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Abstract

The efficient representation of data in high-dimensional spaces is a key problem in several 

machine learning tasks. To capture the non-linear structure of the data, we model the data as points 

living on a smooth surface. We model the surface as the zero level-set of a bandlimited function. 

We show that this representation allows a non-linear lifting of the surface model, which will map 

the points to a low-dimensional subspace. This mapping between surfaces and the well-understood 

subspace model allows us to introduce novel algorithms (a) to recover the surface from few of its 

samples and (b) to learn a multidimensional bandlimited function from training data. The utility of 

these algorithms is introduced in practical applications including image denoising.

Index Terms—

learning; union of surfaces; kernel

1. INTRODUCTION

The learning and exploitation of the structure in real-world multidimensional datasets is a 

key problem in machine learning. Classical solutions to these problems often rely on linear 

or sparsity-based schemes [1]. Deep-learning based algorithms are now emerging as 

powerful alternatives to these methods, offering significantly improved performance over the 

above approaches in representation [2] as well as learning tasks (e.g. denoising [3], 

classification [4]). Despite their popularity, the theoretical understanding of these 

frameworks is lacking. It is believed that the ability of these schemes to efficiently capture 

the non-linear manifold structure of data may be the reason for many of their desirable 

properties.

The main focus of this work is to introduce a novel signal model to capture the structure of 

high-dimensional datasets, which facilitates the development of theoretically tractable 

learning algorithms. Specifically, we model the training data samples as points on a union of 

smooth surfaces in high dimensional space. We model the surfaces as zero level-sets of a 

bandlimited function ψ. A more band-limited ψ will translate to a smoother surface; the 

bandwidth of ψ can be viewed as a measure of the complexity of the surface. We term such 

surfaces as bandlimited surfaces. This model allows us to introduce an exponential lifting 
operation, which maps the complex union of surfaces model to the well understood union of 
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subspaces (UoS) representation [5]. Specifically, we show that an exponential lifting of the 

data living on a surface results in a low-dimensional feature subspace. We rely on the low-

dimensional nature of the feature subspace for two applications: (a) recovery of surfaces in 

high dimensional spaces from its samples, and (b) efficient representation of high-

dimensional functions from limited labeled training data, assuming that the training samples 

live on bandlimited surfaces.

In the surface recovery problem, we introduce an algorithm to recover the surface from 

noisy data points. The scheme estimates the null-space of the feature matrix of the measured 

points, which uniquely specifies the surface. We also introduce a sampling theory, which 

guarantees the recovery of the union of surfaces from its few samples. These results show 

that the surface can be uniquely identified with unit probability from noiseless samples, 

whenever the number of random samples on the surface exceed the degrees of freedom of 

the surface.

The subspace structure of the lifted data also facilitates the efficient computation of 

functions of the data points. Specifically, a bandlimited function of the data points can be 

expressed as the linear combination of exponential features. Note that exponential features 

live in a low-dimensional subspace, when the points are localized to a smooth surface. 

Hence, bandlimited functions of the data points can be efficiently computed using few basis 

functions in the feature space; our results show that such bandlimited functions can be 

evaluated as the Dirichlet interpolation of the a few function samples on the surface; the 

number of function samples (labeled data-sets) needed is significantly smaller than the 

degrees of freedom of the function, which facilitates a very compact representation. The 

significant reduction in the number of free parameters makes the learning of the function 

from finite samples tractable.

We show that the computational structure of the representation is essentially a one-layer 

kernel network, where the non-linearity is specified by a Dirichlet function. We note that the 

structure is similar to radial basis function (RBF) network [1, 6]. Unlike the RBF setting, the 

computation does not involve the evaluation of the function at all the available training data 

points, which is a key limitation of RBF networks. When the data is restricted to a 

bandlimited surface, we show that the computation only requires the evaluation of the 

function on a small number of anchor points on the surface, whose number is dependent on 

the smoothness or bandwidth of the surface. This approach thus justifies the use of sparse 

RBF networks with Dirichlet kernels.

This work builds upon our prior work [7, 8, 9], where we considered the recovery of planar 

curves from few of its samples. This work extends the above results in three important ways 

(i). the planar results in the above works are generalized to the high dimensional setting. (ii). 
the worst-case sampling conditions are replaced by high-probability results, which are far 

less conservative, and are in good agreement with experimental results. (iii). The sampling 

results are extended to the local representation of functions.
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2. BACKGROUND

We model each surface as the zero level-set of the function ψ

Z[ψ] = x ∈ ℝn:ψ(x) = 0 (1)

where ψ is a bandlimited function, whose bandwidth is specified by the set Λ:

ψ(x) = ∑
k ∈ Λ

ckexp j2πkTx , x ∈ 0, 1 n . (2)

The cardinality of the set Λ, which is denoted by |Λ| is the number of free parameters in the 

surface representation, and can be viewed as a measure of the complexity of the union of 

surfaces Z[ψ]. We now consider an arbitrary point x on the zero-set Z[ψ]. Combining (1) 

and (2), we have

∑
k ∈ Λ

ckexp j2πkTx = cTΦΛ(x) = 0. (3)

Here, the nonlinear feature map ΦΛ:ℝn ℂ Λ

ΦΛ(x) = exp j2πk1
Tx ⋯ exp j2πk Λ

T x
T

lifts a point x ∈ [0, 1)n. Note that there are |Λ| features. The null-space relation cTΦΛ(x) = 0 

implies that c is orthogonal to the feature space of the points, which implies that the features 

live in a |Λ| − 1 dimensional space. Note that this non-linear lifting to feature spaces is 

similar to the one used in kernel methods [1]. In this work, we restricted our attention to 

bandlimited surfaces. However, the analysis may also be extended to other parametric level-

set representations involving other basis functions [10].

3. SURFACE RECOVERY FROM SAMPLES

Assume that we have N samples on the surface, denoted by X = {x1,·⋯ ,xN}. Since all of 

these points satisfy (2), we have

cT ΦΛ x1 ⋯ΦΛ xN
ΦΛ(X)

= 0.
(4)

The above relation implies that the rank of the feature matrix ΦΛ(X) is at most N − 1. One 

can use the above null-space relation to recover the coefficient vector c, and hence the 

surface, from the samples X. Note that there is a one-to-one correspondence (up to scaling) 

between the coefficient set and the surface. Hence, to uniquely determine the zero level-set 

of ψ(x), we require

rank ΦΛ(X) = Λ − 1. (5)
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The following discussion tells us when the feature matrix satisfy this rank condition, and 

thus guarantees surface recovery.

3.1. Surface recovery from noisy-free samples

We first focus on the case that the samples are noisy-free. The results in this section can be 

viewed as the generalization of the recovery of subspaces or low-rank matrices from few 

samples to the surface setting. The following result show that an irreducible surface can be 

uniquely identified from its random samples when the number of samples exceed the 

degrees of freedom, denoted by |Λ| − 1.

Proposition 1: Let Z[ψ] be an irreducible surface with bandwidth Λ. Then, the surface 

can be uniquely recovered with probability one from its N random and independent samples, 

when N ≥ |Λ| − 1.

3.2. Recovery from noisy samples

In practice, the bandwidth of the surface Λ is unknown. A simple approach is to choose a 

large enough bandwidth Γ such that Λ ⊆ Γ. In this case we have the following result.

Proposition 2: Consider an arbitrary set of points x1, …, xN living on the union of 

surfaces Z[ψ] with the bandwidth of ψ being Λ. Then, the feature matrix ΦΓ(X) with Γ ⊃ Λ 
satisfies

rank ΦΓ(X) = Γ − Γ ⊖ Λ . (6)

Here, ΦΓ(X) is the feature matrix evaluated assuming the bandwidth to be Γ. The notation Γ 
⊖ Λ is the set corresponding to all the valid shifts of Λ within Γ; it is obtained as the binary 

erosion of the set Γ by Λ.

These results imply that the feature matrix ΦΓ(X) is low-rank, when the points are localized 

to Z[ψ]. However, when the measurements are corrupted by noise (i.e, Y = X + N), the 

points will lie on a a larger dimensional surface. Hence ΦΓ(Y) will be full or high-rank. We 

propose to use the nuclear norm of the feature matrix of the sample set as a regularizer in the 

recovery of the samples from noisy measurements:

X* = argmin
X

X − Y 2 + λ Φ(X)
*

(7)

Using an IRLS approach, the above minimization problem can be solved by alternating 

between the following two steps:

X(n) = argmin
X

X − Y 2 + λtrace K(X)P(n − 1) ,

and
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P (n) = K X(n) + γ(n)I −1/2,

where γ(n) = γ(n − 1)
η  and η > 1 is a constant. Once the low-rank matrix ΦΓ(X) is estimated 

from the noisy measurements, the surface can be identified from its null-space as described 

in [9].

4. LEARNING FUNCTIONS ON SURFACES

The goal of main machine learning tasks (e.g classification) is to learn complex 

multidimensional functions of the input. We now consider the representation of a 

bandlimited multidimensional function of the input data:

f(x) = ∑
k ∈ Γ

akexp j2πkTx = aTΦΓ(x), (8)

where x ∈ ℝn. The number of free parameters in the above representation is |Γ|, where 

Γ ⊂ ℤn is the bandwidth of the function. Note that |Γ| grows rapidly with the dimension n; 

the direct representation of such functions suffers from the curse of dimensionality. The 

large number of parameters needed for such a representation makes it difficult to learn such 

functions from few labeled data points.

Since the input data is constrained to the surface (1), we only require the function 

evaluations to be valid on the surface Z[ψ]. Proposition 2 shows that the lifted features of 

points on Z[ψ] live on a subspace of dimension P = |Γ| − |Γ ⊖ Λ|, which is much smaller 

than |Γ| that is needed for the linear representation in (8). Note from (8) that the bandlimited 

function f(x) is linear in the feature space. This allows us to evaluate it efficiently as the 

linear combination of |Γ| − |Γ ⊖ Λ| linearly independent basis functions that span the space 

ΦΓ(x); ΦΓ(x); ∀x ∈ Z[ψ]. Proceeding similar to Proposition 1, we observe that the feature 

vectors of a set of P = |Γ| − |Γ ⊖ Λ| randomly and independently chosen training points on 

Z[ψ] will span the space, which gives the following result.

Proposition 3:

Suppose Z[ψ] is an irreducible surface with bandwidth Λ. Consider a bandlimited 

representation as in (8) with Γ ⊃ Λ. For any arbitrary point on Z, f(x) can be exactly 

represented as the interpolation of the function values at P = |Γ| − |Γ : Λ| points x1, … , xP as

f(x) = pT
k x, x1

⋮
k x, xP

κ(x)

(9)

where p = K−1 f x1 f x2 ⋯ f xP
T (10)
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Here, x1,·⋯ ,xP are points on Z[ψ]. and k(x, y) = ΦΛ(x)H · ΦΛ(y) is the inner product 

between the feature vectors of x and y and can be evaluated using a Dirichlet kernel [1] of 

bandwidth Γ denoted by kΓ(·,·). Here K is the kernel matrix with entries Ki,j = kΓ(xi, xj).

The computational structure of the above evaluation is illustrated in Fig. 3 (a), where the 

input x corresponds to the pixel values in the patch. Each node of the hidden layer computes 

k(x, xi);i = 1, .., P. These terms are summed by the weights pi to obtain f . Note that unlike 

RBF methods, the proposed scheme only requires P nodes in the hidden layer, which is far 

smaller than |Γ| or the number of training points. This approach may be viewed as a 

justification for sparse RBF methods widely used in machine learning.

5. RESULTS

5.1. Surface recovery from points

We consider the recovery of a curve from 600 samples using (4) in Fig. 4, where we 

compare the results with a level-set based scheme introduced in [11]. The regularization 

parameters of both schemes were adjusted to yield the best results. The results show that the 

proposed scheme is able to provide good recovery from fewer points. In Fig. 5, we used our 

proposed algorithm to recover the surface of a duck utilizing randomly chosen samples.

5.2. Function learning: application to image denoising

We now apply our function learning framework to the image denoising problem. As 

discussed previously, the difference between our structure and the commonly used CNN 

structure is the non-linearity (activation function). We replaced the RELU non-linearity in a 

network with a single hidden layer and trained the algorithm on the MNIST dataset [12] 

with added noise. We also trained a RELU network with the same parameters. The testing 

results are shown in Fig. 6, in which the four columns are corresponding to the original 

images, the noisy images, the denoising images using RELU and the denoising images using 

our proposed activation function. From the denoising results, we can see that our proposed 

activation function provides results that are qualitatively similar to RELU.

Note that our activation function has bandwidth as a parameter. In Tab. 1, we compare the 

denoising performance on 10 testing images in the MNIST dataset with the same noise level. 

We observe that the performance is not significantly dependent on the assumed bandwidth Γ.

6. CONCLUSION

We introduced a data model, where the signals are localized to a surface that is the zero 

level-set of a bandlimited function ψ. The bandwidth of the function can be chosen as a 

complexity measure of the surface. We show that the surface can be uniquely recovered 

using a collection of samples, whose number is equal to the degrees of freedom of the 

representation. We also use this model to efficiently represent an arbitrary bandlimited 

function f from points living on the surface. We note that the computational structure of the 

function evaluation mimics a single layer kernel network.
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Fig. 1: 
Verification of proposition 1 in the 2D and 3D. The 2D curve C is the zero level set of ψ, 

whose bandwidth is 3×3. By Proposition 1, we need at least 8 points to recover the curve. 

Curve recovery failed from a random choice of 7 points (red dots) in (b), while another 

random set of 8 points succeeded in (c), yielding perfect recovery. For the 3D case, we 

choose the surface to be the zero level set of a polynomial of bandwidth 3×3×3. Our 

conclusion requests at least 26 points to recover the surface. (e) and (f) illustrated the 

conclusion.
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Fig. 2: 
Illustration of Proposition 3 on local representation of functions. We consider the local 

approximation of the bandlimited function in (b) with bandwidth 13×13, on the bandlimited 

curve shown in (a). The bandwidth of the curve is 3×3. The curve is overlaid on the function 

in (a) in yellow. The restriction of the function to the vicinity of the curve is shown in (c). 

Our results in Proposition 3 suggests that the local function approximation requires 132 − 

112 = 48 anchor points. We randomly select the points on the curve, as shown in (d). The 

interpolation of the function values at these points yields the global function shown in (e). 

The restriction of the function to the curve in (f) shows that the approximation is good.
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Fig. 3: 
Figure (a) illustrates the computational structure of (9) in the context of image denoising. 

Figure (b) shows the proposed activation function, in comparison with popular activation 

functions.
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Fig. 4: 
Comparison of the proposed curve recovery algorithm with level-set curve recovery [11]. 

The proposed scheme is capable of yielding good recovery from 600 points.
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Fig. 5: 
Recovery of 3D surfaces from its random samples. This is an extension of the results in Fig. 

4
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Fig. 6: 
Comparison of the learned denoiser with Dirichlet activations against RELU networks. The 

results show that the denoising performance of both methods are comparable.
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Table 1:

Variation of the PSNR (dB) of the denoised results with the bandwidth of the kernel.

Img. BW=13 BW=15

1 19.4937 19.5803

2 18.2435 18.4304

3 21.0757 21.2634

4 18.1653 18.8332

5 21.6438 22.7251

6 18.1218 18.4101

7 19.5293 20.3216

8 20.6238 21.1987

9 17.3776 17.9627

10 19.0375 19.4225
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