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Abstract

Lymphocyte development requires ordered assembly and subsequent modifications of the antigen 

receptor genes through V(D)J recombination and Immunoglobulin class switch recombination 

(CSR), respectively. While the programmed DNA cleavage events are initiated by lymphocyte-

specific factors, the resulting DNA double-strand break (DSB) intermediates activate the ATM 

kinase-mediated DNA damage response (DDR) and rely on the ubiquitously expressed classical 

non-homologous end-joining (cNHEJ) pathway including the DNA-dependent protein kinase 

(DNA-PK), and, in the case of CSR, also the alternative end-joining (Alt-EJ) pathway, for repair. 

Correspondingly, patients and animal models with cNHEJ or DDR defects develop distinct types 

of immunodeficiency reflecting their specific DNA repair deficiency. The unique end-structure, 

sequence context, and cell cycle regulation of V(D)J recombination and CSR also provide a 

valuable platform to study the mechanisms of, and the interplay between, cNHEJ and DDR. Here, 

we compare and contrast the genetic consequences of DNA repair defects in V(D)J recombination 

and CSR with a focus on the newly discovered cNHEJ factors and the kinase-dependent structural 

roles of ATM and DNA-PK in animal models. Throughout, we try to highlight the pending 

questions and emerging differences that will extend our understanding of cNHEJ and DDR in the 

context of primary immunodeficiency and lymphoid malignancies.
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1. Introduction

Mammalian cells have two major DNA double-strand break (DSB) repair pathways – the 

classical non-homologous end-joining (cNHEJ) pathway that directly ligates two DNA ends 

together, and the homologous recombination (HR) pathway that repairs a DSB using the 

sister chromatid or a homologous chromosome as the template. In recent years, the 

alternative end-joining (Alt-EJ) pathway has been used to describe end-ligation in cells 

lacking core cNHEJ factors (e.g., KU, LIG4, XRCC4). Alt-EJ preferentially uses 

microhomology (MH) at the junctions, is mediated by single-strand DNA ligases, LIG1 and 

LIG3 with the help of POLQ, and partially overlaps with the microhomology (MH)-

mediated end-joining (MMEJ) pathway originally described in yeast1–4. Since the cNHEJ 

pathway can also generate joining products with short MH (n<=4nt), we chose to use the 

term Alt-EJ here to describe end-ligations without core cNHEJ components regardless the 

exact number of MH usage. In addition to the specific repair pathways that work on the 

DNA, DSBs also activate ATM kinase and a cascade of post-translational modifications, 

collectively referred to as the DNA damage response (DDR), which promotes precise and 

efficient DSB repair in part by modifying the chromatin environments. There are excellent 

reviews on the detailed molecular mechanism of cNHEJ5,6, Alt-EJ1–4, and DDR7,8, here, we 

focus on the roles of DDR and cNHEJ on lymphocyte-specific gene rearrangements.

The mammalian adaptive immune system is renowned for its specificity, diversity, and 

memory. This is achieved at the DNA level through three programmed gene rearrangement 

events– V(D)J recombination, Immunoglobulin class switch recombination (CSR), and 

somatic hypermutation (SMH). SHM introduces mutations in the variable regions of 

Immunoglobulin (Ig) genes in B lymphocytes via the base excision repair and mismatch 

repair pathways without evidence for DNA DSBs9. Here we focus on the two events 

involving DNA DSB intermediates - V(D)J recombination and CSR. V(D)J recombination 

occurs in progenitor B and T lymphocytes, where the variable region exons encoding the 

antigen-binding domains are assembled from individual Variable (V), Diversity (D) and 

Joining (J) gene segments through a cut and paste mechanism (Fig. 1). V(D)J recombination 

occurs in all T cell receptor (TCR, α/δ, β, γ) and Ig (h, κ, λ) gene loci10, including the Ig 

Heavy Chain (IgH), depicted as an example in Figure 1. CSR occurs in naïve B cells upon 

antigen exposure and T cell contact, and replaces the initially expressed IgM constant region 

(Cμ) with another constant region (e.g., Cγ1 for IgG1), to generate an antibody with a 

different isotype, thus conferring a different effector function (Fig. 1). There are excellent 

reviews on the initiation and regulation of V(D)J recombination11–13 and CSR9,14,15, here 

we focus on the DSB repair phase. The DSB intermediates generated during V(D)J 

recombination and CSR activate the ATM kinase-mediated DDR and use the ubiquitous 

cNHEJ pathway, and, in the case of CSR, also the Alt-EJ pathway for completion16. Both 

V(D)J recombination and CSR are initiated in the G1 phase of the cell cycle when 
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homologous templates are not readily available, explaining the lack of direct contribution 

from the HR pathway. That is been said, several HR factors contribute to lymphocyte 

development by supporting efficient proliferation and clonal expansion17,18. V(D)J 

recombination is completed within the G1 phase of the cell cycle and involves hairpin end 

intermediates19. In contrast, CSR occurs in proliferating cells and involves DSBs at highly 

repetitive and GC-rich switch regions15. These and other features explain the unique 

immunodeficient phenotypes associated with different DNA repair defects and also provide 

a valuable tool to understand the mechanisms of cNHEJ and DDR in general. Here, we 

compare and contrast the physiological roles of different cNHEJ and DDR factors during 

V(D)J recombination and CSR with an emphasis on newly discovered cNHEJ factors, the 

kinase-dependent structural functions of DNA-dependent protein kinase (DNA-PK), and the 

interplay between ATM-mediated DDR and cNHEJ (Table 1). Whenever possible, we try to 

highlight the challenges and new opportunities in understanding DNA repair during 

lymphocyte development using animal models and their implications in human diseases, 

especially immunodeficiency and lymphoid malignancies (Table 1). The clinical 

immunodeficiency associated with defects in cNHEJ and DDR are reviewed elsewhere20,21.

2. DNA DSB repair during V(D)J Recombination

Recombination activating gene (RAG) - RAG1 and RAG2 - initiate V(D)J recombination in 

progenitor lymphocytes by recognizing a pair of compatible recombination signal sequences 

(RSSs) and introducing DSBs between the RSSs and the participating V, D, or J gene 

segments11 (Fig. 1). RAG form a Y-shape hetero-tetramer to synapse the involving V, D or J 

segments together and coordinately cleavage the two RSSs to generates two types of ends – 

a pair of covalently sealed hairpinned coding ends (CEs) and a pair of blunt and 5’ 

phosphorylated signal ends (SEs) (Fig. 2A). The top of the Y formed by RAG2 tilts toward 

one side to accommodate the two RSSs with different sizes of spacers (12bp and 23bp, 

respectively), which explain the 12–23 rule for RAG mediated recombination (Fig. 2B)22,23. 

After cleavage, the CEs are released and RAG holds the two SEs in a hairpin-forming 

complex (Fig. 2B) and promotes the ligation between the two SEs to generate a signal join. 

The two CEs undergo hairpin-opening and end-processing via the cNHEJ pathway before 

they are ligated to form a coding join (CJ) that eventually becomes part of the variable 

region exons (Fig. 2C). RAG expression is restricted to G1 arrested progenitor 

lymphocytes24 and RAG dictates the orientation-specific repair outcome of V(D)J 

recombination, explaining the exclusive dependence of V(D)J recombination on cNHEJ. 

RAG cleavage only occurs in transcriptionally active and epigenetically poised V, D, and J 

gene segments10,25, leading to the cell type (B vs T) and developmental stage (pro- vs pre-) 

specificity of V(D)J recombination.

2.1. The role of cNHEJ in V(D)J recombination

The cNHEJ pathway is exclusively required for V(D)J recombination26,27 and entails both 

an evolutionarily conserved end-ligation component and a largely vertebrate-specific end-

processing component (Fig. 2D). Although putative orthologs of DNA-PKcs has been 

identified in other non-vertebrate species based on sequence homology, the biological 

function of DNA-PKcs has not been characterized. During V(D)J recombination, KU70 
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(gene name XRCC6) and KU86 (Ku80 in mouse, gene name XRCC5) form the KU 

heterodimer, which binds to hairpin CEs and blunt SEs and initiates cNHEJ. For end-

ligation, KU recruits and stabilizes the ligation complex formed by XLF (gene name 

NHEJ1), XRCC4, and LIG4 to ligate the blunt SEs directly and precisely, forming a SJ28–30. 

For end-processing, KU, especially the C-terminus of KU8031, recruits and activates the 

catalytic subunit of DNA-PK (DNA-PKcs, gene name PRDKC), which activates Artemis 

endonuclease to open the CE hairpins32,33, thereby allowing the CEs to be ligated to form a 

CJ. Hairpin opening outside the apex introduces palindromic insertions (P elements)32–36 

and terminal deoxynucleotidyl transferase (TDT) also adds non-templated insertions (N 

nucleotides)37,38 to further increase the diversity of the variable region exons. KU associated 

DNA polymerases (λ and μ)39,40 and WRN helicase41,42 further contribute to the V(D)J 

recombination. Correspondingly, mouse models deficient in end-ligation caused by loss of 

Ku70, Ku80, Lig4, or Xrcc4 - display severe neuronal apoptosis and accumulate both CEs 

and SEs43–47 (Table 1). In the case of Lig4, or Xrcc4, the neuronal apoptosis is accompanied 

by embryonic lethality that can be rescued by the co-deletion of KU48, which normally 

limits end-resection49 and Alt-EJ mediated repair. While Xlf-null mice do not develop overt 

neuronal apoptosis, patients with XLF/Cernunnos deficiency show microcephaly, consistent 

with a model in which end-ligation prevents neuron apoptosis30,50. Meanwhile, mice with 

complete loss of the largely vertebrate-specific end-processing factors DNA-PKcs or 

Artemis have no neuronal apoptosis, carry isolated immunodeficiency, and form SJs 

efficiently but with reduced fidelity51–53 (Table 1). Similarly, patients with complete loss of 

Artemis33 or DNA-PKcs mutation that only affects the hairpin opening and Artemis 

activation54 did not develop marked microcephaly. Notably, mouse models expressing a 

kinase-dead DNA-PKcs that blocks DNA end-ligation also have severe neuronal apoptosis 

and late embryonic lethality55, like Lig4−/− or Xrcc4−/− mice, highlight the importance of 

end-ligation in neurological development. In this regar, a patient with substantially decreased 

expression of catalytically inactive DNA-PKcs protein also suffers profound neurological 

abnormalities and show sign of end-ligation defects56. Together, the data supports an 

important role of cNHEJ mediated end-ligation in post-mitotic neurons in vivo. The cNHEJ 

factors discussed in this section contibutes to V(D)J recombination by directly working on 

the DNA itself (in contrast to chromatin) and have also been extensively characterized using 

plasmid-based substrates (Table 1).

2.2. The role of DNA-PK and its kinase activity in cNHEJ and V(D)J recombination

The KU heterodimer and DNA-PKcs together form the DNA-PK holoenzyme57 that is 

related to the ATM kinase58. V(D)J recombination has been a valuable system to study the 

function of DNA-PK. DNA-PKcs is the best-characterized substrate of DNA-PK. To 

understand its regulation in vivo, we generated a mouse model expressing kinase-dead (KD) 

DNA-PKcs (D3922A, DNA-PKcsKD)55,59. In contrast to the normal development of DNA-

PKcs null mice51,52,60, DNA-PKcsKD/KD mice die in utero with severe neuronal apoptosis 

like in Lig4- or Xrcc4- deficient mice55, and accumulate both CEs and SEs, indicative of 

end-ligation defects55 (Table 1). Nevertheless, the deletion of KU or the Ku80 C-terminal 

domain that recruits DNA-PKcs to the DNA ends rescues the embryonic lethality and SJ 

formation defects in DNA-PKcsKD/KD mice55, indicating that, once loaded to DNA ends, 

DNA-PKcs requires its kinase activity to “license” end-ligation. Together with the 
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observation that purified DNA-PKcs blocks DNA ligation by a T4 DNA ligase in the 

absence of hydrolyzable ATP61, these findings support a cap function of DNA-PKcs that is 

regulated by its own kinase activity. A recent study using ectopically expressed DNA-PKcs 

KD protein in human cells did not detect additional end-ligation defects

ATP hydrolysis is also essential for Artemis and DNA-PK mediated hairpin opening in 
vitro32. To identify the phosphorylation targets of DNA-PKcs, alanine substitutions were 

introduced to either Artemis or DNA-PKcs, the results suggest that DNA-PKcs 

phosphorylation at the T2609 cluster facilitates Artemis activation62. Denature gel 

electrophoresis shows that the hair pinned CEs are fully opened in DNA-PKcsKD/KD cells 

and that hairpin opening occurs efficiently in DNA-PKcsKD/KD cells and can be blocked by 

ATM kinase inhibitor55, suggesting that Artemis activation requires DNA-PKcs protein and 

the kinase activity from either DNA-PK or ATM. A patient carrying R3062L mutation in 

DNA-PKcs retains full kinase activity, yet loss the ability to activate Artemis20,54,56, also 

consistent with a structural rather kinase role of DNA-PKcs in Artemis activation. Given the 

strict requirement for DNA-PK’s kinase activity for end-ligation and the redundancy 

between ATM and DNA-PK activity for end-processing, we initially speculated that these 

differential requirements might reflect specific roles for DNA-PKcs autophosphorylation vs 

DNA-PKcs transphosphorylation by ATM.

Human DNA-PKcs has two well-characterized phosphorylation clusters63. Upon DSBs (e.g., 
radiation), the S2056 cluster is mainly inter-molecularly auto-phosphorylated by DNA-

PK64–66 and the T2609 cluster is phosphorylated by ATM64,67–69 and DNA-PK65,70. The 

relative contribution of ATM vs DNA-PK to the T2609 cluster phosphorylation varies by 

relative abundance and activities of ATM vs DNA-PK. Upon UV irradiation, ATR kinase 

can also phosphorylate DNA-PKcs at the T2609 cluster71. Although not essential for cNHEJ 

in human cell extracts in vitro72, expression of human DNA-PKcs with an alanine 

substitution at the S2056 and/or T2609 cluster in DNA-PKcs-deficient CHO cells fails to 

restore IR resistance63,73–75 and Artemis mediated end-processing62,76. Moreover, episomal 

analyses of the DNA-PKcs with alanine substitutions at T2609 or S2056 clusters show 

reduced end-ligation that is comparable to the loss of DNA-PKcs65,73 and loss of both 

S2056 and T2609 cluster phosphorylation has a synergistic effect on end-ligation and IR 

sensitivity64,65,73. Yet, despite mild IR sensitivity, mouse models with knock-in alanine 

substitutions at either the S2056 cluster77 or the T2609 cluster78 support chromosomal 

V(D)J recombination (Table 1)77–80. Given DNA-PKcs is not essential for SJ formation 

during chromosomal V(D)J recombination or end-joining, the results support a model in 

which DNA-PKcs phosphorylation at the T2609 and S2056 cluster promotes end-ligation, 

but are not essential for either end-processing and end-ligation72.

That is being said, there is several notably difference among results acquired from different 

experimental systems. While additional experiments are necessary to resolve the difference, 

we offer some thoughts for consideration. First, chromosomal V(D)J recombination vs 

episomal reporters. In general, loss of DNA-PKcs and its phosphorylation causes more 

severe defects on plasmid-based assays than on chromosomal substrates or in vivo. One 

possibility is that the chromatin and chromatin bounded DNA damage response factors 

promote end-ligation and mask the subtle end-ligation defects. Plasmid-based DNA repair 
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substrates are not able to access these beneficial chromatin effects and thus more sensitive to 

mild cNHEJ defects. Consistent with this hypothesis, Xlf-deficiency substantially reduced 

plasmids based V(D)J recombination30,81,82, while largely dispensable for chromosomal 

V(D)J recombination83–85. Similarly, loss of DNA-PKcs or the T2609 cluster 

phosphorylation of DNA-PKcs have a significant impact on the end-ligation of plasmid 

substrates65,70,86, but not chromosomal substrates87,88 or in vivo51,77,78,89. Strikingly, in 

both Xlf-deficient or DNA-PKcs-deficient cells, loss of ATM kinase activity or chromatin 

bounded ATM substrates – H2AX, MDC1, and 53BP1 abolish the residual end-ligation on 

chromosomal susbstrate85,87,88,90–94, supporting a critical role of chromatin and DNA 

damage response in promoting end-ligation. ATM kinase inhibition or deletion also 

abolishes SJ formation in murine cells carrying DNA-PKcs with alanine substitutions at the 

T2609A cluster80, but not those with alanine substitutions at the S2056 cluster77. 

Furthermore, RAG has extensive C-terminal chromatin interaction domains that are required 

for chromatin V(D)J recombination, but not for episomal assay26,95–99, suggesting RAG 

might also facilitate end-ligation through chromatin interaction. In addition to the 

availability of chromatin bounded DDR response and RAG interaction, the cell cycle could 

be another factor. While most episomal assays were performed in cycling cells when RAG 

and other nuclease were ectopically expressed throughout the cell cycle, chromosomal 

V(D)J recombination and V(D)J recombination in vivo occurs only in G1 arrested cells due 

to the transcription and post-translation regulation of RAG24,100. One notably difference is at 

the hairpin-opening. While Artemis is strictly required for the hairpin-opening during V(D)J 

recombination, several other endonucleases including MRE11 in complex with CtIP can 

open hairpin, including RAG generated hairpin in S or G2 phase of the cell cycle18,101,102. S 

and G2 phase cells also express other DNA repair factors involved in end-resection, and HR 

that are not available in G1 cells, plus the availability of sister chromatin nearby could 

introduce additional complexity and possibilities for DNA repair.

Second, IR sensitivity vs defects in V(D)J recombination. From a DNA repair point of view, 

RAG cleavage generates clean DNA ends that might be less vulnerable to end-ligation 

defects than complex DNA lesions including oxidized bases generated during IR89,103–106. 

Consistent with this hypothesis, Artemis is not required for SJ formation during 

chromosomal V(D)J recombination, but clear responsible for ~10% of complex ends 

generated by IR33,53,107. RAG also holds the SEs after cleavage and has extensive C-

terminal chromatin interaction domains uniquely important for chromatin V(D)J 

recombination22,23,26,108–112, which can also facilitate end-ligation. Moreover, IR sensitivity 

in proliferating cells reflects a complex response to DNA damage beyond simple DNA 

repair. For example, loss of TP53 or its regulators and targets (e.g., ATM, ARF, CHK1, 

MDM2, P21, PUMA, and others) can all affect IR sensitivity in a cell-type and context-

specific manner without directly affect DNA repair. This is particularly true for human 

cancer cell lines, which often carry complex genetic alterations. In this context, DNA-PKcs 

has been implicated in numbers of functions outside cNHEJ, including telomere 

biology113,114, Golgi stability115, DNA damage checkpoints116, and others117. In certain 

human cells including HCT116 and 293T cells, loss of DNA-PKcs also leads to adaptive 

loss of ATM protein expression, which further modulates IR sensitivity and DNA repair70,86. 

Notably, ATM activity, measured by the phosphorylation of KAP1, seems intact if not 
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hyperactive in DNA-PKcs null, DNA-PKcs-T2609A, or DNA-PKcsKD/KD murine cells80,118 

(Crowe and Zha unpublished observations). Biochemical analyses have shown that DNA-

PKcs can phosphorylate ATM kinase to inhibit ATM kinase activity118. A uniformed 

hypothesis regarding how DNA-PKcs protein or activity loss might lead to an adaptive 

decrease of ATM protein levels remain pending, would hold the key to understand the cross-

talk between ATM and DNA-PKcs. Moreover, we and others recently showed that mouse 

models with an alanine substitution at the T2609 cluster succumb to bone marrow failure79 

with macrocytic anemia associated with ribosome biogenesis defects78. These and other 

cNHEJ independent functions of DNA-PKcs might be particularly important in 

understanding complex responses to radiation or other environmental insults beyond simple 

DSB repair.

Third, the role of DNA-PKcs in human vs in mice. It is noted early on, the abundancy of KU 

and DNA-PKcs, but not other cNHEJ factors, is nearly 50-fold higher in human cells than in 

mouse cells77, suggests that KU and DNA-PK might have cNHEJ-independent functions in 

human cells. The high concentration of KU and DNA-PKcs could potentiate relative low-

affinity interaction with structured RNA, including the telomerase RNA template, which 

might contribute to the prominent telomere abnormalities119,120 in human cells lost KU or 

DNA-PKcs. Accordingly, while DNA-PKcs or KU null mice are viable, human cells, even 

cancer cells, cannot tolerate the complete and persistent loss of KU120 or DNA-PKcs 

without adaptive changes of other genes, including reducing ATM protein levels70,121. 

Several human patients derived cell lines contain spontaneous mutations of DNA-PKcs are 

viable, but whether the residual DNA-PKcs protein or activity or adaptive changes are 

essential for their long-term culture is yet to be determined54,56,122.

Finally, the difference between the kinase-dead and the phosphorylation site mutant proteins 

is not unique to DNA-PKcs. The expression of kinase-dead ATM also leads to different 

biological consequences than the alanine substitutions of its proposed auto-phosphorylation 

sites123–127. These genetic models demonstrate a structural role of DNA-PKcs that is 

modulated by its kinase activity, resulting in different phenotypes for loss of DNA-PKcs, 

expression of kinase-dead, and expression of an alanine substitution at the T2609 and/or 

S2056 clusters. The recent cryogenic electron microscopy structure of the DNA-bound and 

DNA-free forms of the DNA-PK holoenzyme uncovered an extended interface between KU 

and DNA-PK128–131. Several questions are pending, including the contribution of the 

proposed phosphorylation sites to the allosteric activation of DNA-PKcs, the exact 

mechanism by which DNA binding triggers KU-dependent activation of DNA-PKcs, the 

exact roles of the KU70 SAP domain and the KU80 C-terminal domain in cNHEJ and V(D)J 

recombination, and the interaction surface and the regulation between DNA-PKcs and 

Artemis. Collectively, this information would help us understand the dynamic movements 

that lead to DNA-PK activation and how DNA-PKcs caps the DNA ends and activates 

Artemis endonuclease.

2.3. The new cNHEJ factors, and their roles in cNHEJ and V(D)J recombination

In the past few years, several new cNHEJ factors have been described - PAXX and MRI - 

based on their interaction with KU and their essential role in V(D)J recombination in mice 

Wang et al. Page 7

DNA Repair (Amst). Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



or cells lacking XLF, a non-essential cNHEJ factor that is associated with mild lymphocyte 

development defects in mouse models41,81,84. PAXX binds to the core region of the KU 

heterodimer132,133. Paxx−/− mice develop normally with normal levels of mature 

lymphocytes, but Xlf/Paxx double deficient cells accumulate both CEs and SEs, suggesting 

a critical role of Paxx in end-ligation that is masked by Xlf134–136. Several models have been 

proposed to explain the role of XLF in cNHEJ, including the formation of XLF-XRCC4 

filament that brings the two DNA ends together5,137 and facilitating Lig4 re-adenylation138. 

We envision that the presence of XLF increases ligation frequency, thus indirectly 

compensates for the compromised cNHEJ in Paxx-deficient cells. Notably, Paxx shares 

some structural features with XLF132,133. Similarly, Mri also binds to KU and is essential for 

chromosomal V(D)J recombination in Xlf−/− cells139. While Mri promotes cNHEJ and 

V(D)J recombination in G1 arrested B cells, it is also thought to suppress cNHEJ mediated 

telomere fusion in S or G2 phase cells140. Exactly how MRI shifts between these two 

seemingly opposing functions remains unknown. In addition to KU, MRI also binds to ATM 

and the MRE11-RAD50-NBS1 (MRN) complex. MRI might mediate different functions by 

associating with different molecular complexes139. On this note, whether cell cycle or 

cyclin-associated kinases might play a role in regulating MRI association and function also 

needs to be tested. Notably, unlike LIG4, XRCC4, XLF, DNA-PKcs, and ARTEMIS, the 

mutations of which have been linked to human primary 

immunodeficiency20,30,33,50,54,56,141, PAXX, and MRI be not mutated in immunodeficient 

patients and their connection to human immunodeficiency remain unknown.

2.4. The role of the DNA damage response in V(D)J recombination

DSBs generated during V(D)J recombination activate the DDR. Briefly, the MRN complex 

recruits and activates ATM kinase, which phosphorylates many substrates, including the 

histones H2AX flanking the DNA, break at S139 to form γH2AX142. MDC1 directly binds 

to γH2AX143–145 and recruits the E3 ubiquitin ligases RNF8 and RNF168, which further 

modify H2A and eventually leads to the recruitment of 53BP17. ATM and the downstream 

factors H2AX and 53BP1 are not required for lymphocyte development, but in mouse 

models, their absence causes a mild reduction in surface TCRβ/CD3ε levels in CD4+CD8+ 

double-positive T cells146–148 and the accumulation of unrepaired RAG-dependent DSBs in 

~4% of Atm-deficient B cells149. The need for sequential V(D)J recombination at the 

TCRα/δ150 likely contributes to its hypersensitivity to DNA repair defects (Table 1). 

Correspondingly, loss of ATM, H2AX, or 53BP1 does cause major development blockade 

associated with V(D)J recombination in the majority of the Ig and TCR loci(Fig. 1 and 2C). 

Using an inversional chromosomal V(D)J recombination substrate, Sleckman and colleagues 

showed that MRN and ATM prevent hybrid joins – the aberrant ligation of a CE with a SE 

during inversional V(D)J recombination151,152 - providing a mechanism for the mild 

lymphocyte development defects associated with ATM-deficiency149(Fig. 2C). Interestingly, 

ATM and ATM kinase activities are required for SJ formation in DNA-PKcs null cells87,88, 

supporting overlapping roles between ATM and DNA-PKcs kinase activity. Moreover, in 

cells and mice lacking XLF, a non-essential cNHEJ factor, ATM kinase activity, and its 

substrates H2AX and 53BP1 are required for SJ formation and end-ligation85,91,92 also, 

providing genetic evidence for an important role of the DDR in V(D)J recombination. In this 

context, whether other DDR factors are also required for V(D)J recombination in the 
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sensitized XLF-deficient background and whether DDR factors have an additional role in 

V(D)J recombination beyond ligation (such as end-protection) remain to be tested. How the 

chromatin-based DDR network interacts with the epigenetic environment at the TCR and Ig 

loci required for V(D)J recombination remains unclear. It is possible that the epigenetically 

active TCR or Ig loci are poised to enhance repair and prevent mis-repair through higher 

order topologically associated domains (TADs)153 to promote effective V(D)J 

recombination.

3. DNA repair during Immunoglobulin Class Switch Recombination

Ig CSR generates antibodies with different isotypes and thus different effector functions. B 

cell-specific activation-induced cytidine deaminase (AID) initiates CSR by converting 

cytosine to uracil in the transcribed S regions preceding each set of constant region coding 

exons154. These mismatches are processed by both base excision repair and mismatch repair 

machinery and are eventually converted to DSBs in proliferating B cells. In the second 

phase, DSBs in the upstream IgM switch region (Sμ) are joined with DSBs in the 

downstream switch region (e.g., Sγ1 for IgG1) to complete IgH isotype switching (Fig. 1) 

and generate antibodies with different isotypes. The DSB repair that completes CSR is 

mediated by the cNHEJ and the Alt-EJ pathway with the help of ATM kinase and its 

chromatin substrates H2AX, 53BP1, etc.

3.1. The role of cNHEJ in CSR

To study the role of cNHEJ in CSR, B cells can be generated in cNHEJ-deficient 

backgrounds via the introduction of germ-line knock-in alleles harboring productive V(D)J 

rearrangements at both the IgH155 and Igκ156 loci. Unexpectedly, Ku70-, Xrcc4- or Lig4-

deficient mature B cells generated using this approach157–159 and germline Xlf-deficient B 

cells82,84 all have significant residual CSR (25–50% of the WT levels) that is mediated by an 

Alt-EJ pathway biased towards MH (Table 1). Expression of kinase-dead DNA-PKcs causes 

severe CSR defects, phenocopies Xrcc4- or Lig4-deficiency106 (Table 1). In contrast, DNA-
PKcs or Artemis null B cells have at most moderate defects in CSR efficiency that is 

detectable only by sensitive IgH FISH analysis160,161, consistent with the limited impacts of 

DNA-PKcs or Artemis deletion in end-ligation (Table 1). The recently developed high 

throughput genome-wide translocation sequencing (HTGTS)162 can isolate thousands of 

CSR junctions. CSR junctions recovered from Xrcc4−/− and DNA-PKcsKD/KD B cells are 

enriched for MHs, with nearly 50% of junctions containing 2–3 nt MHs, in contrast to 20–

25% in WT cells106. Perhaps most surprising is that the CSR junctions from DNA-PKcs−/− 

B cells with nearly 90% of WT levels CSR are also equally enriched for MHs106, suggesting 

MHs facilitate CSR. But whether this MH-mediated CSR in DNA-PKcs−/− B cells depends 

on Alt-EJ or LIG4-mediated cNHEJ remain to be determined. Two features of CSR might 

contribute to the robust residual CSR in cNHEJ deficient cells that prefer the MH-mediated 

end-joining – the highly repetitive and GC rich switch region that is ideal for MH-mediated 

repair163 (Fig. 3A) and the S/G2 phase of the cell cycle that allows resection and promotes 

end-annealing. The loss of the newly discovered cNHEJ factor PAXX does not affect CSR 

efficiency136 and whether PAXX or even Artemis affects CSR junctions remains to be 

determined.
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3.2. The role of Alt-EJ in Class switch recombination

The robustness of Alt-EJ mediated CSR provides a unique tool to study the Alt-EJ pathway. 

In contrast to cNHEJ that ligates both strands of the DNA double helix simultaneously, the 

Alt-EJ pathway uses MH-mediated annealing to convert one DSB into two single-strand 

nicks (Fig. 3B). Mammalian cells have three DNA ligases, LIG1, LIG3, and LIG4, which 

repair the phosphodiester backbone in each DNA strand in an adenylation-dependent 

manner. Each strand ligation requires re-adenylation of the ligases138. LIG4 can potentially 

form higher-order oligomers through its interaction with the XRCC4-XLF filament137,164, 

which might explain the unique ability for LIG4 to mediate double-strand break repair. The 

conversion of a DSB to two single-strand nicks bypasses the requirement for LIG4 and 

allows the single-strand DNA ligases - LIG3 in complex with XRCC1 or LIG1 – to 

complete the Alt-EJ mediated CSR165. End-resection, which is required for MH-mediated 

repair to expose flanking MHs, is also evident in Xrcc4−/−, DNA-PKcs−/− and DNA-
PKcsKD/KD B cells106. However, it remains unknown whether end-resection is required for 

Alt-EJ mediated CSR in the highly repetitive switch region. Nevertheless, the similar CSR 

efficiency and the MH and end-resection patterns in Xrcc4−/− and DNA-PKcsKD/KD cells 

suggest that the presence of kinase-dead DNA-PKcs does not block the Alt-EJ pathway106. 

Moreover, the deletion of Ku70 in Lig4−/− B cells reduces the bias toward MHs166,167, 

suggesting there might be more than one Alt-EJ pathway – the one requires long MH and 

the one that does not. Also, pol θ expression increases in activating B cells168 and might 

contributes to Alt-EJ through templated nucleotide insertions. Although Polq−/− B cells have 

normal CSR efficiency169, the percentage of recovered junctions with insertions is 

significantly lowered170. Interestingly, Polq−/− B cells also show increased IgH-Myc 

chromosomal translocations170, suggesting a role of pol θ in suppressing MH mediated 

translocations. The genetic requirement for Alt-EJ mediated CSR is still being investigated. 

Loss of Alt-EJ factors, including XRCC1, an obligatory partner of Lig3 in the nucleus171, 

PARP1, or POLQ, all did not compromise CSR efficiency alone165,169,172,173. Loss of DNA-

PKcs103–105,161,174 or DNA-PKcs phosphorylation at the T2609 cluster89 has a mild effect 

on IgG1 CSR efficiency in vitro. But the CSR junctions recovered from the DNA-PKcs−/− or 

DNA-PKcs5A/5A mice are highly enriched for MH89,106. The results suggest that MH-

mediated end-joining could be quite robust during CSR. Given the much more severe CSR 

defects in Lig4−/− B cells, the end-ligation that generates these small MH are likely 

including contributions from both cNHEJ pathway and the Alt-EJ pathway. The exact 

contribution of Alt-EJ to physiological CSR in cNHEJ-proficient cells also remains to be 

determined.

3.3. The role of the DNA damage response in CSR.

In contrast to V(D)J recombination that is only mildly affected by DDR-deficiency or in 

sensitized backgrounds, CSR highly depends on the DDR. CSR is significantly (>50%) 

impaired in cells deficient in ATM175–177 or its downstream targets H2AX178,179, 

MDC1143,180, RNF8, RNF168, or 53BP175, or even PTIP181,182, REV7(gene name 

MD2L2)183,184, SHIELDIN complex183,185,186, or RIF1187,188. which prevents end-

resection downstream of 53BP1(Fig. 3C). ATM kinase inhibitors or expression of kinase-

dead ATM have similar impacts on CSR as Atm loss123, suggesting that ATM contributes to 

CSR mainly through its kinase activity. Notably, although 53BP1 has a similar, if not a 
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weaker, role in general DSB repair and irradiation resistance than ATM or H2AX, loss of 

53BP1 leads to a 95% reduction of CSR that is much more prominent than all other repair 

factors179,180,189. It has been proposed that overreaction in the 53BP1-deficient cells 

exaggerates the CSR defects189. Moreover, 53BP1 is also thought to have a role in CSR 

upstream of DSB repair that is mediated by its downstream effector protein PTIP, which 

regulates the histone acetylation complex MLL2/3181,182. More recently, it has also been 

proposed that 53BP1 ensures that the orientation of CSR junctions to favor productive CSR 

beyond end-ligation181. Recent HTGTS sequence analyses of CSR junctions recovered from 

ATM-deficient or H2AX-deficient cells also show increased MHs190, suggesting the 

repetitive sequence in the switch region might poise CSR for MH-mediated joining 

independent of specific repair pathways. In the future, systematic analyses of CSR junctions 

with HTGTS might uncover additional regulators of Alt-EJ at the chromosomal levels.

4. Closing remarks

Efficient DNA repair during V(D)J recombination and CSR is not only important for 

lymphocyte development but also plays a critical role in suppressing oncogenic 

translocation. Indeed, the majority of recurrent chromosomal translocations in human 

lymphoid malignancies involve the Ig or TCR loci and arise from aberrant DSB repairs 

during V(D)J recombination or CSR191. While defects in the cNHEJ pathway often cause 

severe combined immunodeficiency (SCID)192, defects in the DDR, especially in ATM 

kinase which also has a checkpoint function, often lead to early-onset lymphoma and 

leukemia, providing a model to study the mechanism of chromosomal 

translocations147,193,194.

In summary, V(D)J recombination highly depends on core cNHEJ factors, while the DDR 

has more prominent roles in CSR. Two factors might contribute to this difference; the 

postcleavage complex formed by RAG and the strict G1 phase repair during V(D)J 

recombination. Moreover, the repetitive switch region sequences and the proliferative nature 

of B cells undergoing CSR render Alt-EJ very robust during CSR and provide unique 

opportunities to study the genetic requirement for Alt-EJ at the physiological level. On the 

other hand, the hairpin structure and exclusive G1 phase repair of V(D)J recombination 

provide an opportunity to study end-processing and the regulation of DNA-PKcs during end-

joining. With the development of high-throughput sequencing methods and chromosomal 

V(D)J recombination reporters, significant strides have been made in understanding the 

regulation and function of cNHEJ and the DDR and their interaction in vivo. With the 

development of CRISPR genetic screens, we expect that additional DDR factors can be 

identified based on their role in V(D)J recombination and CSR, and further expand our 

knowledge of DNA double-strand break repair networks.
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Abbreviations

Alt-EJ Alternative end-joining

CE coding end

CJ coding join

cNHEJ classical non-homologous end-joining

CSR Class Switch Recombination

DDR DNA damage response

DSB DNA double-strand break

HR homologous recombination

HTGTS High throughput genome-wide translocation sequencing

IgH Immunoglobulin Heavy Chain

MH microhomology

MMEJ microhomology-mediated end-joining

RSS recombination signal sequences

SE signal end

SJ signal join
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Figure 1. The overview of V(D)J recombination and class switch recombination
The Immunoglobulin (Ig) gene product, an antibody, is shown at the top. An antibody is 

formed by a pair of Ig Heavy chain gene products (IgH, in orange and green) and a pair of Ig 

light chain (IgL, in white and blue). The V(D)J recombination (on the lower left) assembles 

the variable gene exon that encodes the antigen-specific portion of the antibody (orange) 

from individual V, D or J gene segments in a two-step process, D to J first, then V to DJ. The 

reaction is initiated by RAG endonucleases, which introduces DNA double-strand breaks. 

An insert above shows the pair of RAG cleavage products at Dh and Jh with the hairpin 

coding ends and blunt signal ends adjacent to RSSs (triangles). Upon ligation by the cNHEJ 

pathway, the intermediate sequence is removed and the participating V, D, and J segments 

are fused to form the variable region exon that is spliced with downstream constant region 

exons (on the right) to form the IgH. While we only depict the IgH here, V(D)J 

recombination occurs in all 3 Ig (IgH, Igλ, and Igκ) and 4 T cell receptor (TCRσ/δ, TCRγ, 

TCRβ) gene loci. In naïve B cells, the IgH undergoes two additional modifications initiated 

by activating induced deaminase (AID). Somatic hypermutation (SHM) introduces point 

mutations in the variable region exon without creating DNA double-strand breaks. Class 

switch recombination (CSR) occurs in the constant region (on the right) and joins DNA 

double-strand breaks from two different switch (S) regions and effectively replaces the 

initially expressed IgM constant region (Cμ) with a downstream constant region, such as the 

Cγ1 for IgG1 depicted in the illustration. The constant region exons dictate the effector 

function of the antibody. CSR only occurs in the IgH locus of B cells, not in IgL or TCR 

loci. In contrast to RAG, which directly introduces DNA breaks, AID introduces U:G 

mismatches, which are processed by the base excision repair and mismatch repair pathways 

to generate mutations for somatic hypermutation (SHM) and DNA double-strand breaks for 

CSR.
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Figure 2. The features of V(D)J recombination and the cNHEJ pathway
(A) RAG1/2 endonuclease cleavage occurs after synapsing two compatible RSSs (with 

different spacer length, 12 and 23bp, illustrated as white or black triangles) together and 

generates a pair of 5’ phosphorylated blunt signal ends (SE) and a pair of covalently sealed 

hairpinned coding ends (CE) (red and blue hairpins). The two SEs can be directly joined by 

KU together with the LIG4-XRCC4-XLF complex to form a signal join (SJ). The two CEs 

have to be opened by KU-DNA-PKcs and Artemis endonuclease before they can be ligated 

to form a coding join (CJ). (B) A cartoon of the RAG post-cleavage complex shows two 

RAG1 and two RAG2 proteins synapsing two compatible RSSs (with 12 bp, 12RSS or 23 

bp, 23RSS spacers) together and also holding the resulting SEs (solid lines, open) and CEs 

(dash lines, hairpinned) in close proximity to facilitate ligation22,108,195. The precise 

position of the CEs is yet to be firmly determined. (C) V(D)J recombination can occur in a 

deletional (upper) or inversional (middle) configuration depending on the relative orientation 

of the participating RSSs (open or filled triangles). The vast majority of V(D)J 

recombination occurs in the deletional configuration (e.g., IgH in Figure 1) with the two 

RSSs facing each other, and the recombination removing the SJ-containing internal 

sequence as an excised circular DNA (top). In rare cases, such as the TCRβ locus 

diagrammed at the bottom, the V(D)J recombination occurs between a pair of RSSs in the 

same orientation, and, as such, the recombination leads to the inversion of the internal 

sequence (grey box) to form an SJ on the chromosome in addition to the CJ (bottom left of 

the middlebox). In the case of ATM deficiency151, the internal sequence is lost in ~50% of 

the cases, and, as such, the CE and SE on the genome join together to form a hybrid join 

(HJ) accompanied by the deletion of the internal sequence, indicated on the bottom right of 
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the middlebox. A diagram of the murine TCRβ locus, including the Vβs with deletional 

rearrangements and the Vβ14 that undergoes inversional V(D)J recombination,12 is shown at 

the bottom. (D) A cartoon illustration of non-homologous end-joining at a CE. The KU 

heterodimer binds to the hairpin sealed CEs, and then recruits DNA-PKcs, which, upon 

phosphorylation by itself or by ATM kinase, serves as a platform to recruit and activate 

Artemis endonuclease. In the absence of kinase activation, DNA-PKcs at the ends precludes 

the DNA ligation complex from accessing the ends as well. The successful activation of 

DNA-PKcs triggers a conformational change that then allows end ligation by the LIG4-

XRCC4-XLF complex.
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Figure 3. The features of class switch recombination and the DNA damage response
(A) The switch region sequence is highly repetitive and GC rich. A collection of 

representative murine Sμ regions, (chr12 113424221–113424368, mm10) is shown. The 

genomic coordinates of the first bp of each sequence segment are listed in the first column 

and the GC% within the segment is noted in the last column. The overall GC% is 61%. (B) 

A cartoon of cNHEJ vs Alt-EJ during CSR. The cNHEJ mediated by KU heterodimers and 

the LIG4-XRCC4-XLF ligation complex directly ligate both strands of a double-strand 

break. Alternatively, annealing between complementary single-strand overhangs converts 

one double-strand break into two single-strand nicks, which can then be ligated by LIG3 or 

LIG1 through Alt-EJ. (C) A simplified cartoon illustrating the main DDR players that have 

been implicated in CSR. Upon DNA damage, ATM kinase phosphorylates histone H2AX to 

form γH2AX, which recruits MDC1. MDC1 subsequently recruits E3 ubiquitin ligases 

RNF8 and RNF168 to modify adjacent H2A. Histone Ub modifications, together with 

H4K20me2, recruit 53BP1 and leads to hyperphosphorylation of 53BP1. This 

phosphorylated 53BP1 recruits RIF1 and the SHIELDIN (SHLD1–3 and REV7) complex. 

Among the SHIELDIN complex, SHLD2 serves as a scaffold. The N-terminus of SHLD2 

binds to SHLD3 and REV7, while the C-terminus of SHLD2 interacts with SHLD1 and 

single-strand DNA. These factors work together to prevent excessive end-resection and 

promote productive CSR.
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