation of the intended
mathematical model and its solution, and to quantify the errors present
in the numerical solution of the mathematical model. The two elements
of verification are code verification and calculation verification. Code
verification aims to identify errors in the source code and numerical
algorithms of a code platform, while calculation verification aims to
estimate the magnitude of the numerical errors in the discrete solution
(e.g. discretization errors and iterative errors). Therefore, verification
provides mathematical evidence regarding the accuracy of a numerical
solution.

2.4.1. Code verification
Code verification provides assurance that a platform is free of bugs

in the source code and numerical algorithms. This form of verification
relies on comparing the output from a specific code platform to
benchmark problems with known analytical solutions. Calculating an
observed order of convergence is the most stringent form of code

Fig. 1. The risk-informed credibility assessment framework of ASME V&V40-2018 (reprinted from ASME V&V 40-2018 by permission of the American Society of
Mechanical Engineers. All rights reserved).

Fig. 2. The risk assessment matrix of ASME V&V40-2018 (reprinted from ASME
V&V 40-2018 by permission of the American Society of Mechanical Engineers.
All rights reserved).

4 https://www.asme.org/codes-standards/find-codes-standards/v-v-10-
guide-verification-validation-computational-solid-mechanics.

5 https://www.asme.org/codes-standards/find-codes-standards/v-v-20-
standard-verification-validation-computational-fluid-dynamics-heat-transfer.
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verification and is determined by calculating the rate of convergence of
the solution on a sequentially refined series of meshes [6]. The code is
considered verified if the observed order of convergence agrees with the
theoretical convergence rate, e.g. the element order in finite element
analysis (FEA) or order of the up-winding scheme in computational
fluid dynamics (CFD). Other (less stringent) code verification methods
include determination of the discretization error as part of a mesh re-
finement study or comparison to the results of a previously verified
code.

2.4.2. Calculation verification
Calculation (or model) verification can be initiated once the user

has reasonable assurance of the reliability of the code platform. The
objective of calculation verification is to estimate the error in the output
of a computational model due to the use of numerical methods to solve
the mathematical model specific to the COU. In contrast to code ver-
ification, an exact solution is not required (indeed, why perform mod-
elling if an exact solution were in fact available?). In calculation ver-
ification, the spatial and temporal convergence behaviour is analysed
and quantified by refining the discretization in both space and time.
While the focus of calculation verification is typically on discretization
errors, other sources of error include round-off error, numerical solver
(iterative) error, and user error. It is safe to proceed to the validation
process once errors in the numerical solution have been demonstrated
to have been minimized to the point that they are not polluting the
numerical results.

2.5. Validation

Validation is the process of assessing the degree to which a com-
puter model and simulation framework is able to simulate a reality of
interest. Put another way, validation activities are concerned with de-
monstrating the correctness of the underlying assumptions that were
used to guide the development of the mathematical model. This goal is
accomplished by developing a validation comparator, which provides
the data used to evaluate the output of simulations using the compu-
tational model. It is important to note that there is no validation in the
absence of comparator data. Two validation metrics are used to es-
tablish model credibility when making this comparison: one is the
difference between the simulation and the comparator outputs and the
other is an estimate of the uncertainty in this comparison.

2.5.1. Model/comparator/assessment
As a comparative process, appropriate validation activities require

attention to both the computational model and the comparator, with an
appropriately rigorous evaluation of both the experimental and simu-
lation procedures. This includes the development of a validation com-
parator whose performance and outputs mirror the behaviour of the
mathematical model as closely as possible. An evaluation of the control
parameters (model inputs) of the comparator and measured values
(model outputs) is also required. Only through careful construction of
the comparator will the data required to establish model credibility be
obtained.

Validation also helps to ensure that the computational model has
sufficient rigor for the intended context of use. This level of rigor is
established through an assessment process that considers the equiv-
alency of the input and output parameters of the simulation and com-
parator. Generally, model credibility increases when inputs and outputs
are equivalent, the rigor of the comparison is as high as possible, and
the level of agreement between model and comparator is high. It is
important to note that a more rigorous or more precise model is not
necessarily more credible; for example, more complex models usually
require more parameters to inform them, some of which might be af-
fected by considerable uncertainties, and may confound discovery and
resolution of basic errors in model form. Instead, the focus of the V&V
process should be on creating a model with sufficient rigor, which will

result in the optimal use of model development resources as well as
simulation infrastructure.

2.5.2. Uncertainty quantification
A second element of validation is the degree to which sensitivities

and uncertainties of the computational model and the associated
comparator(s) are understood. The three sources of computational
model uncertainty are uncertainties due to modelling assumptions and
approximations, uncertainties resulting from the numerical solution of
the governing equations, and uncertainties in the model input para-
meters. When combined with uncertainties in the experimental results,
these provide insight into what adjustments in the model form will
potentially improve agreement between simulation and experiment.
The uncertainty metric is essential when assessing the credibility of
higher risk models. For example, a model that agrees with experimental
results but has high uncertainty in model form is suspect since the high
uncertainty undermines the credibility of the model when making
predictions. Similarly, a model exhibiting poor agreement with ex-
perimental data and low uncertainty provides little insight into what
element(s) of the model form (or the comparator) can be addressed to
improve the agreement. ASME VV-20-2009 and other texts [19,20]
provide significant background on this topic.

2.6. Applicability

The applicability of a computational model refers to the relevance of
the validation activities to the COU and is represented schematically in
Fig. 3. There is typically an assortment of model input parameters (e.g.
X1 and X2 in Fig. 3) that may be either variable (e.g. blood pressure,
bone stiffness) or parametric (e.g. device size, device material). Ap-
plicability refers to the range for the model input parameters that
characterize or bound the validation activities, and which also position
the COU relative to the validation activities. Qualitatively, the closer
the validation activities are to the COU in terms of these key para-
meters, the more confidence there is in the predictive capability of the
model. An additional aspect of applicability is the extent to which a
quantity of interest (QOI) of the COU is linked to the measurements and
model predictions from the validation activities. Validation activities
are limited to aspects of device performance which can be directly
measured within a physical setting, whereas each QOI of the COU may
be more deeply embedded (and essentially unmeasurable) within the

Fig. 3. Schematic representation of applicability (reprinted from ASME V&V
40-2018 by permission of the American Society of Mechanical Engineers. All
rights reserved).
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biophysical system. In addition to addressing potential gaps between
input system parameters, assessing the applicability also requires
careful consideration of the gap between the measured validation
outputs and each QOI [21]. Pathmanathan et al. proposed a step-by-
step applicability analysis that can facilitate the identification of gaps
between validation evidence and a COU [22].

2.7. Clinical applicability

The ASME VV-40-2018 credibility framework can be viewed as a
thoughtful process to guide careful planning, execution, and analysis of
model verification and validation activities. Such activities necessarily
entail consideration of model predictions relative to data from other
sources, such as benchtop testing and animal studies. In some cases, the
data may also come from clinical studies on the same biophysical
product, e.g. a reduced but representative clinical cohort. In many cases
however, the data come from studies that are several steps removed
from the intended clinical scenario. For example, validation of a model
to predict the potential for bone remodelling around a hip stem may
utilize strain gage or digital image correlation measurements on a
synthetic bone that is loaded in a controlled benchtop experiment,
whereas the COU for that model is intended to capture the range of
anatomies, bone tissues, and in vivo loading conditions encountered in
clinical practice. For these cases, extension of the validation model to
the COU then requires modification of key input parameters. For ex-
ample, the relatively well understood mechanical properties of the
synthetic bone are replaced by the range of tissue stiffnesses and in-
elasticities that are encountered in total hip replacement patients.
Similarly, the small number of discrete loading scenarios that are tested
in the lab as part of the model validation activities, and which pre-
sumably resulted in adequate predictions of strain on the surface of the
synthetic bone, are replaced by an assumed spectrum of loading con-
ditions that characterize loading of the hip across a range of different
activities of daily living. The appropriate specification of these para-
meters, intended to represent the functional range of the biophysical
environment in which the device or product is expected to reside is
critical to the effective use of the model, but may be incorrectly spe-
cified for an otherwise credible model. Continuing the above example,
the user may have misstated the bounds of bone density, or incorrectly
estimated the number of steps that a hip replacement patient may take
in a year. These misstatements of the COU may result in incorrect
conclusions being drawn from a model that was otherwise shown to be
credible based on the validation activities. In other words, one might
have developed (and deployed) a model which is credible for a COU but
has minimal clinical applicability due to a misunderstanding of the
intended clinical environment. Returning back to the schematic re-
presentation of Fig. 3 – assessing applicability per ASME VV-40-2018
will address the relevance of validation activities to COU1, for example.
However, it will not ensure that the analyst properly identified COU1 in
the first place; in fact, maybe COU3 should have been the clinical
target.

3. Extension to other types of models

The broad research field of modelling and simulation in biomedi-
cine involves the use of a variety of mathematical and statistical ap-
proaches. In addition to physics- and chemistry-based mechanistic
models, developed from reliable first principles formulated in term of
field theories and differential equations, the literature is full of inter-
esting studies using discrete modelling approaches such as agent-based
modelling, semi-mechanistic approaches such as Bayesian modelling,
and fully phenomenological, data-driven approaches, such as machine
learning. This section evaluates the suitability of the V&V 40-2018
standard outside its stated scope of physics-based models. This is in-
tended as a starting point, as an in-depth evaluation of each model type
is beyond the scope of this paper.

3.1. The implicit assumptions for physics-based models

The ASME VV-40-2018 standard was developed with a fairly spe-
cific, although very popular, class of modelling methods in mind,
namely physics-based, mechanistic models. What are the cautions re-
quired if the model to be used does not fall into that class?

Let us assume that a generic predictive model can be represented
mathematically as:

=O f I( ) (1)

The predictive error of the model f() can be described as:

− = + +O O α ε ν| | I f f I, (2)

where αI is the aleatoric error due to the uncertainty affecting the ob-
servational data used to inform/build the model, εf is the epistemic error,
due to inability of the mechanistic knowledge used to build the model
(if any) to reproduce completely the physical reality being modelled,
and νf I, is the numerical approximation error that occurs when solving
the mathematical forms that represent the mechanistic knowledge in an
approximated way.

Verification, validation, and uncertainty quantification studies rely
on some typical assumptions about the nature and form of these three
errors. One can see where the limits of these assumptions are by making
them explicit. The first assumption is that the distribution of αI over
repeated measurements has null mean. If this is true for a sufficiently
large number of validation experiments, then we can write:

− ≈ +ave O O ε ν(| |) f f I, (3)

If αI has zero mean, the average predictive error over a sufficiently
large number of validation experiments should depend only on the
mechanistic and numerical approximation errors. Thus, the first check
is to ensure that all the input data fed into the model are not affected by
significant systematic errors.

The second assumption is that the error due to the numerical ap-
proximation is much smaller than that due to the epistemic uncertainty.
Under this assumption:

− ≈ave O O ε(| |) f (4)

In other words, verification is aimed to confirm that ≫ε νf f I, so that
validation can provide an estimate of the epistemic error.

Next, we assume that all the variability affecting the predictive error
is only due to the aleatoric component, and thus:

− ≈var O O α(| |) I
 (5)

Thus, the uncertainty affecting the predictive error can be quanti-
fied by computing how the uncertainty affecting the inputs propagates
to the outputs.

The last assumption relates to the applicability concept outlined in
the V&V 40 standard. We assume that εf is fairly constant (and small)
for an ample range of input values, and then starts to degrade with a
certain degree of smoothness. This is fairly true for most physics-based
models: for example, in a model that assumes the material is a linear
elastic solid, the epistemic error due to this assumption will be fairly
constant and low below the yield point, and will increase smoothly as
the stresses increase beyond the yield limit.

3.2. Statistical and machine learning models

Predictive models developed using traditional frequentist statistics
[23–25], as well as machine learning models [26–28], do not rely in
general on prior knowledge; thus, they are not affected by epistemic
error. Also, there are no numerical approximation errors since there is
no mathematical model to be solved numerically. On the other hand, in
general we cannot make any assumptions regarding the statistical dis-
tribution of the aleatoric error, which might have, for example, a non-
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normal distribution and a non-null average. Thus, the credibility of
these models needs to be assessed using different approaches. At risk of
oversimplifying, the credibility of these models can only be assessed by
induction, and thus these models are never truly validated. Indeed, a
recent FDA proposal outlining a regulatory framework for Artificial
Intelligence/Machine Learning (AI/ML)-Based Software as a Medical
Device (SaMD) [29] suggested that these models should be con-
tinuously tested in order to avoid issues such as context drift [30].

3.3. Bayesian models and grey-box models

In Bayesian models [31–33], the posterior probability is the sum of
the prior probability (which if informed by a priori knowledge can be
assumed to affect primarily the epistemic error) and the likelihood
(which is informed by observational data, and thus is affected by
aleatoric errors). Grey-box models are a very broad category that in-
clude a variety of modelling methods. A good example is the Nonlinear
AutoRegressive Moving Average with eXogenous input (NARMAX)
model [34,35]. In general, these methods rely on mathematical models
that are able to explain mechanistically only part of the phenomenon,
using an entirely phenomenological model for the remaining system
behaviour(s).

The credibility approach described in V&V 40 can still be useful for
these types of models. However, because of the nature of these models,
it is quite difficult to make any hypothesis on how the epistemic error
varies with the model inputs. Thus, consideration of the applicability of
validation activities to the question of interest (which may utilize a
different range of model inputs) can be challenging to defend. As a first
educated guess, we would recommend to never trust any prediction
made outside the range of validated inputs and to design validation
studies with a significant number of points in the input space.

3.4. Agent-based models

Agent-based models (ABM) are an effective approach for modelling
discrete, autonomous agents such as cells or bacteria. It is quite
common to model cancer [36–38] and immune-related diseases
[39–41], among others using ABM. The credibility assessment of ABM
is a complex topic; some extensive discussion can be found here [42].
However, the assumptions of conventional verification, validation and
uncertainty quantification processes are potentially valid for ABM, and
thus the V&V 40-2018 standard can be readily applied to these models.

4. Application to pharmaceutical, biological, or combinatory
products

4.1. Overview

The V&V 40-2018 standard specifically refers to the application to
medical devices. Does this limit the applicability of the standard to
assess the credibility of a computer model designed to evaluate the
safety and/or the efficacy of a new medicinal, biological, or combina-
tory product? Strictly speaking, the answer should be no, but since
there is currently no technical standard available for these other pur-
poses, it is worthwhile to explore this topic in more detail.

Combinatory products are, according to the FDA, products “com-
posed of any combination of a drug and a device; a biological product
and a device; a drug and a biological product; or a drug, device, and a
biological product”.6 However, the most common instance is a medical
device that releases some pharmaceutical substance as part of its
function; a good example are drug-eluting stents [43]. For most of these
devices, the active substance being released is already in clinical use, so

the most critical aspect is the drug release kinetics, which can be de-
scribed with biophysical models. In fact, these products follow a reg-
ulatory pathway that is fairly similar to that of medical devices. Thus, it
is reasonable to assess the credibility of the model with the V&V 40
standard.

Biological and medicinal products follow very different regulatory
pathways, however. Instead of using technical standards, it is re-
commended that, if new methodologies are used to inform the char-
acterization of safety and/or efficacy of a (new) product, they undergo
a regulatory process on their own, known as “qualification”. FDA calls it
the Drug Development Tools Qualification program,7 while EMA calls it
the qualification of novel methodologies for medicine development.8

Historically, qualification focused on experimental or (pharmaco)
statistical methods, such as population pharmacokinetics (popPK),
pharmacokinetic-pharmacodynamics (PK/PD), and dose-exposure re-
sponse (DER) models [44]. However, it should be noted that so far most
of these models (popPK, PK/PK and DER) tend to be simpler from a
mathematical and numerical point of view as compared to those dis-
cussed in Sections 2 and 3. One reason is that these models aim at
predicting the average behaviour of a population of patients rather than
the behaviour of an individual patient, and parameter estimations from
clinical data is most frequently part of the model development process.
For these models, predictive error is therefore driven by different
considerations.

As far as more mechanistic PK models are concerned, both FDA and
EMA have released guidelines9,10 for the qualification of physiologi-
cally based pharmacokinetics (PBPK) models, where model verification
and sensitivity analysis are also required. As more complex and so-
phisticated models are submitted for regulatory qualification, we see
some value for the scientists involved in model development and as-
sessment to consider the criteria included in the V&V 40 standard and
the EMA PBPK guideline (as detailed in the next section), as long as for
the problem at hand, the assumptions made in section 3.1 are accep-
table. In addition, it seems almost mandatory to include a clinical va-
lidation, where the model prediction is compared to the clinical ob-
servation in an adequate number of patients/time points in addition to
an extensive technical validation based on controlled experiments
performed in vitro, ex vivo, or in vivo.

4.2. Qualification of platforms and drug models according to the EMA
PBPK guideline

The EMA PBPK guideline provides recommendations for PK model
characterization, but interestingly, the indications for assessing the
quality of these mechanism-based models have various points in
common with the ASME V&V 40 standard.

In the guideline, similar to what is described in the V&V 40 docu-
ment, the context of use and the so-called regulatory impact are con-
sidered important starting points of consideration for model assess-
ment. Model qualification also depends on assessment criteria very
similar to those described in the ASME V&V 40 standard. They include
qualification of the platform (system model) used, verification of model
equations and input parameters, characterization of assumptions, and
uncertainties, sensitivity analyses and assessment of model predictive

6 https://www.fda.gov/combination-products/about-combination-products/
combination-product-definition-combination-product-types.

7 https://www.fda.gov/drugs/development-approval-process-drugs/drug-
development-tool-qualification-programs.

8 https://www.ema.europa.eu/en/human-regulatory/research-development/
scientific-advice-protocol-assistance/qualification-novel-methodologies-
medicine-development.

9 https://www.ema.europa.eu/en/documents/scientific-guideline/draft-
guideline-qualification-reporting-physiologically-based-pharmacokinetic-pbpk-
modelling_en.pdf.

10 https://www.fda.gov/regulatory-information/search-fda-guidance-
documents/physiologically-based-pharmacokinetic-analyses-format-and-
content-guidance-industry.
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performances.
In addition to the description of the context of use, the guideline

recommends specifying the regulatory impact of the model, which is of
utmost importance when determining the qualification requirements.
The regulatory impact is directly linked to the risk to the patient in case
the modelling predictions or assumptions lead to erroneous regulatory
decisions. The impact of a simulation also depends on how much weight
of evidence the model-based simulation will have in certain scenarios,
the therapeutic context, and the resulting treatment recommendations.
These risk considerations directly correspond to the VV-40-2018 risk
elements of decision consequence and model influence, respectively.
Regulatory impact can be classified as high, moderate or low, where the
qualification requirements increase with regulatory impact.

Parameters related to human patho-physiology (referred in the
guideline as system-depended parameters) need to be defined with par-
ticular attention. Reliability of the sources of drug-related and system-
related model input parameters is considered important and references
are to be provided. Additionally, the rationale for the chosen system-
dependent parameter values should be given.

Data to support the assumptions and their biological and/or phar-
macological rationale should also be presented and discussed, as well as
the impact of those assumptions on the model and the outcome. It is
recommended that a sensitivity analysis be undertaken for key para-
meters (i.e. ones that are likely to markedly influence the outcome) or
parameters that are uncertain.

As is the case for ASME VV-40-2018, model verification is the part
of the qualification process that is focused on the assessment of the
correctness of the mathematical model structure, including details of
the differential equations used and the parameterisations of the model.

In general terms, the qualification report for a particular context of
use should show the ability of the model to predict observed outcomes,
what in other contexts is referred to as validation. The search strategy
for the in vivo studies included to support the intended use of the
platform (systems model) should be shown and justified.

4.3. In silico augmented clinical trials

An important question remains open: can modelling and simulation
be used to reduce the human experimentation required in the reg-
ulatory process? In an increasing manner, pharmacometrics models
such as population PK, PK/PD, E/R and PBPK models are used by
pharmaceutical companies and endorsed by the regulatory agencies to
replace clinical trials in the context of drug approval for various ap-
plications. Different types of studies are now routinely replaced by
modelling and simulation evidence under well-defined conditions. They
include (but are not limited to): PK-related drug-drug interactions
studies, therapeutic studies for small populations (e.g. children, rare
disease), for new pharmaceutical formulations and biosimilars, cardiac
safety (QTc prolongation) studies, dose finding studies, etc. For patient-
specific computer models, this is currently an area of intense regulatory
science research. A recent paper from some of the authors tries to frame
this into a proper theoretical framework [45]. Computer models of
disease progression and treatment response can represent each physical
individual (digital twin), or a hypothetical individual whose key char-
acteristics (represented by the inputs of the model) are sampled from
the joint distribution of a representative population (digital trials) [46].

Digital twin models can be used to predict how an individual patient
will respond in certain conditions.

Digital trials can be used to inform the design of a clinical trial in-
volving physical patients, to provide an early estimate of efficacy over
large simulated cohorts, etc. An interesting use of digital patient cohorts
is to provide a prior in Bayesian adaptive clinical trial designs [47].

5. Conclusion

The aim of this paper was to provide a step-by-step overview of the

credibility assessment of predictive biomedical models according to
recently published standards and guidelines. While these standards and
guidelines were developed to evaluate models used to assess new
medical products, we are convinced that the same level of scrutiny
should be applied to models used in applied biomedical research.

The ASME V&V 40-2018 standard establishes a solid basis for the
credibility assessment of physics-based, mechanistic models used in the
regulatory evaluation of new medical devices. However, some caution
should be used when evaluating the credibility of other = model types,
such as machine learning, grey-box models, or agent-based models.

The credibility assessment of predictive models used for the eva-
luation of new drugs is currently being discussed. Early guidelines de-
veloped by EMA for physiologically based pharmacokinetics models
suggest an approach similar to those proposed by ASME V&V 40-2018.

While for regulatory submissions the reference documents are, and
must remain, the technical standards and the official guidelines pro-
vided by the regulators, we hope this paper can help the research
community to better understand, and hopefully more widely adopt, the
elements and criteria included in the V&V 40-2018 credibility assess-
ment methodology and the EMA PBPK guideline for establishing and
evaluating model credibility. This should ensure that their models are
qualified for the intended use even when the modelling activities are
not directly or immediately aimed at regulatory approval, such as in
peer-reviewed publications.

Computer models can be used for many purposes in biomedical
research. But when the predictions of a computer model are used to
make clinical recommendations, there is implicit risk to the patient(s)
associated with that computer model; and therefore it is necessary to
demonstrate the credibility of the model is commensurate with the
patient risk [48]. In this sense, we recommend authors, reviewers and
editors of peer-reviewed publications to consider at least the key ele-
ments of verification, validation, and uncertainty quantification as es-
sential requirements for any publication that relies on mechanistic
modelling and simulation.
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