Skip to main content
. Author manuscript; available in PMC: 2022 Jan 1.
Published in final edited form as: Med Image Anal. 2020 Oct 7;67:101841. doi: 10.1016/j.media.2020.101841

Table 3.

Results for Scenario 2 Clinic-Wise Cross-Validation Experiments. The best results for each metric and label are highlighted in bold.

Sensitivity
MED-Net DeepLab SegNet FCN UNet
Background 0.89 0.94 0.95 0.90 0.77
Artifact 0.81 0.69 0.67 0.78 0.92
Meshwork 0.67 0.57 0.67 0.66 0.17
Nest 0.50 0.27 0.19 0.37 0.23
Ring 0.79 0.75 0.74 0.71 0.70
Aspecific 0.77 0.72 0.47 0.65 0.87

Average 0.77 0.71 0.69 0.72 0.68
Specificity
MED-Net DeepLab SegNet FCN UNet

Background 0.99 0.93 0.90 0.95 0.91
Artifact 0.92 0.93 0.95 0.91 0.98
Meshwork 0.91 0.90 0.85 0.89 0.95
Nest 0.99 1.00 1.00 1.00 1.00
Ring 0.94 0.91 0.94 0.93 0.94
Aspecific 0.95 0.95 0.98 0.98 0.79

Average 0.94 0.87 0.88 0.88 0.89
Dice Coefficient
MED-Net DeepLab SegNet FCN UNet

Background 0.92 0.85 0.80 0.86 0.92
Artifact 0.76 0.71 0.72 0.73 0.72
Meshwork 0.67 0.59 0.60 0.63 0.25
Nest 0.62 0.41 0.32 0.51 0.37
Ring 0.79 0.73 0.75 0.73 0.73
Aspecific 0.72 0.70 0.57 0.71 0.50

Average 0.77 0.70 0.69 0.72 0.64