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HERVs establish a distinct molecular subtype in stage II/III
colorectal cancer with poor outcome
Mahdi Golkaram 1,5, Michael L. Salmans1,5, Shannon Kaplan 1,5, Raakhee Vijayaraghavan1, Marta Martins 2, Nafeesa Khan1,
Cassandra Garbutt1, Aaron Wise1, Joyee Yao1, Sandra Casimiro2, Catarina Abreu3, Daniela Macedo3, Ana Lúcia Costa3, Cecília Alvim3,
André Mansinho2,3, Pedro Filipe3, Pedro Marques da Costa3,4, Afonso Fernandes2, Paula Borralho4, Cristina Ferreira3, Fernando Aldeia3,
João Malaquias3, Jim Godsey1, Alex So1, Traci Pawlowski1, Luis Costa2,3✉, Shile Zhang1✉ and Li Liu1✉

Colorectal cancer (CRC) is one of the most lethal malignancies. The extreme heterogeneity in survival rate is driving the need for
new prognostic biomarkers. Human endogenous retroviruses (hERVs) have been suggested to influence tumor progression,
oncogenesis and elicit an immune response. We examined multiple next-generation sequencing (NGS)-derived biomarkers in 114
CRC patients with paired whole-exome and whole-transcriptome sequencing (WES and WTS, respectively). First, we demonstrate
that the median expression of hERVs can serve as a potential biomarker for prognosis, relapse, and resistance to chemotherapy in
stage II and III CRC. We show that hERV expression and CD8+ tumor-infiltrating T-lymphocytes (TILs) synergistically stratify overall
and relapse-free survival (OS and RFS): the median OS of the CD8-/hERV+ subgroup was 29.8 months compared with 37.5 months
for other subgroups (HR= 4.4, log-rank P < 0.001). Combing NGS-based biomarkers (hERV/CD8 status) with clinicopathological
factors provided a better prediction of patient survival compared to clinicopathological factors alone. Moreover, we explored the
association between genomic and transcriptomic features of tumors with high hERV expression and establish this subtype as
distinct from previously described consensus molecular subtypes of CRC. Overall, our results underscore a previously unknown role
for hERVs in leading to a more aggressive subtype of CRC.
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INTRODUCTION
Colorectal cancer represents one of the most commonly
diagnosed cancers worldwide and the second leading cause of
cancer death in western countries1. While the clinicopathological
(CP) features such as tumor grade and stage, tumor-node-
metastasis (TNM) staging, lymph node (LN) involvement (pN0-
pN2) are well-established biomarkers of poor prognosis2,3, the
significance of molecular and cellular markers is not well
demonstrated in a clinical setting. Among several genomic
features of CRC, RAS mutations represent the first biomarker
integrated into clinical practice for CRC for negative predictive
response to EGFR targeted therapy4. Likewise, patients with BRAF
mutations exhibit a poor prognosis4, while PIK3CA and PTEN
mutant CRC patients develop resistance to first-line chemotherapy
and anti-PD-1 and anti-CTLA-4 antibody-based immunotherapies,
respectively5,6. Lynch syndrome, which is caused by a mutation in
the MLH1, MSH2, MSH6, or PMS2 genes, greatly increases the risk of
colorectal and endometrial cancers7. Recently, genome- and
exome-wide biomarkers have been introduced, with microsatellite
instability (MSI) as the first pan-cancer biomarker for response to
immune checkpoint inhibitor (ICI)8,9. In addition, recent studies
have established gene expression-based CRC classifications as
robust predictors of clinical outcome10,11.
HERVs compose a family of retrotransposons constituting about

1–8% of the human genome12. HERVs possess similar genomic
structure to exogenous retroviruses such as human immunodefi-
ciency virus (HIV) and human T-cell leukemia virus (HTLV), and are
composed of gag, pol, and env regions between two long terminal
repeats (LTRs)12. While representing footprints of previous viral

infections, most hERVs are transcriptionally inactive; however, several
recent studies have demonstrated that epigenomic modification can
reactivate this family of genes13. There have been several functions
attributed to hERVs such as regulating the development of human
embryonic stem cells14 and involvement in a wide variety of
infections15,16, autoimmune disease17, and carcinogenesis through
transactivation of proto-oncogenes18–21. Several models have been
proposed to explain hERV mediated cancer progression suggesting
hERVs are potentially oncogenic, although the causative role of
hERVs in cancer is controversial20. Thus, we wanted to determine
whether hERVs are implicated in CRC, and if so, elucidate the utility
of hERVs as a potential biomarker of clinical outcome.
We used whole-exome and whole-transcriptome sequencing

(WES/WTS) to evaluate 114 patients with CRC. We determined that
hERV expression defined a previously unknown molecular subtype
of CRC. We established that this novel molecular subtype was
independent of previously characterized consensus molecular
subtypes (CMS) of CRC. Finally, we show that hERV expression in
combination with absolute CD8+ TIL concentration can predict
prognosis, relapse, and resistance to chemotherapy more
effectively than previously proposed correlates of CRC outcome.
In cancer cells, active hERV expression may promote an innate
immune response that enables immuno-therapy for treatment20.

RESULTS
Study design
In total, 114 patients with stage II and III CRC were selected
with an equal proportion of microsatellite instability high/stable
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(MSI-H/MSS) tumors as measured with MSI-PCR (see “Methods”).
Table 1 summarizes the CP characteristics of the cohort. All
patients were diagnosed with CRC, followed at the Oncology
Division of Hospital de Santa Maria, Lisbon, and treated as per
institutional clinical practice in accordance to international guide-
lines, namely ESMO and NCCN guidelines22–24. We performed WES
for paired tumor and normal tissues as well as WTS on the tumor
tissue for all patients (see “Methods” and Supplementary Data 1
and 2). One patient was excluded due to the low alignment rate of
WTS reads.
We first compiled a list of hERVs and retrotransposon associated

sequences from previous published studies25,26, and built a
customized reference by appending the new reference to the
human genome (hg19) reference built as previously described25.
Next, we bioinformatically quantified the expression of different
hERV sequences by aligning WTS reads to the new reference (see
“Methods” and Supplementary Data 3). The results illustrated that
hERVs are constitutively expressed in most CRC tumor tissues, with
some patient tumor tissues exhibiting relatively higher expression
of hERVs (Supplementary Fig. 1). HERV expression was confirmed
by digital PCR on a subset of hERVs with variable expression across
the patient cohort (Supplementary Fig. 2).

Impact of hERV expression on immunophenotype landscape
Previous studies reported strong immunogenicity of hERVs both
in vitro and in vivo27–30. To profile TIL pattern of CRC and potential
association between hERV expression and TILs, we developed a
novel immune cell-deconvolution method, Fractional Recovery of
Immune Cell Types in Oncology NGS (FRICTION, see “Methods”
and Fig. 1a). In contrast to Newman et al.31, but similar to Racle
et al.32, we focused on the deconvolution of absolute cell fraction.
This is enabled by our gene selection procedure, as well as our
feature normalization that places each of our cell-type signatures
on the same scale. We validated FRICTION on several tumor types
(including colon) using immune cell input titration (Supplemen-
tary Fig. 3 and Fig. 1b). Overall, we showed that FRICTION is able to
accurately estimate immune cell infiltration using WTS of bulk
tumor tissues. We applied FRICTION to the WTS data we generated
for this cohort, enabling accurate measurement of absolute
concentrations of CD8+, CD4+, and CD19+ TILs (Supplementary
Data 4 and 5). Most hERVs showed a high association with TILs
(Fig. 1c, d) suggesting hERVs confer immunogenicity, confirming
previous findings27–30. As expected, tumor purity and immune

infiltration were inversely correlated (Spearman correlation=
−0.25, P= 0.0087). However, median hERV was not correlated
with tumor purity (Spearman correlation= 0.07, P= 0.47). More-
over, there was a high correlation between hERVs within each
patient (Fig. 1e) as well as between patients for each hERV (Fig. 1f),
indicating high similarity in their expression profile and regulation.
Interestingly, hierarchical clustering pinpointed two prominent
clusters of patients based on hERVs implying potential distinct
phenotypes (Fig. 1e, f). While none of the CP factors showed
significant over-representation in either of these clusters, there
was a significant difference in the median expression of all hERVs
(median.hERV) between the two clusters (Mann–Whitney U-test,
P= 1.19 × 10−10). As expected, higher median.hERV was accom-
panied by higher CD8+ T-cell infiltration (Mann–Whitney U-test,
P= 1.6 × 10−5) (Fig. 1g). We also explored whether MSI status
could predict lymphocyte infiltration. MSI-H patients had sig-
nificantly higher activated immune cell signatures such as CTL and
effector T-cell score, but not absolute CD8+ T-cell concentration
(Supplementary Fig. 4). In addition, MSI, TMB, and HLA diversity
scores33 were independent of immune or hERV-related features
(Fig. 1c and Supplementary Data 6).

Assessment of hERVs as a potential biomarker in CRC
Next we looked at disease outcome. The two classes identified by
unsupervised hierarchical clustering strongly stratified patients’
survival in a univariate analysis. This suggests that the cluster with
higher median.hERV entails worse prognosis (Fig. 1h, OS-RFS log-
rank P= 0.070–0.034, HR= 2.16–4.33). Hence, we hypothesized
hERV expression is a potential biomarker in CRC. As shown in
Fig. 1f, the majority of hERV loci are co-expressed and therefore,
median.hERV is highly correlated with general hERV expression
throughout the genome. Previous studies34,35 have highlighted
the expression of young HERV-H loci in the course of colorectal
carcinoma. Although a more specialized panel of hERV loci may
render a higher discriminatory power compared a genome-wise
approach such as median hERV expression (Supplementary
Fig. 5), selection of only a subset of hERVs is less robust, more
sensitive to measurement noise, might be patient specific, and
requires larger cohorts to avoid overfitting and rendering
reproducibility in separate validation cohorts. Besides, loci specific
activation might vary between cancer types. On the contrary,
median hERV, analogous to other genome-wide markers such as
TMB and MSI, can potentially serve as a pan-cancer biomarker for
patient selection (this remains to be explored in the future
studies). As median.hERV is a robust measure of hERV activation
per tumor tissue, it can be utilized as a representative biomarker
(see “Methods”). To demonstrate the utility of median.hERV, we
compared the predictive power of median.hERV with other
previously described biomarkers. We assessed the impact of other
CP, genomics and transcriptomics factors on patients’ survival by
discretizing continuous features using a top 30% threshold of the
distribution per factor (Supplementary Fig. 5). Notably, we
evaluated several potential biomarkers recently proposed to be
predictive of response to ICIs, to evaluate whether they can also
stratify patients’ response to adjuvant chemotherapy. Potential
biomarkers evaluated included expression of FOXP3 (or Treg
gene signature), IFNG (or activated TIL signatures), MSI, PD(L)136,
and HLA diversity score33. Several factors showed a strong
predictive power in both univariate and multivariate analysis
including stage, metastasis status, MSI, adjuvant treatment,
sidedness, but not ICI-specific biomarkers as expected. Interest-
ingly, both CD8+ and median.hERV were strong predictors of
clinical outcome in a multivariate analysis (Fig. 2). We performed
similar univariate survival analysis for each specific hERV and
illustrated that most hERVs were capable of stratifying patients’
overall survival (OS) (HR ranging from 0.25 to >1); most hERVs
were associated with a poor prognosis (Supplementary Fig. 6a).

Table 1. Cohort summary.

MSI MSH MSS

Number of patients 56 57

Median age (years) 74.5 66

Stage II: 33 35

Adjuvant chemoa 7/33 7/35

Stage III: 23 22

Adjuvant chemob 14/23 14/22

Right side 48 25

Left side 7 26

Sidedness Right Left Other

Number of patients 73 33 7

Stage II III Other

Number of patients 68 45 0

aThe total number of stage II patients who received adjuvant chemother-
apy compared to the total number of patients in each MSI group.
bThe total number of stage III patients who received adjuvant chemother-
apy compared to the total number of patients in each MSI group.
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Median age of MSI-H and MSS patients were 74.5 and 66 years
old, respectively. Due to the correlation between age and MSI
status, we also have included age as a confounder in our multi-
factorial survival analysis model which as expected, demonstrated
a poor clinical outcome in older patients. However, we did not see

a significant correlation between age and median.hERV (Pearson
R=−0.12, P= 0.18) or CD8+ level (Pearson R= 0.1, P= 0.2). The
age difference between CD8+ (median age= 69.5 years) and CD8
− (median age= 71 years) patients was negligible. We observed
patients with higher median.hERV are mainly observed in younger
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patients (median age= 67.5 years) compared to older patients
(median age= 73 years old).
Previous studies reported patients with higher CD8+ TILs have

favorable prognosis37, and similar observations were obtained in the
multivariate analysis of this cohort (Fig. 2). Our analysis also showed a
positive association between CD19+ TILs and survival in a
multivariate analysis. However, since CD8+ TIL concentration was
a stronger predictor of survival, we focused on this cell type. Inspired
by immunogenicity of hERVs, we hypothesized patients with low
CD8+ TILs but high hERV expression (CD8−/hERV+) would
constitute a subtype with poor prognosis. Indeed, we observed a
strong stratification with this subgroup in terms of both OS and RFS
(see “Methods” for OS and RFS calculations) such that the median OS
(RFS) of CD8−/hERV+ subgroup is 29.8 (19.7) months compared
with 37.5 (32.8) months for other subgroups (HR= 4.4, log-rank P<
0.001). This suggests that the CD8+ TIL concentration and hERV
expression can be used synergistically to predict clinical outcome
(Fig. 1i and Supplementary Fig. 6b). Furthermore, after stratifying
patients by high or low median.hERV comparison of patients who
received adjuvant chemotherapy or no adjuvant treatment, revealed
a strong benefit of adjuvant chemotherapy only in patients with low
median.hERV (Fig. 3a, b). Importantly, this suggests that hERV can
induce resistance to adjuvant chemotherapy.

Association between hERVs and consensus molecular
subtypes
It is worth noting that despite several lines of evidence supporting
that genomic and transcriptomic biomarkers have predictive and

prognostic power, none of these signatures are currently
employed in routine clinical use in the context of CRC3. As
previously shown in this study, age, stage, and sidedness could
guide clinicians for therapy selection and avoid over-treatment.
For example, Fig. 3c, d exhibit patients with favorable CP factors—
defined as clinicopathological+ (i.e. young patients with stage II
left sided/rectal CRC), could be treated differently than others (OS
log-rank P= 0.037, HR= 0.16). However, CD8−/hERV+ biomarker
can further stratify the subgroup with poor clinical outcome, i.e.
clinicopathological- (OS log-rank P < 0.001, HR= 0.07, Fig. 3e, f). In
Fig. 3e, f, the CD8−/hERV+ subgroup is labeled as WTS− as
opposed to WTS+ which composes CD8+/hERV+, CD8−/hERV−,
and CD8+/hERV− subgroups.
To this end, an international consortium that included a panel

of expert research groups proposed a CMS classification to
facilitate the clinical translation of colorectal cancer subtyping10.
Hence, we sought to elucidate if the CD8−/hERV+ subtype was
within a specific previously known CMS. Using the pretrained
random forest model38, we classified each patient into CMS1-4
based on gene expression profile of tumor samples: 6 out of 113
patients could not be classified into any class, while others were
uniquely classified. FDR < 0.05, Fig. 4a. Note that since the 113
patients enrolled in this study were selected to attain an equal
MSI/MSS ratio, the proportions labeled as CMS1-4 differ from other
studies that are representative of CRC. By performing one-versus-
others differential gene expression analysis (U-test FDR < 0.01,
Fig. 4b), we observed several hERVs to be over-expressed in CMS1
and 2 but not 3 and 4. Nevertheless, we could measure the
expression of hERVs across all subtypes CMS1-4.

Fig. 1 Immune characteristic and prognostic power of hERVs in CRC. a Schematic of immune cell deconvolution using FRICTION. b Immune
cell input titration shows high accuracy of FRICTION in predicting CD8+, CD4+, and CD19+ immune cells using WTS data from fresh frozen
tissues. c Heatmap illustrates the Spearman correlation between different immune related features. TILs are closely related to hERV expression
demonstrating the immunogenicity of hERVs. High association between CD8+ T cells, Treg and PD1 indicates exhaustion CD8+ T cells in most
patients. d Correlation of each individual hERVs transcripts with TILs and median.hERV. e Spearman correlation for each patient across hERVs.
f Spearman correlation of hERVs across patients. g Two distinct classes of hERVs are associated with low and high median.hERV and CD8+ TIL.
h Kaplan–Meyer curves of OS and RFS of patients stratified based on clusters obtained from hierarchical clustering in (e). cluster 1 (i.e. median.
hERVlow) demonstrates a significantly better outcome compared to cluster 2 (i.e. median.hERVhigh). i Kaplan–Meier curves of OS and RFS for
each group with respect to CD8+ and median.hERV status (log-rank P values are shown). The black lines in the “middle” of the boxes are the
median values for each group. The vertical size of the boxes illustrates the interquartile range (IQR). Whiskers represent 1.5 IQR.

Fig. 2 Univariate and multivariate survival analysis. OS overall survival.
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In parallel, we performed WES of all 113 tumors to explore the
genomic characterization of each CMS. Mutational profile analysis
showed (Fig. 4c) enrichment of APCmut, TP53mut, and KRASmut in
CMS2-4 but not CMS1. Conversely, ATMmut and BRAFmut were over-
represented in CMS1 but not in CMS2-4. The frequency of each
driver mutation for this cohort is shown in Supplementary Fig. 7a.
We also investigated the frequency of arm-level deletion and
amplification events (Chromosomal Instability, CIN) and observed
CMS2 is strikingly associated with CINhigh while CMS3–4 show
CINmedium and CMS1 is CINstable (Fig. 4c and Supplementary Fig.
7b, c). As expected, 18q and 17p loss of heterozygosity (LOH) were
common across patients. Likewise, we detected a similar pattern

for gene deletion and amplification events occurring primarily in
CMS2 (Supplementary Fig. 6d, e). Previous studies suggested
CMS1 and CMS2 to be associated with MSI-H and MSS phenotypes
while CMS3–4 consist of a mixed MSS/MSI-H phenotype10. We
determined the MSI status of each patient using WES and
confirmed previous findings (Fig. 4c). The high frequency of BRAF
p.V600E mutation in CMS1 points to a sporadic MSI-H phenotype.
As a result, we hypothesized this CMS1 MSI-H phenotype differs
from CMS3–4.
Following NCCN guidelines39 (Supplementary Fig. 8), we

developed an algorithm to determine whether CMS3–4 are
germline driven and associated with Lynch Syndrome (LS)

Fig. 3 Clinical relevance of hERV and CD8+ TIL biomarkers. Kaplan–Meier curves of OS and RFS for each group are shown. a, b Patients with
high median.hERV develop resistance to chemotherapy. c, d Clinicopathological factors can predict survival outcome. clinicopathological− is
defined as patients with unfavorable age (top 30%), or stage (III), or sidedness status (right). e, f Incorporating median.hERV and CD8+
biomarkers can further stratify patients with poor clinical outcome (log-rank P values are shown). CD8−/hERV+ subgroup is labeled as WTS−
as opposed to WTS+ which composes CD8+/hERV+, CD8−/hERV−, and CD8+/hERV− subgroups.
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phenotype. We identified the LS status of patients by performing
ultra-deep sequencing of tumor samples on TruSight™ Oncology
500 (TSO500)—a research target enrichment sequencing assay
that enables comprehensive genomic profiling and measures
tumor mutation burden (TMB) and microsatellite instability (MSI)
(Fig. 4c, Supplementary Data 7). Notably, we classified 13 patients
to have potential Lynch syndrome. Interestingly, we observed a
strong enrichment of LS in CMS3/4 subtypes suggesting that MSI-
H patients in CMS3/4 form a distinct type of MSI-H from CMS1
(proportion test, P= 0.03). Note that LS patients in CMS2 subtype
are all MSS while all patients with a positive Lynch syndrome
status in CMS3/4 are also MSI-H suggesting that MSI-H phenotype
in CMS3/4 could be primarily driven by Lynch syndrome and tend
to be associated with germline mutations than the sporadic
mutations observed in elderlies with CMS1 of CRC. LS status
predicted from tumor only sequencing was in high agreement
with matched normal sequencing to confirm germline variants,
with a positive percent agreement (PPA) of 100% (95% CI:
75.3–100%) and a negative percent agreement (NPA) of 98.2%
(95% CI: 93.6–99.8%). LS has also been attributed to favorable
survival outcome40. Thus, we asked whether CMS3/4 patients
should further be subcategorized with respect to the LS status of
patients. Within CMS3/4 patients, survival analysis showed
patients with LS have a favorable prognosis compared with
others (Supplementary Fig. 9a, b); this effect was not statistically
significant, which was attributed to the low number of LS patients
(OS: HR= 0.3, CI 0.04–2.35, P= 0.22).
Comparison of biomarker status between different analysis

approaches revealed that MSI status of all patients matched

between MSI-PCR, WES, and TSO500. Similarly, TMB estimations
were highly concordant between TSO500 and WES (Supplemen-
tary Fig. 10). All patients with a high TMB were also MSI-H with the
exception of one MSS patient with a POLE mutation. This rare
mutation has previously been ascribed to a defective DNA repair
mechanism, which explains high TMB phenotype and can be
associated with a better clinical outcome41 and favorable response
to ICI42. In addition, using WTS, we found three patients with
actionable fusions, one NTRK1-LMNA (CMS1), one ALK-EML4
(CMS1), and one BRAF-ZFP64 (CMS4). A RSPO2-MATN2 fusion, a
potential drug target, was also detected in one CMS1 patient.
Taken together, we further define genomic features of each CMS
and highlight the value of paired whole exome (or targeted panel)
with transcriptome sequencing in facilitating clinical guidance.
Each CMS has been attributed to distinct pathological groups10.

Enrichment analysis (Fig. 4d) confirmed previous findings that
CMS1 is related to immune active (high IFNG and CTL scores)
while CMS4 is immune suppressed (high Treg score measured by
FOXP3 expression). We observed enrichment of CMS1 in older
patients which could be explained by the sporadic MSI-H
phenotype in CMS1. In addition, CMS1 was over-represented in
right-sided CRC patients in contrast to left-sidedness of CMS2.
CMS4 was associated with stage III and younger CRC patients.
Finally, CMS2 showed the highest ploidy and with CMS3
represented the highest intra-tumoral heterogeneity as measured
by mutant-allele tumor heterogeneity (MATH score)43. However,
none of the analyzed genomic features showed an enrichment in
median.hERVhigh/low groups suggesting that hERV activation is an

Fig. 4 HERVs establish a distinct molecular subtype in CRC. a CMS classification defines CMS1-4 for patients in this cohort. b hERVs are
abundant in all CMSs. Heatmaps in a and b represent Z-scores for genes with FDR < 0.05 and FDR < 0.01. c Mutational and copy number
profile, MSI and LS status for each CMS observed in this cohort. d Enrichment analysis portraits clinicopathological and immuno-phenotypical
characteristic of each CMS. e Heatmap shows the frequency of each gene mutations per CD8/hERV subgroup. f Kaplan–Meier curves of RFS for
each group are shown. Incorporation of median.hERV into CMS classification boosts the predictive power CMS (log-rank P values are shown).
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event independent of known cancer driver mutations and possibly
associated with epigenomic modification13 (Fig. 4d and e).
Other studies used CMS classification to predict CRC-related

survival and showed that CMS4 confers the worst outcome which
was confirmed in our cohort even though this stratification did not
reach a statistical significance (OS-RFS: log-rank P= 0.2–0.19 > 0.1).
However, incorporating median.hERVhigh subtyping dramatically
improved CMS classification suggesting that the median.hERVhigh

is an independent molecular subtype and can confound previous
CMS classifications (Fig. 4f and Supplementary Fig. 11). The lack of
enrichment of median.hERVhigh subtype in any of CMSs (Fig. 4d)
further recognized median.hERVhigh subtype as an important
previously unappreciated CRC subtype. All in all, we demonstrated
median.hERVhigh subtype together with CMS4 have the worst
survival in terms of both OS and RFS (OS-RFS: log-rank P=
0.014–0.006, Fig. 5a, b). Besides, exploratory analysis of previous
trials such as FIRE-3 trial (first-line therapy with FOLFIRI44 plus
either cetuximab or bevacizumab in 592 KRAS exon 2 wild-type
metastatic CRC patients) and CALGB/SWOG 8040545 (a phase III
trial that compared the addition of bevacizumab or cetuximab to
infusional fluorouracil, leucovorin, and oxaliplatin or fluorouracil,
leucovorin, and irinotecan as first-line treatment of advanced
CRC), showed CMS classification is prognostic for mCRC; however,
at present time has no direct impact on clinical decision-making
and may need further refinement. Therefore, we propose the
addition of median.hERVhigh subtype of CRC to CMS can facilitate
clinical decision-making and improve CMS classification for
patient selection.

DISCUSSION
In this study, we introduced hERVs as a potential biomarker for
survival, relapse, and resistance to adjuvant chemotherapy and
showed CRC patients with high median.hERV can succumb to
metastatic disease. Moreover, our results illustrated that hERV
expression can identify a novel, previously overlooked CMS which
together with CMS1-4 can improve CRC classification. Whether the
expression of hERVs is a cause or consequence of oncogenesis is
out of the scope of this study. We demonstrated that hERV
expression can be utilized as a potential biomarker of poor
prognosis and can also inform physicians of unfavorable
responses to adjuvant chemotherapy prior to treatment. Previous
studies have shown the importance of hERV expression as a
potential biomarker in anti-PD1 antibody-based ICI adjuvant
treatment of clear cell renal cell carcinoma25. The expression of
hERVs have been reported across pan-cancers46, and immuno-
genicity of hERVs has been well-documented both in vitro and
in vivo27–30. Here, we also showed patients expressing high
amounts of hERV might not be responsive to chemotherapy and
exhibit poor clinical outcome. These patients could benefit from
ICIs since blocking immune checkpoint molecules can reinvigorate
the immune system targeting hERV expressing tumor cells.
Interestingly, we observed a high correlation between median.
hERV and several checkpoint molecules including PD(L)1, CTLA4,
TIM3, and LAG3 (Supplementary Data 8). Currently, ICI is the
approved treatment for patients with unstable microsatellite
status (MSI-H); however, MSI-H status encompasses only roughly
15% of CRC patients. Our study suggests that 30% of MSS patients
would potentially benefit from ICI or epigenetic-based therapies

Fig. 5 New proposed CMS classification. a, b Kaplan–Meier curves of OS and RFS for each group are shown. CMS4 and median.hERVhigh

independently indicate different groups with poor prognosis (log-rank P values are shown).

M. Golkaram et al.

7

Published in partnership with CEGMR, King Abdulaziz University npj Genomic Medicine (2021)    13 



alone or in combination with ICI. This percentage increases when
a less stringent hERVhigh threshold is set. The CpG island
methylator phenotype (CIMP) status can further accommodate
therapeutic selection, specifically for epigenetic-based therapies;
however, we did not have CIMP status of the patients in this
cohort due to the unavailability of the patient methylation data.
Nevertheless, previous studies10 showed a significant association
between CMS1 and CMS3 with CIMP-high and CIMP-low while
CIMP-negative phenotype is mainly enriched in CMS2 and CMS4.
Therefore, using our WTS data generated and the obtained CMS
classifications, we can estimate CIMP status of each patient. The
potential benefit of such therapeutics must be further explored in
future studies. Future studies can further evaluate hERV as a
biomarker for ICI treatment selection across pan-cancers by
evaluating patients’ response to ICI in non-MSI-H and not Pol-
mutated patients.

METHODS
Cohort characteristics
We pseudo-randomized a cohort composed of 114 patients with stage II/III
colorectal cancer such that CP factors with significant impact on survival
outcome (e.g., treatment, stage, sex, and MSI status) are balanced. Previous
studies47 have shown several proposed biomarkers are confounded by
other clinicopathological factors, e.g., MSI status, the stage and the sex of
patients. Therefore, it is necessary to balance these factors to account for
confounders. Although our cohort characteristic might not be representa-
tive of other observed CRC cohorts, pseudo-randomization is a statistically
sound approach to balance potential confounders. Also note that due to
the low frequency of MSI-H occurrence in CRC (~15%), we would have
missed potential associations of our discovered biomarkers with MSI status
which further motivated us to select a larger fraction of MSI-H patients in
this study. One patient (CR698) was excluded due to low WTS alignment
rate (N= 113). Cases were staged according to The American Joint
Committee on Cancer (AJCC) staging system, 8th edition48. In the entire
cohort, median (interquartile range [IQR]) age was 71 (69–76) years; 70
patients were female; and 68/114 (59.5%) and 45/114 (39.5%) patients
were diagnosed with stage II and III CRC according to AJCC, respectively.
Patients had not previously received neoadjuvant chemo or radiotherapy
(only 2 rectal cases were included in this cohort). A total of 17/45 (37.8%)
stage III patients did not receive adjuvant chemotherapy (11 were above
70 years) and 14/68 (20.6%) stage II patients received adjuvant
chemotherapy. Selected chemotherapy regimens included FOLFOX or
Capecitabine22,23. Stage II patients have indication for adjuvant che-
motherapy if additional risk factors are present, whereas for stage III
patients, adjuvant chemotherapy is the standard-of-care bellow the age of
70 unless other comorbidities preclude this indication. The study was
approved by the ethics committee from Hospital de Santa Maria, Centro
Hospitalar Universitário Lisboa Norte (Lisbon, Portugal) and all patients
provided signed informed consent.

Survival analysis
We defined relapse-free survival (RFS) and overall survival (OS) as follows:
For RFS, survival time: A-B
For OS survival time: A-C
where,
A: cutoff date for follow-up or censoring date, or study end point date

(i.e., death/relapse date or last follow-up)
B: date of surgery
C: date of diagnosis
P values for Kaplan–Meier analyses were derived using the log-rank test.

The hazard ratios for survival analysis were calculated by a univariate or
multivariate Cox proportional hazards model in R.

Sample extraction
CRC (n= 114) and paired normal colon tissues (n= 114) were collected by
a Medical Pathologist from surgically removed specimens. Normal samples
were taken from adjacent tissue more than 2 cm away from the tumor.
Tissues were embedded in optimal cutting temperature (OCT) medium,
snapshot frozen in liquid nitrogen within 40min of collection and
preserved at −80 °C. For each sample, DNA and RNA were extracted from

three cryosections 30-μm thick, using the AllPrep DNA/RNA Micro Kit
(Qiagen), following the manufacturer’s protocol. Presence of CRC cells in
tumor samples and absence in normal tissues were confirmed by H&E
staining after tissue collection and sectioning by a Medical Pathologist.

DNA/RNA quality control
Extracted DNA was quantified using the Qubit dsDNA High-Sensitivity.
DNA quality was determined by the delta-Cq method using the Illumina
TruSeq™ FFPE DNA Library Prep QC Kit. Samples were required to have
delta-Cq<6 for library preparation. Extracted RNA was quantified with
Qubit RNA High Sensitivity (Thermo Fisher Scientific). RNA quality was
determined by the DV200 method using Agilent RNA 6000 Pico Kit;
samples were required to have a DV200 > 40% for library preparation.

Microsatellite instability testing by PCR
MSI status was determined using the Promega MSI Analysis System,
Version 1.2 (PN MD1641). Two nanograms input DNA was used for each
PCR reaction, and K562 High Molecular Weight DNA was used as positive
control. PCR was done on the GeneAmp PCR System 9700 Thermal Cycler
using 9600 emulation mode with the cycling profile according to the user
manual (Thermo Fisher Scientific).
The Applied Biosystems 3130xl Genetic Analyzer (Thermo Fisher

Scientific) was used to detect amplified fragments. One microliter of each
amplified sample was used for input according to manufacturer
recommended specifications. Data were analyzed with Applied Biosystems
GeneMapper Software 5. For each tumor-normal pair, five microsatellite
markers were compared. Presence of new alleles in the tumor sample that
were absent in the normal tissue indicated MSI. Tumor samples in which
two or more markers were altered were classified as MSI-High.
Promega’s MSI Analysis System is comprised of seven markers, which are

co-amplified using fluorescently labeled primers. There are five mono-
nucleotide repeat markers used for MSI determination (BAT-25, BAT-25,
NR-21, NR-24, and MONO-27), and two pentanucleotide repeat markers
(Penta C and Penta D) used to determine mismatched samples or
contamination.

Whole-transcriptome sequencing
Illumina TruSeq Stranded Total RNA with 100 ng input RNA per sample was
used for generating whole-transcriptome libraries following the manufac-
turer’s protocol. IDT for Illumina TruSeq RNA UD Indexes (96 indexes) was
used for sample indexing. Libraries were quantified with Qubit dsDNA High
Sensitivity assay (Thermo Fisher Scientific) and normalized for sequencing
on Illumina NovaSeq™ 6000 S2 (36-plex) or S4 (72-plex) flow cell with 76 bp
paired-end sequencing targeting ~200 million read pairs per sample. On
average, each sample yielded 303 million reads and 26,394 transcripts
identified (Supplementary Data 1).

Exome sequencing
Illumina Nextera™ Flex for Enrichment with 40 ng input DNA per sample
was used for generating matched tumor and normal exome-enriched
libraries, with the following optimizations. IDT for Illumina Nextera DNA
Unique Dual Index Set A was used for sample indexing with 9 cycle of
indexing PCR. Samples were quantified with Qubit dsDNA High Sensitivity
assay and four libraries were pooled for enrichment (4-plex) such that
500 ng of each library was used for a total of 2000 ng per enrichment pool.
Target enrichment was performed using IDT xGen Exome Research Panel
(4 µl per enrichment reaction). A single hybridization was done overnight
at 58 °C, with 12 cycles of post-enrichment PCR. Libraries were quantified
by Qubit dsDNA High Sensitivity assay, normalized and pooled. Samples
were sequenced (12-plex per lane) as 151 bp paired-end reads on the
NovaSeq 6000 S4 flow cell using the XP workflow for individual lane
loading. On average, each sample yielded 602 million reads and
MEDIAN_TARGET_COVERAGE depth of 476X (Supplementary Data 2).

TruSight Oncology 500
Illumina TruSight Oncology 500 was used for generating tumor DNA
libraries to determine TMB, MSI, and Lynch syndrome status. Forty ng input
of tumor DNA was used, and libraries were prepared and enriched
according to manufacturer’s instructions recommendations, with 8-plex
library pooling for 101 bp paired-end sequencing on the NextSeq™
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550 sequencing system. Assay sequencing analysis metrics are summar-
ized in Supplementary Data 7.

Gene expression and fusion calling
Raw reads were aligned using STAR-2.6.1 to hg19 human reference
genome using the following options: --outSAMtype ‘BAM’ ‘SortedByCoor-
dinate’ --outSAMattributes ‘NH’ ‘NM’ ‘MD’–outSAMmapqUnique ‘50’
--peOverlapNbasesMin 10 --peOverlapMMp 0.1 --outSAMtlen 2 --out-
SAMstrandField ‘intronMotif’ --outFilterType ‘BySJout’ --outSJfilterCountU-
niqueMin ‘-1’ ‘2’ ‘2’ ‘2’ --outSJfilterCountTotalMin ‘-1’ ‘2’ ‘2’ ‘2’
--outFilterIntronMotifs ‘RemoveNoncanonical’ --chimSegmentMin ‘12’
--chimJunctionOverhangMin ‘12’ --chimScoreDropMax ‘20’ --chimSegmen-
tReadGapMax ‘5’ --chimScoreSeparation ‘5’ --chimScoreJunctionNonGTAG
‘-100’ --chimOutType ‘WithinBAM’ options. We used rsem-1.2.31 for gene
quantification. Transcript per million (TPM) normalized values were used
for gene expression analysis. Fusion calling was performed using manta-
1.3.2 after removing duplicate aligned reads.

hERV quantification
We mined the literature and combined a set of hERV and cancer-related
retrotransposon sequences to build a costume reference file of 3200
retrotransposon/hERV-related sequences as described by previous stu-
dies25,26. We used salmon-0.11.3 for hERV transcript quantification after
alignment of raw reads by STAR aligner --outFilterMultimapNmax 10
--outFilterMismatchNmax 7. Raw quantified transcripts were normalized by
dividing the total number of counted transcripts by the library size for each
sample times million (counts per million or CPM). We defined 0.5 CPM as
the noise threshold for each transcript and set the CPM < 0.5 values to zero
to reduce the influence of noise on the downstream analysis. Moreover,
any genes with median CPM < 0.1 across all tumor samples were
considered as not expressed and removed from the downstream analysis.
The resulting 831 unique hERV transcripts were used for the rest of the
analysis. We defined median.hERV as the median of the CPM of the 831
hERVs transcripts for each sample. We have performed a robustness study
by downsampling the number of studied hERVs to 80% of the originally
considered loci and demonstrated that median.hERV is robust across 100
rounds of this experiment (Supplementary Fig. 12).

Confirmation of hERV quantification by ddPCR
Four hERVs with a range of high, medium, and low median hERV
expression were selected to confirm the WTS expression with ddPCR. Eight
samples from the cohort were selected to cover a range of high to low
hERV expression. NONO expression was used as a reference gene for
calculating relative gene expression in WTS and ddPCR quantitation.
ddPCR assays were designed by Bio-Rad for the following genes:
hERV_3351 (Unique AssayID: dHsaCNS314897488), hERV_2180
(dHsaCNS612174471), hERV_1073 (dHsaCNS443134067), hERV_2256
(hERV-E-env dHsaCNS701378478), and NONO (dHsaCPE5025872,
dHsaCPE5025873). TruSeq Stranded Total RNA cDNA synthesis was
performed with 50 ng total RNA. cDNA was diluted to a reaction
concentration of 1 ng per reaction for droplet generation and PCR of
one hERV probe and NONO reference probe in triplicate reactions using
Bio-Rad ddPCR Supermix for Probes (No dUTP). Droplets were read with
the Bio-Rad QX200 Droplet Reader. Spearman correlation and p values
were calculated for each hERV.

Immune cell deconvolution using FRICTION
FRICTION uses a support vector regression-based technique to estimate
the fraction of RNA from a set of input cell types. To perform
deconvolution, we require a set of signatures from some number of cell
types of interest. Then, given the profile of an unknown mixed sample, we
predict the fraction of the unknown sample that can be explained by the
given signatures. FRICTION focuses on the selection and normalization of
genes in ways that promote the detection of absolute cell fraction (i.e., the
percentage of total cells) in contrast to other methods that focus on
relative cell fraction (i.e., the percentage of immune cells) or statistical
enrichment. First, a set of gene signatures are developed. We have created
gene signatures using a set of purified cells as well as an explicit set of
background samples from a variety of tissue types. In contrast to Newman
et al.31, but similar to Racle et al.32, we focus on the deconvolution of
absolute cell fraction. This is enabled by our gene selection procedure, as

well as our feature normalization that places each of our cell-type
signatures on the same scale.

Validation of FRICTION
Methods for the FRICTION algorithm development and validation are
described in So et al.49. Briefly, RNA purified from CD4+, CD8+, and CD19
+ immune cells were titrated into RNA extracted from fresh frozen normal
colon, kidney, pancreas, ovary, rectum, uterus, esophagus, thyroid, and
bladder tissues. Libraries were prepared with TruSeq RNA Exome for
sequencing and immune cell quantitation by FRICTION. In addition,
cryopreserved melanoma tumors were used for quantification of immune
cells through flow cytometry or RNA sequencing analyzed by FRICTION.
These methods demonstrate a linearity in quantifying these cells with a
median R2 > 0.98.

Consensus molecular subtyping
In order to classify 113 patients into one of the previously defined CMSs,
we used CMScaller 0.99.1 package in R38 with default parameters and
RSEM expected count data as input. One hundred and eight tumor
samples were assigned to a unique CMS with FDR < 0.05.

Variant calling and tumor mutational burden
We performed DNA alignment using the Burrows-Wheeler Aligner (BWA-
MEM) algorithm with the Sequence Alignment/Map (SAMtools) utility to
align DNA sequences in FASTQ files to the hg19 genome. The total number
of somatic mutations identified was normalized to the exonic coverage in
megabases as TMB. Somatic variant calling was performed using Strelka-
2.9.1050 on paired tumor-normal BAM files for each sample after removing
duplicate reads. Low confident SNVs were removed using: Tumor
VAF≥0.05, DP.tumor≥50, DP.normal≥20, AD.tumor≥5, VAFnormal/VAFtu-
mor<0.2. Only variants called on both strands are called as high confident.

Copy number alteration
CNV robust analysis for tumors (CRAFT) was used to investigate gene
deletion and amplification in tumor samples51. Briefly, CRAFT takes as input
a set of baseline samples and determines the read coverage of each
amplicon, or “bin” for the sample. Then, a sample’s bin count is modeled as
a linear combination of baselines, and the linear model prediction is used
as a baseline-corrected value. GC quantile normalization removes the
effects of GC bias on the baseline-corrected values. After normalization,
gene amplification or deletion events are determined using empirically
determined cutoff values. We defined the probability of deletion or
amplification at arm level as the total number of deleted or amplified
genes divided by the total number of genes. We considered an arm to be
deleted or amplified if the probability of deletion or amplification
exceeds 20%.

Microsatellite instability
Microsatellite sites were defined as noncoding homopolymers with a
repeat size of 10–50 bases. Sites with an ethnicity bias or lower coverage
on the panel were excluded from further analysis. Unstable microsatellite
sites were detected by assessing the shift in the distribution of the length
of a microsatellite site in a tumor sample against the paired normal sample
for WES pipeline or baseline (48 normal tissue samples) for TSO500 MSI
pipeline. A site was identified as unstable when it is outside the known
range. The MSI score of each tumor sample was calculated as the number
of unstable sites divided by the total number of assessed sites. Tumor
samples were classified as MSI-H if MSI score ≥threshold, where threshold
= 20% and 30% for TSO500 and WES pipelines, respectively. We used 130
and 3713 MSI sites, comprising homopolymers with ≥10 bp repeat for
TSO500 and WES MSI pipelines, respectively.

Tumor purity, ploidy, and intra-tumoral heterogeneity
We estimated tumor purity and ploidy using Sequenza 2.152 using paired
tumor-normal WES BAM files after removing duplicate reads. To determine
intra-tumoral heterogeneity, we calculated the Mutant-Allele Tumor
Heterogeneity (MATH) score43 by sciClone 1.153 on normalized coverage
data together with estimated tumor purity and high-quality SNVs.
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Statistics
R version 3.5.1 was used for data postprocessing and rendering figures.
The black lines in the “middle” of the boxes are the median values for each
group. The vertical size of the boxes illustrates the interquartile range (IQR).
Whiskers represent 1.5 IQR.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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