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Abstract
The COVID-19 pandemic has created unprecedented challenges worldwide. Strained healthcare providers make difficult
decisions on patient triage, treatment and care management on a daily basis. Policy makers have imposed social distancing
measures to slow the disease, at a steep economic price. We design analytical tools to support these decisions and combat
the pandemic. Specifically, we propose a comprehensive data-driven approach to understand the clinical characteristics
of COVID-19, predict its mortality, forecast its evolution, and ultimately alleviate its impact. By leveraging cohort-level
clinical data, patient-level hospital data, and census-level epidemiological data, we develop an integrated four-step approach,
combining descriptive, predictive and prescriptive analytics. First, we aggregate hundreds of clinical studies into the most
comprehensive database on COVID-19 to paint a new macroscopic picture of the disease. Second, we build personalized
calculators to predict the risk of infection and mortality as a function of demographics, symptoms, comorbidities, and lab
values. Third, we develop a novel epidemiological model to project the pandemic’s spread and inform social distancing
policies. Fourth, we propose an optimization model to re-allocate ventilators and alleviate shortages. Our results have been
used at the clinical level by several hospitals to triage patients, guide care management, plan ICU capacity, and re-distribute
ventilators. At the policy level, they are currently supporting safe back-to-work policies at a major institution and vaccine trial
location planning at Janssen Pharmaceuticals, and have been integrated into the US Center for Disease Control’s pandemic
forecast.
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Highlights

• This paper introduces a comprehensive data-driven
approach for the COVID-19 pandemic with goals to
inform the overall scientific community, to estimate the
epidemiological spread of the virus, to provide clinical
insights, and to support ventilator allocation decisions
for policy makers.

• To consolidate medical insights, a clinical database
on the disease is aggregated from available scientific
literature.

• To assess the risk of infection and mortality, we
provide personalized risk prediction models from
the electronic health records by leveraging machine
learning algorithms.
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• To forecast the progression of COVID-19 and evaluate
the impact of various social distancing policies, we
develop a dynamic epidemiological model.

• To inform operational decisions for government offi-
cials, our optimization model addresses surges in ven-
tilator demand through state-level and federal realloca-
tion.

1 Introduction

In just a few weeks, the whole world was upended by
the outbreak of COVID-19, an acute respiratory disease
caused by a new coronavirus called SARS-CoV-2. The virus
is highly contagious: it is easily transmitted from person
to person via respiratory droplet nuclei and can persist on
surfaces for days [22, 43]. As a result, COVID-19 has spread
rapidly—classified by the World Health Organization as
a public health emergency on January 30, 2020 and as a
pandemic on March 11. As of November 2020, over 51
million cases and 1.2 million deaths have been reported
globally [20].

Given the uncertainty surrounding the disease and
its treatment, healthcare providers and policy makers
have wrestled with unprecedented challenges. Hospitals
and other care facilities have faced shortages of beds,
ventilators and personal protective equipment—raising hard
questions on how to treat COVID-19 patients with scarce
supplies and how to allocate resources to prevent further
shortages. At the policy level, most countries have imposed
“social distancing” measures and other non-pharmaceutical
interventions to slow the spread of the pandemic. These
measures allow strained healthcare systems to cope with
the disease by “flattening the curve” [2] but also come
at a steep economic price [11, 32]. This trade-off has
prompted difficult decisions balancing public health and
socio-economic outcomes.

This paper proposes a comprehensive data-driven
approach to combat the COVID-19 pandemic. We lever-
age a broad range of data sources, which include (i)
our own cohort-level data aggregating hundreds of clini-
cal studies, (ii) patient-level data obtained from electronic
health records, and (iii) census reports on the scale of the
pandemic. We develop an integrated approach spanning
descriptive analytics (to derive a macroscopic understanding
of the disease), predictive analytics (to forecast the near-
term impact and longer-term dynamics of the pandemic),
and prescriptive analytics (to support healthcare and policy
decision-making).

Our approach comprises four steps (Fig. 1):

– Aggregating and visualizing the most comprehen-
sive clinical database on COVID-19 as of May 2020
(Section 1). We aggregate cohort-level data on demo-
graphics, comorbidities, symptoms and lab values from
160 clinical studies. These data paint a broad picture
of the disease: identifying common symptoms, dispar-
ities between mild and severe patients, and geographic
disparities—insights that are hard to derive from any
single study and can orient future clinical research
on COVID-19, its mutations, and its disparate effects
across ethnic groups.

– Providing personalized indicators to assess the risk of
mortality and infection (Section 2). Using patient-
level data, we develop machine learning models to pre-
dict mortality and infection risk, as a function of demo-
graphics, symptoms, comorbidities, and lab values. Using
gradient boosting methods, the models achieve strong
predictive performance—with an out-of-sample area
under the curve above 90%. These models yield person-
alized calculators that can (i) guide triage, treatment,
and care management decisions for strained health-
care systems, and (ii) serve as pre-screening tools for
patients before they visit healthcare or testing facilities.

Cohort-level data
[clinical research]

Census-level data
[public reports]

Descriptive analyticsData Predictive analytics Prescriptive analytics Impact

Mortality/infection risk 
(Section 2)

DELPHI-pred
(Section 3)

Ventilator allocation 
(Section 4) Resource allocation

Social distancing policies

Triaging and treatment

Patient characteristics 
(Section 1) Clinical understanding

Insights

Parameters

Parameters
Inputs

DELPHI-presc
(Section 3)

Patient-level data
[electronic medical record]

Fig. 1 Overview of our end-to-end analytics approach. We leverage diverse data sources to inform a family of descriptive, predictive and
prescriptive tools for clinical and policy decision-making support
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– Developing a novel epidemiological model to fore-
cast the evolution of the disease and assess the
effects of social distancing (Section 3). We pro-
pose a new compartmental model called DELPHI,
which accounts for COVID-19 features such as
underdetection and government response. The model
estimates the disease’s spread with high accuracy;
notably, its projections from as early as April 3 have
matched the number of cases observed in the United
States up to mid-May and outperforms compara-
ble methods during such period. We also provide
a data-driven assessment of social distancing poli-
cies, showing that the pandemic’s spread is highly
sensitive to the stringency and timing of mitigating
measures.

– Proposing an optimization model to support ventilator
allocation in response to the pandemic (Section 4).
We formulate a mixed-integer optimization model to
allocate ventilators efficiently in a semi-collaborative
setting where resources can be shared both between
healthcare facilities or through a central authority. In the
United States, this allows us to study the trade-offs of
managing the federal ventilator stockpile in conjunction
with inter-state transfers. Results show that limited
ventilator transfers could have eliminated shortages in
April 2020.

This work makes two key contributions. First, we
derive data-driven insights about the early stages of the
COVID-19 pandemic. Although some of the results should
be treated with caution when extrapolated beyond the
period spanning March to May 2020, these insights help
understand the clinical characteristics of the disease, predict
its mortality, forecast its evolution, and ultimately alleviate
its impact. Second, we provide a comprehensive roadmap
to guide short-term responses to new, and unforeseen
epidemics. The proposed approach involves four steps:
(i) gathering meta-data from early small-scale clinical
studies to derive a fast and broad understanding of the
disease, (ii) applying predictive analytics based on patient-
level data to identify the drivers of the disease and
its mortality, (iii) using population-level data on cases,
hospitalizations and deaths to predict the macroscopic
evolution of the disease, and (iv) leveraging these models
for resource allocation optimization to alleviate the near-
term damage of the disease. A major feature of this approach
is to treat these different questions as interdependent
challenges, as opposed to a series of isolated problems.
Indeed, clinical decision-making depends directly on patient
inflows and available supplies, while resource planning and
government responses react to patient-level outcomes. By
combining various data sources into descriptive, predictive
and prescriptive methods, this paper proposes an end-to-end

approach to design a comprehensive and cohesive response
to the COVID-19 pandemic and future epidemics.

Ultimately, this paper develops analytical tools to inform
clinical and policy responses to the COVID-19 pandemic.
These tools are available to the public on a dedicated
website. 1 They have also been deployed in practice to
combat the spread of COVID-19 globally. Several hospitals
in Europe have used our risk calculators to support pre-
triage and post-triage decisions, and a major financial
institution in South America is applying our infection
risk calculator to determine how employees can safely
return to work. A major hospital system in the United
States, Hartford Healthcare, planned its intensive care unit
(ICU) capacity based on our forecasts, and leveraged our
optimization results to allocate ventilators across hospitals
when the number of cases was rising. Our epidemiological
predictions are used by one of the largest pharmaceutical
companies, Janssen Pharmaceuticals, to design a vaccine
trial location selection strategy . They have also been one of
the top 5 models that are consistently incorporated into the
US Center for Disease Control’s forecasts [42] and its core
ensemble model.

2 Descriptive analytics: clinical outcomes
database

Early responses to the COVID-19 pandemic have been
inhibited by the lack of available data on patient outcomes.
Individual centers released reports summarizing patient
characteristics. Yet, this decentralized effort makes it
difficult to construct a cohesive picture of the pandemic.

To address this problem, we construct a database
that aggregates demographics, comorbidities, symptoms,
laboratory blood test results (“lab values”, henceforth)
and clinical outcomes from 160 clinical studies released
between December 2019 and May 2020—made available
on our website for broader use. The database contains
information on 133,600 COVID-19 patients (3.13% of the
global COVID-19 patients as of May 12, 2020), spanning
mainly Europe (81,207 patients), Asia (19,418 patients) and
North America (23,279 patients). To our knowledge, this
is the largest dataset on COVID-19 that contains detailed
clinical outcomes (as of May 2020).

2.1 Data aggregation

Each study was read by a researcher, who transcribed
numerical data from the manuscript, and subsequently
checked by a second researcher, to verify correctness. The
Appendix reports the main transcription assumptions.

1https://www.covidanalytics.io
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Each row in the database corresponds to a cohort of
patients—some papers study a single cohort, whereas oth-
ers study several cohorts or sub-cohorts. Each column
reports cohort-level statistics on demographics (e.g., aver-
age age, gender breakdown), comorbidities (e.g., preva-
lence of diabetes, hypertension), symptoms (e.g., preva-
lence of fever, cough), treatments (e.g., prevalence of
antibiotics, intubation), lab values (e.g., average lym-
phocyte count), and clinical outcomes (e.g., average
hospital length of stay, mortality rate). We also track
whether the cohort comprises “mild” or “severe” patients
(mild and severe cohorts are only a subset of the
data).

We should note that, as the pandemic has progressed,
clinical knowledge of COVID-19 has improved beyond
what was knowable when this study was performed.
As a result, the prevalence of the symptoms and the
mortality rates reported here may not accurately reflect
the current status of the pandemic. For instance, Anosmia
(loss of sense of taste/smell) is now recognized as one of
the main symptoms of COVID-19 but is not mentioned
in this section. Similarly, mortality rates have dropped
significantly since March/April due, in particular, to
advances by the medical community.

Due to the pandemic’s urgency, many papers were
published before all patients in a cohort were discharged

or deceased. Accordingly, we estimate the mortality rate
from discharged and deceased patients only (referred to as
“Projected Mortality”).

2.2 Objectives

Our main goal is to leverage this database to derive a
macroscopic understanding of the disease. We break it down
into the following questions:

– Which symptoms are most prevalent?
– How do “mild” and “severe” patients differ in terms of

symptoms, comorbidities, and lab values?
– Can we identify epidemiological differences in differ-

ent parts of the world?

2.3 Descriptive statistics

Table 1 depicts the prevalence of COVID-19 symptoms, in
aggregate, classified into “mild” or “severe” patients, and
classified per geographic region. Our key observations are
that:

– Cough, fever, shortness of breath, and fatigue are the
most prevalent symptoms of COVID-19.

– COVID-19 symptoms are much more diverse than those
listed by public health agencies. COVID-19 patients can

Table 1 Count and prevalence of symptoms among COVID-19 patients, in aggregate, broken down into mild/severe patients, and broken down
per continent (Asia, Europe, North America)

Symptom All patients Mild Severe Asia Europe North America

Count (%) Count (%) Count (%) Count (%) Count (%) Count (%)

Cough 94,950 52.8% 6,833 63.0% 5,803 50.4% 14,034 56.2% 78,430 52.2% 1,113 63.6%

Fever 95,870 48.1% 6,864 79.3% 6,077 76.7% 14,750 76.6% 78,450 43.5% 1,481 41.3%

Short Breath 17,290 33.7% 6,006 16.1% 5,373 60.7% 11,330 19.7% 3,512 69.9% 1,111 49.2%

Fatigue 11,560 31.4% 5,313 35.3% 1,989 40.6% 11,320 30.8% 226 64.2% − −
Sputum 7,613 26.3% 4,995 29.2% 1,216 34.2% 7,395 26.7% − − 176 10.9%

Sore Throat 83,170 22.2% 3,513 14.2% 921 8.2% 6,013 10.4% 75,235 22.9% 550 9.8%

Myalgia 12,150 17.5% 4,455 16.4% 1,643 19.1% 8,517 15.5% 1,633 33.5% 755 25.3%

Elev. Resp. Rate 7,376 16.4% 527 9.7% 642 38.4% 1,257 14.6% − − 6,117 16.8%

Anorexia 3,928 15.8% 1,641 14.2% 808 15.4% 3,566 13.8% 312 40.5% − −
Headache 11,430 15.7% 5,068 12.2% 1,541 8.6% 7,929 9.9% 1,633 27.2% 551 8.7%

Nausea 10,070 12.4% 4,238 6.5% 1,798 5.6% 8,262 8.2% 312 22.4% 259 9.0%

Chest Pain 3,303 11.3% 767 12.2% 588 19.6% 2,984 12.2% − − − −
Diarrhea 16,520 11.1% 5,687 9.7% 5,369 9.0% 11,470 10.8% 3,512 10.4% 1,066 15.4%

Cong. Airway 1,639 8.7% 2,176 6.5% 234 14.1% 1,369 8.9% − − 258 7.4%

Chills 3,116 8.7% 2,751 9.9% 520 9.4% 2,794 8.2% − − 268 11.5%

Proj. Mortality 111,700 11.7% 7,428 0.4% 9,146 74.0% 12,820 16.7% 79,750 9.9% 19,060 15.8%

Mild and severe patients only form a subset of the data, and so do patients from Asia, Europe and North America. A “-” indicates that fewer than
100 patients in a subpopulation reported on this symptom
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Table 2 Comorbidities, demographics, average lab values, average length of stay and projected mortality among COVID-19 patients, in aggregate
and broken down into mild/severe patients

Feature All Patients Mild Patients Severe Patients

No. Report Avg. No. Report. Avg. No. Report. Avg.

Demographics

Male (%) 131,200 53.0% 9,570 48.8% 10,120 68.7%

Age (years) 119,000 51.3 8,022 46.1 9,685 68.2

White/European (%) 55,490 22.2% 10,120 9.7% 9,887 63.9%

African American (%) 55,490 5.4% 10,120 3.5% 9,887 2.5%

Asian (%) 55,320 51.3% 10,300 80.2% 9,933 31.2%

Hispanic/Latino 50,630 19.9% 8,017 0% 9,107 0%

Multiple ethnicities/other 55,190 3.6% 10,120 6.9% 9,887 2.7%

Comorbidities

Smoking history 27,900 16.1% 6,080 12.2% 1,973 16.6%

Hypertension 38,390 35.9% 8,252 15.2% 8,449 54.4%

Diabetes 39,790 20.8% 8,396 6.8% 8,818 26.1%

Cardio Disease 40,030 12.4% 8,028 3.0% 9,540 20.3%

COPD 34,150 6.0% 6,297 2.8% 8,727 10.0%

Cancer 29,170 7.2% 6,259 3.2% 8,355 12.9%

Liver Disease 18,300 2.8% 1,875 2.3% 6,832 3.5%

Cebrovascular 6,830 9.8% 3,245 2.7% 1,360 24.8%

Kidney Disease 35,500 5.7% 6,152 1.2% 8,139 10.8%

Lab values

WBC Count (109/L) 19,970 6.41 5,403 5.07 2,305 6.80

Neutrophil Count (109/L) 12,500 4.72 2,236 5.12 1,410 5.78

Platelet Count (109/L) 12,125 195.7 5,165 184.0 2,105 170.4

ALT (U/L) 14,467 29.0 2,840 24.6 2,428 31.1

AST (U/L) 14,214 37.3 2,766 27.1 2,366 45.7

BUN (mmol/L) 4,822 5.22 1,700 4.18 1,138 6.86

Creatinine (μmol/L) 8,504 63.08 2,529 66.0 2,454 56.4

CRP Count (mg/L) 17,090 76.5 2,573 18.9 2,339 94.1

Interleukin-6 (pg/mL) 2,582 24.57 1,127 4.17 552 38.63

Procalcitonin (ng/mL) 14,750 2.26 1,468 1.85 1,969 4.81

D-Dimer (mg/L) 13,330 38.81 2,478 8.04 2,401 165.9

Length of Stay (days) 16,010 10.7 4,131 14.0 5,642 7.97

Proj. Mortality (%) 111,700 11.7% 7,428 0.4% 9,146 74.0%

experience at least 15 different symptoms. In contrast,
the US Center for Disease Control and Prevention lists
seven symptoms (cough, shortness of breath, fever,
chills, myalgia, sore throat, and loss of taste/smell) [47];
the World Health Organization lists three symptoms
(fever, cough, and fatigue) [52]; and the UK National
Health Service lists two main symptoms (fever and
cough) [35]. This suggests a lack of consensus among
the medical community, and opportunities to revisit
public health guidelines to capture the breadth of
observed symptoms.

– Shortness of breath and elevated respiratory rates are
much more prevalent in cases diagnosed as severe.

– Symptoms are quite different in Asia vs. Europe or
North America. In particular, more than 75% of Asian
patients experience fever, as compared to less than half
in Europe and North America. Conversely, shortness
of breath is much more prevalent in Europe and North
America.

Using a similar nomenclature, Table 2 reports comor-
bidities, demographics, average lab values and average
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clinical outcomes among all patients, mild patients and
severe patients. In terms of demographics, severe popula-
tions of patients have a higher incidence of male subjects
and are older on average. Severe patients also have elevated
comorbidity rates. Figure 2 visually confirms the impact of
age and hypertension rates on population-level mortality—
consistent with [15, 16, 40]. In terms of lab values, CRP,
AST, BUN, IL-6 and Protocalcitonin are highly elevated
among severe patients.

2.4 Discussion and impact

Our database is the largest available source of clinical
information on COVID-19 assembled to date (as of May
2020). As such, it provides new insights on common
symptoms and the drivers of the disease’s severity.
Ultimately, this database can support guidelines from health
organizations, and contribute to ongoing clinical research on
the disease.

Another benefit of this database is its geographical
reach. Results highlight disparities in patients’ symptoms
across regions. These disparities may stem from (i) different
reporting criteria; (ii) different treatments; (iii) disparate
impacts across different ethnic groups; and (iv) mutations of
the virus since it first appeared in China. This information
contributes to early evidence on COVID-19 mutations [12,
17] and on its disparate effects on different ethnic groups
[13, 48].

Finally, the database provides average values of key
parameters into our epidemiological model of the disease’s
spread and our optimization model of resource allocation
(e.g., average length of stay of hospitalizations, average
fraction of hospitalized patients put on a ventilator).

The insights derived from this descriptive analysis
highlight the need for personalized data-driven clinical

indicators. Yet, our population-level database cannot be
leveraged directly to support decision-making at the
patient level. We have therefore initiated a multi-institution
collaboration to collect electronic medical records from
COVID-19 patients and develop clinical risk calculators.
These calculators, presented in the next section, are
informed by several of our descriptive insights. Notably,
the disparities between severe patients and the rest of
the patient population inform the choice of the features
included in our mortality risk calculator. Moreover, the
geographic disparities suggest that data from Asia may
be less predictive when building infection or mortality
risk calculators designed for patients in Europe or North
America—motivating our use of data from Europe.

3 Predictive analytics: mortality and
infection risk

Throughout the COVID-19 crisis, physicians have made
difficult triage and care management decisions on a daily
basis. These decisions initially relied on small-scale clinical
tests; each clinical test requires significant time, personnel
and equipment and thus cannot be easily replicated. As
the burden on “hot spots” ebbed in late spring, hospitals
began to aggregate rich data on COVID-19 patients.
This data offers opportunities to develop algorithmic risk
calculators for large-scale decision support, facilitating a
more proactive and data-driven strategy to combat the
disease globally.

We have established a patient-level database of thousands
of COVID-19 hospital admissions. Using state-of-the-art
machine learning methods, we develop a mortality risk
calculator and an infection risk calculator. The resultant
models enable the rapid identification of risk factors and
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clinical insights which were lacking at the pandemic’s onset.
Machine learning is particularly useful in such a setting,
where we seek to analyze diverse datasets in a timely and
scalable fashion. These personalized risk assessment tools
can support critical care management decisions, spanning
hospital triage to testing prioritization.

3.1 Methods

This investigation constitutes a multi-center study from
healthcare institutions in Spain and Italy, two countries
severely impacted by COVID-19. Specifically, we collected
data from (i) Azienda Socio-Sanitaria Territoriale di
Cremona (ASST Cremona), the main hospital network in
the Province of Cremona, and (ii) HM Hospitals, a leading
hospital group in Spain with 15 general hospitals and 21
clinical centers spanning the regions of Madrid, Galicia,
and León. We applied the following inclusion criteria to the
calculators:

– Mortality Risk: We include adult patients diagnosed
with COVID-19 and hospitalized. We consider patients
who were either discharged from the hospital or
deceased within the visit—excluding active patients.
We include only lab values and vital values collected on
the first day in the emergency department to match the
clinical decision setting—predicting prognosis at the
time of admission.

– Infection Risk: We include adult patients who under-
went a polymerase chain reaction test for detecting
COVID-19 infection at the ASST Cremona hospi-
tal [26].2 We include all patients, regardless of their
clinical outcome. Each patient was subject to a blood
test. We omit comorbidities since they are derived from
the discharge diagnoses, hence not available for all
patients.

We train two models for each calculator: one with lab
values and one without lab values. Missing values are
imputed using k-nearest neighbors imputation [46]. We
exclude features missing for more than 40% of patients. We
train binary classification models for both risk calculators,
using the XGBoost algorithm [8]. We use SHapley Additive
exPlanations (SHAP) [30, 31] to generate importance plots
that identify risk drivers and provide transparency on
the model predictions. All statistical analyses have been
conducted using Python 3.7 [38].

To evaluate predictive performance, we use 40 random
data partitions into training and test sets. We compute
the average Area Under the Curve (AUC), sensitivity,
specificity, precision, negative predictive value, and positive

2HM Hospitals patients were not included since no negative case data
was available.

predictive value. We calculate 95% confidence intervals
using bootstrapping.

3.2 Results

3.2.1 Study population

The mortality study population comprises 2,831 patients,
711 (25.1%) of whom died during hospitalization while the
remaining ones were discharged. Table 3 summarizes the
clinical characteristics of the cohort, both in aggregate and
broken down by survival status. The reported features are
those used in the final model, that is age, gender, 3 vitals
values, 13 lab results, and 4 comorbidities.

Our infection cohort comprises 3,135 patients, 1,661
(53.0%) of whom tested positive for COVID-19. This cohort
only includes patients from ASST Cremona, as negative
tests results were not available from HM Hospitals. Table 4
summarizes the clinical characteristics of the cohort, both in
aggregate and broken down by COVID-19 test result. Again,
the reported features are those used in the final model, that
is age, gender, 4 vitals values, and 14 lab values.

3.2.2 Performance evaluation

All models achieve strong out-of-sample performance. Our
mortality risk calculator has an AUC of 93.8% with lab
values and 90.5% without lab values. Our infection risk
calculator has an AUC of 91.8% with lab values and
83.1% without lab values. These values suggest a strong
discriminative ability of the proposed models. We report
average results across all random data partitions in the
Appendix.

We also report threshold-based metrics in the Appendix,
which evaluate the discriminative ability of the calculators
at a fixed cutoff. With the threshold set to ensure a
sensitivity of at least 90% (motivated by the high costs of
false negatives), we obtain accuracies spanning 65%–80%.

The mortality model achieves better overall predictive
performance than the infection model. As expected, both
models have better predictive performance with lab values
than without lab values. Yet, the models without lab values
still achieve strong predictive performance.

3.2.3 Model interpretation

Figure 3 plots the SHAP importance plots for all models.
The figures sort the features by decreasing significance.
For each one, the row represents its impact on the SHAP
value, as the feature ranges from low (blue) to high (red).
Higher SHAP values correspond to increased likelihood of a
positive outcome (i.e. mortality or infection). Features with
the color scale oriented blue to red (resp. red to blue) from
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Table 3 Characteristics of study population for mortality prediction model

All (N = 2, 831) Survivors (N = 2, 120) Non-Survivors (N = 711) P-Value

Age 68.0 (57.0-79.0) 63.0 (54.0-74.0) 81.0 (73.2-86.0) 1.28E-185

Female a 1095.0 (38.7%) 868.0 (40.9%) 227.0 (31.9%) 1.18E-05

Heart Rate 89.0 (79.0-101.0) 90.0 (80.0-102.0) 87.0 (78.0-100.0) 1.29E-03

Oxygen Saturation 94.0 (90.0-96.0) 94.4 (92.0-96.0) 88.5 (80.0-93.6) 3.16E-37

Temperature (F) 98.4 (97.5-99.7) 98.4 (97.5-99.6) 98.8 (97.7-100.0) 2.42E-04

Alanine Aminotransferase 27.0 (17.0-44.0) 27.8 (17.5-45.0) 25.5 (16.0-41.0) 3.77E-02

Aspartate Aminotransferase 36.0 (25.0-55.0) 34.0 (24.4-51.0) 45.0 (30.0-69.0) 1.55E-11

Blood Glucose 118.0 (105.0-141.0) 115.0 (103.4-133.0) 134.0 (113.0-171.0) 1.12E-22

Blood Urea Nitrogen 17.0 (12.6-25.2) 15.0 (11.5-20.0) 29.5 (20.3-47.2) 1.02E-65

C-Reactive Protein 74.2 (29.1-149.5) 58.6 (22.7-119.3) 141.1 (72.0-223.1) 4.76E-50

Creatinine 1.0 (0.8-1.2) 0.9 (0.7-1.1) 1.3 (1.0-1.8) 2.84E-36

Hemoglobin 13.9 (12.7-15.0) 14.0 (12.9-15.0) 13.5 (12.0-14.7) 9.11E-10

Mean Corpsular Volume 87.8 (84.9-91.0) 87.5 (84.7-90.4) 89.3 (85.8-92.7) 2.80E-08

Platelets 201.0 (156.0-263.0) 206.0 (160.0-266.5) 185.0 (141.0-246.8) 6.62E-08

Potassium 4.1 (3.7-4.4) 4.0 (3.7-4.4) 4.1 (3.7-4.6) 1.43E-04

Prothrombin Time (INR) 1.1 (1.0-1.2) 1.1 (1.0-1.2) 1.1 (1.0-1.3) 3.20E-05

Sodium 137.1 (135.0-140.0) 137.0 (135.0-139.4) 138.0 (135.0-141.0) 5.65E-08

White Blood Cell Count 6.8 (5.2-9.2) 6.5 (5.0-8.7) 8.0 (5.7-11.4) 3.00E-15

Cardiac dysrhythmias a 200.0 (7.1%) 127.0 (6.0%) 73.0 (10.3%) 6.50E-04

Chronic kidney disease a 65.0 (2.3%) 33.0 (1.6%) 32.0 (4.5%) 3.67E-04

Heart disease a 125.0 (4.4%) 80.0 (3.8%) 45.0 (6.3%) 1.10E-02

Diabetes a 345.0 (12.2%) 234.0 (11.0%) 111.0 (15.6%) 2.73E-03

Mortality a 711 (25.1%) 0 (0%) 711 (100%) –

aCount (proportion) is reported for binary variables

left to right have increasing (resp. decreasing) risk as the
feature increases. For example, “Age” is the most important
feature of the mortality score with lab values (Fig. 3a), and
older patients have higher predicted mortality.

3.3 Discussion and impact

The proposed models provide algorithmic screening tools
that deliver COVID-19 risk predictions using common
clinical features. In a constrained healthcare system or in
a clinic without access to advanced diagnostics, clinicians
can use these models to rapidly identify high-risk patients to
support triage and treatment decisions. The models without
lab values offer an even simpler tool that could be used
outside of a clinical setting. In strained healthcare systems,
it can be difficult for patients to obtain direct advice from
providers, and so this tool could serve as a pre-screening
step. While the exclusion of lab values reduces the AUC
(especially for infection), these calculators still perform
strongly.

Our models provide insights into risk factors and
biomarkers related to COVID-19 infection and mortality.
Our results suggest that the main indicators of mortality
risk are age, BUN, CRP, AST, and low oxygen saturation.
These findings validate several population-level insights
from Section 2 and are in agreement with clinical studies
and public health guidance. Age is widely recognized as a
primary risk factor [55]. Studies have found shortness of
breath as a common symptom of severe cases [50, 53], and
low oxygen saturation has been further identified as a risk
factor even without respiratory symptoms [51]. BUN, CRP,
and AST have been identified as key biomarkers in severe
COVID-19 cases: elevated BUN as an indicator of kidney
dysfunction [9], elevated levels of CRP as an inflammatory
marker [7, 49, 54], and elevated AST levels related to liver
dysfunction [16, 18].

Turning to infection risk, the main indicators are CRP,
WBC, Calcium, AST, and temperature. These findings
are also in agreement with clinical reports: an elevated
CRP generally indicates an early sign of infection and
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Table 4 Characteristics of study population for infection test prediction model

All (N = 3, 135) No Infection (N = 1, 474) Infection (N = 1, 661) P-Value

Age 63.0 (49.0-78.0) 58.0 (42.0-78.0) 66.0 (55.0-78.5) 9.00E-28

Female a 1444.0 (46.1%) 777.0 (52.7%) 667.0 (40.2%) 1.70E-12

Heart Rate 88.5 (78.0-100.5) 89.0 (78.0-101.2) 88.0 (78.2-100.0) 6.13E-01

Oxygen Saturation 95.4 (91.8-97.0) 96.5 (94.8-97.5) 94.2 (89.6-96.4) 1.68E-31

Respiratory Frequency 18.0 (16.0-19.0) 18.0 (16.0-18.0) 18.0 (16.0-20.0) 9.64E-21

Temperature 98.3 (97.5-99.5) 97.7 (97.2-98.7) 99.0 (97.9-100.0) 4.51E-80

Alanine Aminotransferase 22.0 (15.0-37.0) 19.0 (13.0-30.0) 27.0 (18.0-43.0) 6.59E-09

Aspartate Aminotransferase 29.0 (21.0-47.0) 23.0 (19.0-31.0) 37.0 (26.0-57.0) 1.20E-20

Blood Urea Nitrogen 17.0 (13.0-25.0) 16.0 (12.0-22.0) 18.0 (13.0-27.0) 3.78E-05

Calcium 9.3 (8.9-9.7) 9.6 (9.2-9.9) 9.0 (8.7-9.4) 1.90E-96

C-Reactive Protein 31.0 (3.4-107.6) 4.7 (1.1-35.4) 69.8 (23.2-152.3) 1.28E-83

Creatinine 0.9 (0.8-1.2) 0.9 (0.7-1.1) 1.0 (0.8-1.2) 2.19E-05

Hemoglobin 13.5 (12.3-14.7) 13.4 (12.1-14.6) 13.6 (12.5-14.8) 5.70E-05

Mean Corpsular Volume 87.2 (84.0-90.3) 87.7 (84.2-90.7) 86.8 (83.9-90.0) 1.43E-01

Platelets 223.0 (174.0-285.0) 241.0 (198.0-297.0) 202.0 (156.0-266.0) 1.41E-18

Red Cell Distrbution Width 13.2 (12.5-14.3) 13.2 (12.5-14.5) 13.1 (12.4-14.0) 1.59E-06

Sodium 139.0 (137.0-141.0) 140.0 (138.0-142.0) 139.0 (136.0-141.0) 1.12E-14

Prothrombin Time (INR) 1.0 (1.0-1.1) 1.1 (1.0-1.1) 1.0 (1.0-1.1) 8.96E-01

Total Bilirubin 0.6 (0.5-0.8) 0.6 (0.4-0.9) 0.6 (0.5-0.8) 8.83E-03

White Blood Cell Count 7.6 (5.8-10.1) 8.7 (7.0-11.1) 6.6 (5.1-8.7) 7.59E-38

COVID-19 Positive Test a 1661 (53.0%) 0 (0%) 1661 (100%) –

Count (proportion) is reported for binary variables

implies lung lesions from COVID-19 [28], elevated levels
of leukocytes suggest cytokine release syndrome caused
by SARS-CoV-2 virus [45], and lowered levels of serum
calcium signal higher rate of organ injury and septic
shock [44]. The agreement between our findings and
clinical observations offers credibility for the use of our
calculators to support clinical decision-making—although
they are not intended to substitute clinical diagnostic or
medical expertise.

When lab values are not available, the widely accepted
risk factors of age, oxygen saturation, temperature, and
heart rate become the key indicators for both risk
calculators. We observe that mortality risk is higher for male
patients (blue in Fig. 3b) than for female patients (red),
confirming clinical reports [21, 29]. An elevated respiratory
frequency becomes an important predictor of infection, as
reported in [55]. These findings suggest that demographics
and vitals provide valuable information in the absence of lab
values. However, when lab values are available, these other
features become secondary.

The timing of the clinical data, obtained from March
through May 2020, is relevant in considering the generaliz-
ability of the models. Various factors have affected COVID-
19 severity as the pandemic has continued to progress.

Treatment protocols, government policies, seasonal factors,
and the evolution of the virus itself all potentially contribute
to changes in risk determinants. In theory, the risk factors
identified in this paper may not generalize to broader popu-
lations (e.g., non-European populations, populations in the
Fall of 2020). However, our findings have been validated by
more recent studies, such as the 4C Mortality Score, which
also highlighted the importance of age, oxygen saturation,
and CRP in the classification of severe COVID-19 infec-
tions [24]. As a result, our proposed infection and mortality
models are relevant beyond the geographical limits of Italy
and Spain and beyond the critical months of March and
April 2020. More broadly, these recent results underscore
the importance of prospective validation of risk calculators
as we enter subsequent phases of the pandemic to assess
their ongoing applicability.

A limitation of the current mortality model is that it
does not take into account medication and treatments during
hospitalization. This is mainly due to the fact that, during
the first months of the COVID-19 pandemic, no systematic
treatment protocol had yet been established, and it was
therefore challenging to account for treatment effects in our
model. Accordingly, our objective in this paper is to uncover
the associations between patient characteristics and risk
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Fig. 3 SHapley Additive exPlanations (SHAP) importance plots for
the mortality and infection risk calculators. The five most important
features are shown for each model. Gender is a binary feature (female

is equal to 1, shown in red; male is equal to 0, shown in blue). Each row
represents the impact of a feature on the outcome, with higher SHAP
values indicating higher likelihood of a positive outcome

scores, without making claims related to causality. We have
addressed this limitation in later research, by leveraging data
on treatments to delineate the impact of medications at the
patient level 〈REF〉.3

Overall, we have developed data-driven calculators that
allow physicians and patients to assess mortality and
infection risks in order to guide care management—
especially with scarce healthcare resources. These tools
were developed in the early stages of the pandemic, to
support an initial pandemic response. As the pandemic
has progressed, testing has become more widespread and
affordable. Yet, reagent resources for Reverse Transcription
Polymerase Chain Reaction (RT-PCR) testing remain
relatively scarce, and the time frame to get RT-PCR results
ranges between 24 to 48 hours. Therefore, molecular
tests cannot be implemented at large scale in resource
constrained systems, let alone applied on a daily basis. In
such instances, our infection score can aid fast and effective
decision-making in clinical settings. In addition, testing

3Reference redacted for double blind review.

capacities remain even more limited in non-clinical settings.
Notably, our infection calculator has been employed by the
Banco de Credito del Peru, the largest bank in Peru, to
guide safety protocols for employees and work from home
policies. Finally, our mortality calculator remains useful as
one of the first models to synthesize clinical features into a
single risk score upon hospital admission. This calculator is
being used by several hospitals within the ASST Cremona
system to support triage and treatment decisions, ultimately
alleviating the toll of the pandemic.

4 Predictive and prescriptive analytics:
disease projections and government
response

We develop a new epidemiological model, called DEL-
PHI (Differential Equations Leads to Predictions of Hos-
pitalizations and Infections). The model first provides a
predictive tool to forecast the number of detected cases,
hospitalizations and deaths—we refer to this model as
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“DELPHI-pred”. It then provides a prescriptive tool to
simulate the effect of policy interventions and guide gov-
ernment response to the COVID-19 pandemic—we refer to
this model as “DELPHI-presc”. All models are fit in each
US state (plus the District of Columbia).

4.1 DELPHI-pred: projecting early spread of
COVID-19

4.1.1 Model development

DELPHI is a compartmental model, with dynamics
governed by ordinary differential equations. It extends the
standard SEIR model by defining 11 core states (Fig. 4):
susceptible (S), exposed (E), infectious (I ), undetected
people who will recover (UR) or decease (UD), detected
hospitalized people who will recover (DHR) or decease
(DHD), quarantined people who will recover (DQR) or
decease (DQD), recovered (R) and deceased (D). The
separation of the UR/UD , DQR/DQD and DHR/DHD

states enables separate independence in fitting recoveries
and deaths from the data. Further auxiliary states, including
Total Detected Cases (DT ) and Total Detected Deaths
(DD), are defined relative to the core states in order to
correspond to actual data.

As opposed to many other COVID-19 models [?[, see,
e.g.,]]kissler2020projecting, DELPHI captured two key
elements of the pandemic explicitly since its inception in
late March:

– Underdetection: Many cases remain undetected due
to limited testing, record failures, and detection errors.
Ignoring them would underestimate the scale of the
pandemic. We capture them through the UR and UD

states.
– Government Response: “Social distancing” policies

limit the spread of the virus. Ignoring them would
overestimate the spread of the pandemic. We model
them through a decline in the infection rate over time.
Specifically, we write: dS

dt
= −αγ (t)S(t)I (t), where α

is a constant baseline rate and γ (t) is a time-dependent

Fig. 4 Simplified flow diagram of DELPHI

function characterizing each state’s policies, modeled as
follows:

γ (t) = 2

π
arctan

(−(t − t0)

k

)
+ 1.

The inverse tangent function provides a concave-
convex relationship, capturing three phases of govern-
ment response. In Phase I, most activities continue
normally as people adjust their behavior. In Phase II,
the infection rate declines sharply as policies are imple-
mented. In Phase III, the decline in the infection rate
reaches saturation. The parameters t0 and k can be
respectively thought of as the median date and the
strength of the response.

Ultimately, DELPHI involves 13 parameters that define
the transition rates between the 11 states (details in
the Supplementary Materials). We calibrate six of the
biological parameters from our clinical outcomes database
(Section 2). The remaining 7 parameters are optimized
using constrained Nelder-Mead optimization [25] and trust-
region methods [6] by minimizing a weighted mean squared
error on detected cases and deaths:

Weighted MSE =
T∑

t=1

t · (
D̃T (t) − DT (t)

)2

+λ2 ·
T∑

t=1

t · (
D̃D(t) − DD(t)

)2
,

Where DT (t) is the historical detected cases for a region
on day t , D̃T (t) the predicted detected cases from DELPHI,
and similarly for DD(t) and D̃D(t) corresponding to
deaths. The historical data for the number of cases and
deaths per US county is taken from the New York Times

database [36]. The lambda factor λ = min
{

DT (T )
3·DD(T )

, 10
}

balances the fitting between detected cases and deaths; this
re-scaling coefficient was obtained experimentally. Each
state is included as soon as it records more than 100
cases so that isolated outbreaks are ignored. Every day as
new data becomes available, we reoptimize the parameters
while restricting the optimization range to be within 10%
of the current fitted parameters to ensure a smooth drift.
Further details on the fitting procedure are contained in the
Appendix.

4.1.2 Validation

DELPHI was created in late March and has been continu-
ously updated to reflect new observed data. Figure 5a shows
our projections made on three different dates, and compares
them against historical observations. This plot focuses on
the number of cases, but a similar plot for the number of
deaths is reported in the Appendix.
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Fig. 5 Projection accuracy for the United States

In addition to providing aggregate validation figures,
we also evaluate the model’s out-of-sample performance
quantitatively, using a backtesting procedure. To our
knowledge, this represents the first attempt to assess
the predictive performance of COVID-19 projections.
Specifically, we fit the model’s parameters using data up
to April 27, build projections from April 28 to May 12,
and evaluate the resulting Mean Absolute Percentage Error
(MAPE). Figure 5b reports the results in each US state.

Finally, we compare the predictions from the DELPHI
model to the one reported by benchmark models. For
obvious reasons, we restrict our attention to models
that were available early on in the pandemic, and for
which historical predictions are still publicly available.
Specifically, we consider the models from the Los Alamos
National Laboratory (LANL) [27] and Columbia University
(CU) [39]. Figure 5c reports the Mean Absolute Percentage
Error (MAPE) in the number of cases (averaged over all US

states) from the projections made at two different points in
time (April 03 and April 17, 2020) for different planning
horizons (1, 2, 3, 4 weeks).

4.1.3 Discussion and impact

Results suggest that DELPHI-pred achieves strong predic-
tive performance. The model has been consistently predict-
ing, with high accuracy the overall spread of the disease for
several weeks. Notably, DELPHI-pred was able to antici-
pate, as early as April 3rd, the dynamics of the pandemic in
the United States up to mid-May. At a time where 200,000–
300,000 cases were reported, the model was predicting
1.2M–1.4M cases by mid-May—a prediction that proved
accurate 40 days later. Note that, at the time, the DELPHI
model underpredicted the spread of the pandemic in May,
as compared to ex-post data. This is due to the fact that
early predictions were based on limited data and limited
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visibility into subsequent governmental policies. As the
pandemic progressed, the DELPHI model has been able to
address these limitations.

Our quantitative results confirm the visual evidence. The
MAPE is small across US states. The median MAPE is 8.5%
for the number of cases—the 10% and 90% percentiles are
equal to 1.9% and 16.7%. The median MAPE is 7.8% for the
number of deaths—the 10% and 90% percentiles are equal
to 3.3% and 25.1%. Given the high level of uncertainty and
variability in the disease’s spread, this level of accuracy is
suggestive of excellent out-of-sample performance.

This behavior is further confirmed when we compare
our MAPE to the two benchmark models. For almost
all targets, DELPHI outperforms both models, resulting
in lower MAPE—especially in the earliest phases of the
pandemic when data remained scarcely available.

As Fig. 5b shows, a limitation of our model is that the
relative error remains large for a small minority of US
states. These discrepancies stem from two main reasons.
First, errors are typically larger for states that have recorded
few cases (WY) or few deaths (AK, KS, NE). Like all
SEIR-derived models, DELPHI performs better on large
populations. Moreover, the MAPE metric emphasizes errors
on smaller population counts. Second, our model is fitted
at the state level, implicitly assuming that the spread of
the pandemic is independent from one state to another—
thus ignoring inter-state travel. This limitation helps
explain the above-median error in a few heartland states
which were confronted with the pandemic in later stages
(MN, TN, IA).

In summary, DELPHI-pred is a novel epidemiological
model of the pandemic that has provided high-quality
estimates of the daily number of cases and deaths per US
state since the early pandemic period. This model is one of
the top 5 consistent contributors to the forecasts used by the
US Center for Disease Control to chart and anticipate the
spread of the pandemic [42]. It has also been used by the
Hartford Healthcare system—the major hospital system in
Connecticut, US—to plan its ICU capacity, and by Janssen
Pharmaceuticals to design a vaccine distribution strategy for
their leading candidate Ad26.Cov2.S.

As the pandemic continued to spread throughout
the world, governments have enacted further measures,
including massive testing and contact-tracing efforts, while
clinical treatments have substantially improved. Therefore,
some of the assumptions included in the original DELPHI
model (such as a time-invariant detection and mortality
rates) have become increasingly untenable. Moreover, some
of the quantities estimated through the clinical databases
have become obsolete as the standard of care has improved.
Finally, the behavior of the population in response to
governments’ policies has also varied over time. In
response, we have since significantly updated the structure

of the DELPHI model and its empirical calibration, in order
to incorporate these dynamics 〈REF〉.4

4.2 DELPHI-presc: toward re-opening society

To inform the relaxation of social distancing policies, we
link policies to the infection rate using machine learning.
Specifically, we predict the values of γ (t), obtained from
the fitting procedure of DELPHI-pred. For simplicity and
interpretability, we consider a simple model based on
regression trees [5] and restrict the independent variables to
the policies in place. We classify policies based on whether
they restrict mass gatherings, school , travel and work
activities. We group travel and work restrictions together
as ”other” restrictions as they are most often implemented
simultaneously. Then, using such grouping, we define a
set of seven mutually exclusive and collectively exhaustive
policies observed in the US data: (i) No measure; (ii)
Restrict mass gatherings; (iii) Restrict others; (iv) Authorize
schools, restrict mass gatherings and others; (v) Restrict
mass gatherings and schools; (vi) Restrict mass gatherings,
schools and others; and (vii) Stay-at-home. The remaining
possible policies were not implemented. The classifier was
trained with policy data up till end of April so that the
assumption of increasing governmental intervention is still
valid. The regression tree is in the Supplementary materials,
obtained from state-level data in the United States (here
states include District of Columbia). This model achieves an
out-of-sample R2 of 0.8, suggesting a good fit to the data.

The key results for various policies are summarized in
Table 5. Policy (ii) and Policy (iv) are not shown in the
table as these policies were not collectively implemented
sufficiently to derive meaningful statistical inference.
“States” record the number of states that had implemented
the policy and “State-Days” record the total implemented
days across states. The residual infection rate is calculated
by normalizing the γ (t) under no policy to be 100%, while
the standard errors are given assuming each state as an
independent sample. We observe that tighter restrictions do
indeed generate larger reductions in the residual infection
rates. Furthermore, the results also provide comparisons
between various policies—for instance, although Other
(travel and work) restrictions seems to be able to effectively
reduce the infection rate by 33.2 ± 5.9% when applied
alone, its incremental effect after mass gathering and school
restrictions have been implemented is insignificant (5.7 ±
10.2%). This seems to imply a large overlap between the
behavior change caused by mass gathering and school
restrictions with Other restrictions, so that once mass
gathering and school restrictions are implemented, the effect
of further limiting travel and work is severely limited. These

4Reference redacted for double blind review.
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Table 5 Implementation length and effect of each policy category as implemented in the US

Restrictions States State-Days Residual Infection Rate

None 51 749 100%

Others 25 218 66.8 ± 5.9%

Mass Gathering and Schools 9 72 47.9 ± 9.0%

Mass Gathering, School, and Others 37 805 42.2 ± 4.8%

Stay-at-Home Order 39 1876 23.9 ± 4.0%

quantitative results allow us to predict the value of γ (t) as
a function of the policies (see Appendix for details), and
simulate the spread of the disease as states progressively
loosen social distancing policies.

Figure 6a plots the projected case count in the state of
New York (NY), for different policies (we report a similar
plot for the death count in the Appendix). Note that the
stringency of the policies has a significant impact on the
pandemic’s spread and ultimate toll. For instance, relaxing
all social distancing policies on May 12 can increase the
cumulative number of cases in NY by up to 25% by
September.

Using a similar nomenclature, Fig. 6b shows the case
count if all social distancing policies are relaxed on May 12
vs. May 26. Note that the timing of the policies also has a
strong impact: a two-week delay in re-opening society can
greatly reduce a resurgence in NY.

The road back to a new normal is not straightforward:
results suggest that the disease’s spread is highly sensitive
to both the intensity and the timing of social distancing poli-
cies. As governments grapple with an evolving pandemic,
DELPHI-presc can be a useful tool to explore alternative
scenarios and ensure that critical decisions are supported
with data. To further understand the disparate impact of the
policies across states, we made predictions for the situation
across the US assuming a policy that involves mass gath-
ering, travel, and work restrictions was implemented in all
states on June 16th. Figure 7 represents, for many states in
the US, the average weekly prevalence per 100K people in

the first two weeks of July against the total percentage of
detected cases among the population. One can observe three
distinct clusters of states:

– States with a small number of cumulative cases (relative
to the population), and that are in a late stage of
the pandemic with relatively few new cases, such as
California, Florida, Texas or West Virginia.

– States with a large number of cumulative cases, but
that are in a late stage of the pandemic, with relatively
few new cases, such as Connecticut, Louisiana,
Massachusetts or New York.

– States where the pandemic has had a large impact
with a large number of cumulative cases, and where
the situation will still be worsening at an alarming
rate. These include states like Illinois, Minnesota, Iowa
and Virginia. While the worst-case scenario shows a
maximum of 2-3% of the population being infected,
this suggests that for these particular states, such
hypothetical policy could be inadequate for controlling
the epidemic, and a stronger policy (such as Stay-at-
Home orders) is needed for a little more time.

5 Prescriptive analytics: ventilator allocation

COVID-19 is primarily an acute respiratory disease. The
World Health Organization recommends that patients with
oxygen saturation levels below 93% receive respiratory

Fig. 6 Reopening scenarios for New York
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Fig. 7 United States predictions
for mid-July under mass
gathering, travel and work
restrictions

support [52]. Following the standard Acute Respiratory Dis-
tress Syndrome protocol, COVID-19 patients are initially
put in the prone position and then put in a drug-induced
paralysis via a neuromuscular blockade to prevent lung
injury [10]. Patients are then put on a ventilator, which
delivers high concentrations of oxygen while removing
carbon dioxide [3]. Early evidence suggests that ventila-
tor intubation reduces the risk of hypoxia for COVID-19
patients [34].

As a result, hospitals have been facing ventilator
shortages worldwide [41]. Still, local shortages do not
necessarily imply global shortages. For instance, in April
2020, the total supply of ventilators in the United States
exceeded the projected demand from COVID-19 patients.
Ventilator shortages could thus be alleviated by pooling
the supply, i.e., by strategically allocating the surge supply
of ventilators from the federal government and facilitating
inter-state transfers of ventilators.

We propose an optimization model to support the
allocation of ventilators in a semi-collaborative setting
where resources can be shared both between healthcare
facilities or through a central authority. Based on its
primary motivation, we formulate the model to support
the management of the federal supply of ventilators and
inter-state ventilator transfers in the United States. A
similar model has also been used to support inter-hospital
transfers of ventilators. This model leverages the demand
projections from DELPHI-pred (Section 4) to prescribe
resource allocation recommendations—with the ultimate
goal of alleviating the health impact of the pandemic.

5.1 Model

Resource allocation is critical when clinical care depends on
scarce equipment, and the COVID-19 has therefore sparked

renewed interest in resource allocation problems [37]. In
particular, several studies have used optimization to support
ventilator pooling. In the context of influenza planning, [19]
proposed a time-independent model for stockpiling venti-
lators. For COVID-19, [33] developed a time-dependent
stochastic optimization model to support transfers to and
from the federal government, given scenarios regarding
the pandemic’s spread. Additionally, [1] and [4] proposed
simple network optimization models to evaluate policy sce-
narios in ventilator sharing. Optimization can also be used
to improve patient-level ventilator allocation decisions: for
instance, [14] proposed a simulation model to compare the
efficacy of respiratory medical interventions with different
invasiveness levels. In this section, we propose a determin-
istic time-dependent ventilator sharing model. As com-
pared to the earlier literature, our model optimizes both the
management of the federal stockpile as well as inter-state
transfers; allows each state’s fraction of pooled ventilators
to vary continuously over time as a function of the under-
lying dynamics of the pandemic; allows ventilators to be
shared proactively ahead of a state’s peak; and, most impor-
tantly, leverages the projections from DELPHI-pred as
inputs, thus bridging the gap from predictive to prescriptive
analytics.

We model ventilator pooling as a multi-period resource
allocation over S states and D days. The model takes as
input ventilator demand in state s and day d, denoted
as vs,d , as well as parameters capturing the surge supply
from the federal government and the extent of inter-state
collaboration. We formulate an optimization problem where
the key decisions are the number of ventilators transferred
from state s to state s′ on day d, and the number of
ventilators allocated from the federal government to state
s on day d. The problem has a multi-period network flow
structure with lead times, with additional problem-specific

267From predictions to prescriptions: A data-driven response to COVID-19



Fig. 8 The edge of optimization to eliminate ventilator shortages

constraints: for instance, we do not allow states currently
facing shortages to ship out ventilators.

We propose a bi-objective formulation. The first objec-
tive is to minimize ventilator-day shortages; for robustness,
we consider both projected shortages (based on demand
forecasts) and worst-case shortages (including a buffer in
the demand estimates). The second objective is to minimize

inter-state transfers, to limit the operational and politi-
cal costs of inter-state coordination. Mixed-integer opti-
mization provides modeling flexibility to capture spatial-
temporal dynamics and the trade-offs between these var-
ious objectives. We report the full mathematical formu-
lation of the model, along with the key assumptions, in
the Appendix.
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5.2 Results

We implemented the model on April 15, a time of pressing
ventilator need in the United States. We estimate the
number of hospitalizations from DELPHI-pred as the sum
of DHR and DHD . From our clinical outcomes database in
Section 2, we estimate that 25% of hospitalized patients are
put on a ventilator, which we use to estimate the demand for
ventilators. We also obtain the average length of stay from
our clinical outcomes database (Table 2).

Figure 8a shows the evolution of ventilator shortages
with and without ventilator transfers from the federal gov-
ernment and inter-state transfers. These results indicate that
ventilator pooling can rapidly eliminate all ventilator short-
ages. Figure 8c shows ventilator transfers recommended
in the US Northeast on April 15 (with inter-state transfers
only), overlaid on a map displaying the predicted shortage
without transfers.

There are different pathways toward eliminating ven-
tilator shortages. Figure 8b shows the trade-off between
shortages and transfer distance—each line corresponds to
the maximal fraction of its own ventilators that each state
can pool. Overall, states do not have to share more than
10% of their supply at any time to efficiently eliminate
shortages. States can largely meet their needs with help
from neighboring states, with cross-country transfers only
used as a last resort. Broadly, results underscore trade-offs
between ventilator shortages, the extent of inter-state trans-
fers, the number of ventilators allocated from the federal
government, and the robustness of the solution.

For instance, Fig. 9 shows the Pareto frontier between
the model’s two objectives, inter-state transfer distance and
ventilator shortage, as a function of two model parameters:
α (capturing the demand buffer that states would like to
plan for) and a surge supply multiplier (capturing by how
much the federal government’s ventilator supply varies from

our estimates). Note that the buffer α does not impact the
number of inter-state transfers and the amount of ventilator
shortages too significantly, suggesting that the solution can
be made robust at a limited overall cost. In contrast, as the
surge supply is decreased, the number of required ventilator
transfers and the amount of ventilator shortages increase—
highlighting the need for stronger cooperation between
states as federal supply drops.

5.3 Discussion and impact

Our main insight is that ventilator shortages could be
eliminated altogether through inter-state transfers and
strategic management of the federal supply. Results also
underscore (i) the benefits of inter-state coordination and (ii)
the benefits of early coordination. First, ventilator shortages
can be eliminated through inter-state transfers alone:
leveraging a surge supply from the federal government is
not required, though it may reduce inter-state transfers.
Under our recommendation, the most pronounced transfers
occur from states facing no shortages (Ohio, Pennsylvania,
and North Carolina) to states facing strong shortages (New
York, New Jersey). Second, most transfers occur in the early
stages of the pandemic. This underscores the benefits of
leveraging a predictive model like DELPHI-pred to align
the ventilator supply with demand projections as early as
possible.

We have developed a similar model to support the re-
distribution of ventilators across hospitals within the Hart-
ford HealthCare system in Connecticut—using county-level
forecasts of ventilator demand obtained from DELPHI-
pred. This model was used by Hartford HealthCare to align
ventilator supply with projected demand at a time where the
pandemic was on the rise.

Looking ahead, the model provides a methodology to
recommend allocations of critical resources in the next
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phases of the pandemic, from ventilators to drugs to
personal protective equipment. Since epidemics do not peak
in each state at the same time, states whose infection peak
has already passed or lies weeks ahead can help other
states facing immediate shortages at little costs to their
constituents. Inter-state transfers of ventilators occurred in
isolated fashion through April 2020; our model proposes an
automated decision-making tool to support these decisions
systematically. As our results show, proactive coordination
and resource pooling can significantly reduce shortages—
thus increasing the number of patients that can be treated
without resorting to extreme clinical recourse with side
effects (such as splitting ventilators). Other ventilator
sharing studies, including [1], [4], and [33], come to similar
conclusions despite differences in modeling assumptions.
Though the exact nature of the best ventilator sharing
policy can be debated, our results confirm that even simple
collaboration policies can alleviate, or even eliminate,
ventilator shortages.

6 Conclusion

This paper proposes a comprehensive data-driven approach
to address several core challenges faced by healthcare
providers and policy makers in the midst of the COVID-
19 pandemic. We have gathered and aggregated data from
hundreds of clinical studies, electronic health records, and
census reports. We have developed descriptive, predictive
and prescriptive models, combining methods from machine
learning, epidemiology, and mixed-integer optimization.
Results provide insights on the clinical aspects of the
disease, on patients’ infection and mortality risks, on the
dynamics of the pandemic, and on the levers that policy
makers and healthcare providers can use to alleviate its
toll. The models developed in this paper also yield decision
support tools that have been deployed on our dedicated
website and that are actively being used by several hospitals,
companies and policy makers.
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