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Phagocytosis and neutrophil extracellular traps
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Abstract

Neutrophils are recruited rapidly to sites of infection in response to host- and/or microbe-derived proinflammatory molecules. At 
such sites, neutrophils phagocytose microbes and are activated to produce superoxide and other reactive oxygen species (ROS). 
In addition, neutrophils contain stores of antimicrobial peptides and enzymes that work in concert with ROS to kill ingested 
microbes. Neutrophils can also release chromosomal DNA bound with antimicrobial peptides and enzymes to form web-like 
structures known as extracellular traps. Neutrophil extracellular traps (NETs) have been reported to ensnare and kill microbes 
and are commonly considered to be an important component of innate host defense. Notably, the formation of NETs is most often 
reported as a cytolytic process. Whereas intraphagosomal killing of microbes sequesters cytotoxic antimicrobial molecules that 
would otherwise damage host tissues, the formation of NETs and associated extracellular release of these molecules can contribute 
to host tissue destruction and disease. Here we compare and contrast phagocytosis and NETs in host defense, with emphasis on 
recent studies of NETs that ultimately underscore the importance of phagocytosis as the primary means by which neutrophils 
eliminate microbes.
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Introduction
Neutrophils are the most abundant leukocytes in human blood,  
and their central role in innate defense against infection is  
unequivocal. The processes that recruit neutrophils to sites of 
microbe invasion, phagocytosis, and coupling of the engulf-
ment process to rapid deployment of oxygen-dependent and  
oxygen-independent mechanisms for efficient microbe killing 
and digestion have been studied extensively. Many fundamental  
insights into these neutrophil processes have arisen from  
studies of human patients and bacterial and fungal pathogens 
to inhibit or coopt these defense processes to evade elimination  
while also causing tissue destruction and disease.

Phagocytosis, phagocytic killing, and neutrophil 
extracellular traps
Phagocytosis is a specialized form of receptor-mediated  
endocytosis that is utilized by neutrophils and macrophages to 
ingest particles and microbes that are at least 0.5 microns in  
size1. The list of phagocytic receptors continues to grow 
and includes molecules that bind directly to microbes such  
CEACAMs, lectins, and integrins as well as receptors 
that engage microbes opsonized with IgG or complement  
fragments2. In all cases, signaling downstream of these recep-
tors triggers local actin polymerization that is essential for 
extension of membrane pseudopodia around the microbe and  
its internalization.

A distinguishing feature of neutrophils is the fact that  
phagocytic receptor signaling also elicits rapid deployment 
of oxidative and non-oxidative host defense mechanisms via  
simultaneous assembly and activation of the Nox2-containing 
NADPH oxidase complex and mobilization of specific and 
azurophilic granules. As a result, phagosome–granule fusion 
and the production of superoxide anions and other toxic ROS 
is typically apparent within 60 seconds of particle or microbe  
binding3–5. The speed and efficiency of this process creates a 
highly lethal milieu in the phagosome lumen that consists of 
oxidants, cationic antimicrobial peptides, iron binding proteins, 
and enzymes such as elastase and myeloperoxidase (MPO).  
The formation of such an environment is in keeping with the 
ability of neutrophils to kill the majority of ingested microbes 
within 30 minutes6–8. By contrast, phagosome maturation in 
macrophages is relatively slow and consists of incremental  
modification of nascent phagosomes via sequential interaction  
with early endosomes, late endosomes, and lysosomes9.

The importance of NADPH oxidase-derived ROS to microbe  
killing is exemplified by the life-threatening infections that arise 
in patients who have inherited mutations in genes that encode  
subunits of this enzyme complex10. Pathogens that evade kill-
ing by neutrophils inhibit or evade toxic ROS and achieve 
this by inhibiting NADPH oxidase targeting, assembly, or  
activity11–14. Less is known about the mechanisms that control  
oxygen-independent defense mechanisms, including gran-
ule targeting and fusion, but recent data indicate that dis-
tinct Rab27-independent and -dependent mechanisms control 
azurophilic granule fusion with phagosomes and the plasma  

membrane, respectively15. Additional insight will likely be gleaned 
from further studies of pathogens that manipulate phagosome 
fusion with specific and/or azurophilic granules as part of their  
virulence strategies2.

The discovery of neutrophil extracellular traps (NETs) sug-
gested the existence of an additional mechanism that allows 
neutrophils to trap and/or kill extracellular microbes16. In a  
landmark study, Brinkmann et al. reported that some activated 
neutrophils release decondensed chromatin fibers as web-like 
structures to which cationic neutrophil proteins such as elastase, 
histones, and MPO are bound16. These structures—aptly  
named NETs—can ensnare and kill microorganisms. Subse-
quent work by the same group of researchers reported a mecha-
nism for the formation of NETs that requires ROS and, more  
notably, is a cytolytic process17. The formation of NETs that 
results from neutrophil lysis was proposed as a novel cell death  
program ultimately termed NETosis17,18. The formation of 
NETs and NETosis have often been used as synonymous 
terms for years, but whether the formation of NETs is always a 
result of the cytolytic process described as NETosis has been 
called into question19,20. Indeed, NETs can form from viable  
neutrophils21–23 or from neutrophils that have undergone  
non-specific lysis24. Thus, there is reasonable agreement in the 
field that the term “NETosis” should not be used to describe 
the formation of NETs unless a specific cell death mechanism  
is known19,25,26.

NETs have been studied extensively since the report by  
Brinkmann et al., and it is clear they can contribute to host  
defense. For example, Urban et al.27 and Branzk et al.28 reported 
that NETs are important for host defense against microbes 
that cannot be phagocytosed, such as fungi in hyphal form.  
More recently, Thanabalasuriar et al. demonstrated that NETs 
prevent dissemination of Pseudomonas aeruginosa from  
biofilms in a mouse infection model29. These roles for NETs 
in host defense are important and complementary to those of  
phagocytosis. However, the misconception that NETs are a  
primary means by which neutrophils kill microorganisms has 
become seemingly pervasive outside of the field of phagocyte 
biology. Here we compare and contrast phagocytosis and the  
formation of NETs (and outcomes associated with each process)  
as components of host defense.

Physical sequestration of microbes following 
phagocytosis
There is no question that the ability of neutrophils to sequester 
microbes within an enclosed phagocytic vacuole (phagosome) 
is important for host defense. Ingested microbes can no 
longer disseminate freely, and molecules normally shed or  
secreted from pathogenic microbes are contained within phago-
somes and thus unable to contribute to disease. By comparison, 
NETs ensnare microorganisms, but surface binding to a DNA 
scaffold is not likely to prevent dissemination fully. Moreover, 
NET-bound microbes are still able to release molecules  
such as bacterial endotoxins that can be detrimental. These 
latter points notwithstanding, studies by Branzk et al. and  
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Thanabalasuriar et al. underscore the important role played 
by NETs if phagocytosis is not possible (because particles are 
too large). Branzk et al. also found that when phagocytosis  
occurs, it inhibits the formation of NETs via a mechanism 
involving sequestration of neutrophil elastase28. This intrigu-
ing finding provides support to the idea that phagocytosis and  
NETs have specific roles in host defense.

High intraphagosomal concentration of microbicides
Few microorganisms have the ability to survive following  
phagocytosis by neutrophils. This is because intraphagosomal 
concentrations of neutrophil ROS and antimicrobial peptides 
are extraordinarily high, as intraphagosomal volume is limited  
(estimated at 1.2 µm3 for bacterial phagosomes)30,31. For exam-
ple, Winterbourn et al. estimated the initial rate of superoxide  
generation as 5.2 mM/second and the intraphagosomal con-
centration of MPO as ~1 mM31. Based on these estimates,  
hypochlorous acid (HOCl), commonly known as the active  
ingredient in household bleach, is produced at 134 mM/minute. 
The granule protein concentration in the neutrophil phagosome 
has been estimated to be as high as 200 mg/mL30. Although 
MPO and elastase, components of neutrophil azurophilic  
granules, are hallmark features of NETs, the amount present 
on an extracellular DNA scaffold is likely far less than that 
present in phagosomes. Moreover, the concentration of ROS  
produced within phagosomes is simply not possible on or 
near NETs, as intact and viable neutrophils are needed to pro-
duce ROS, the half-life of these molecules is limited, and they 
diffuse readily. Therefore, compared with the microbicidal  
processes that occur within phagosomes (following phagocytosis), 
NETs have far less capacity to kill microorganisms.

Nonphlogistic removal of apoptotic neutrophils
ROS and antimicrobial enzymes contained within neutrophil 
granules are not microbe specific and can also cause non-specific  
damage to host cells and tissues if they are released by exocyto-
sis or following cell lysis32–34. Extracellular release of these toxic 
agents by neutrophils contributes significantly to many human  
inflammatory diseases. Therefore, it is not surprising that neu-
trophil lifespan and antimicrobial functions are highly regu-
lated. Human neutrophils are terminally differentiated cells that 
undergo apoptosis constitutively at the end of their lifespan35.  
As neutrophils undergo apoptosis, they lose functional capac-
ity, as indicated by defects in chemotaxis, phagocytosis, degran-
ulation, and the ability to produce superoxide in response to 
certain stimuli36. Importantly, apoptotic neutrophils remain 
intact and are ingested by mononuclear phagocytes in a  
non-inflammatory process known as efferocytosis35. Removal 
of apoptotic neutrophils helps maintain immune system  
homeostasis and is key to resolution of the inflammatory response.  
This highly regulated process prevents host exposure to com-
ponents of lysed neutrophils. Therefore, it could be argued 
that the formation of NETs by cytolysis is an incidental phe-
nomenon that results from necrotic lysis rather than a unique  
type of cell death. This notion is gaining support among  
neutrophil biologists and cell death experts19,25.

Noncytolytic versus cytolytic processes for the 
formation of NETs
The formation of NETs was described initially as a cytolytic  
process that culminates in the loss of plasma membrane integ-
rity and release of cellular contents, most notably nuclear  
DNA, histones, and components of cytoplasmic granules, into 
the extracellular milieu16,17. Indeed, the majority of studies of 
NETs or their components either directly demonstrate or infer  
lysis of neutrophils. By comparison, Yousefi and colleagues 
first reported that extracellular traps form from mitochon-
drial DNA released from viable eosinophils37. This finding has  
since been extended to include neutrophils21 and basophils38.  
The formation of NETs from viable neutrophils is a noncy-
tolytic process and is therefore compatible with the regulated 
turnover of neutrophils described above. More notably, such a  
process has the potential to function in concert with phagocytosis, 
as described above for microbes that cannot be ingested.

NETs and human disease
Inasmuch as neutrophils are abundant leukocytes and have  
tremendous capacity for cytotoxicity, it is not unexpected that 
many diseases are associated with NETs. Although there are 
caveats with associating NETs and human disease, the sheer  
number of recent findings in this area underscores the impor-
tance of strictly regulated neutrophil activation and turnover 
(safe removal) to health and homeostasis. For example, NETs 
have been associated with multiple types of cancer and cancer  
metastasis39,40, including breast cancer41, hepatocellular carcinoma42, 
lung cancer43, ovarian cancer44, oral squamous cell carcinoma45,  
pancreatic cancer46, and thyroid cancer47. NETs have been impli-
cated in autoimmune disorders such as lupus erythematosus48–51 
and in the development of thrombosis52–54 and can contribute to 
the severity of sepsis55,56. Cell-free or extracellular DNA asso-
ciated with elastase, MPO, and/or citrullinated histones has 
been associated with numerous respiratory diseases. NETs or  
NET components have been found in sputum from individu-
als with chronic obstructive pulmonary disease57 and severe 
asthma58, plasma from patients with severe influenza A virus  
infection59, bronchoalveolar lavage fluid from patients with  
ventilator-associated pneumonia60, and in plasma from patients 
with acute respiratory distress syndrome61. Most recently, NETs  
have been associated with severe COVID-1962,63.

Collectively, these data further support the idea that nonphlo-
gistic turnover of neutrophils is essential to human health. In 
contrast to NETs, neutrophil phagocytosis is not associated  
directly with severe pathologies or disease.

Conclusion
The idea that neutrophils utilize NETs extensively to eradi-
cate microbes or that NETs are employed for host defense more  
prominently than phagocytosis has become increasingly per-
vasive outside of the field of phagocyte biology. Although  
a significant body of work supports the notion that NETs can 
contribute to host defense, the relative contribution of NETs 
to human host defense in vivo remains largely unknown. This  
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issue is difficult to address, in part because the formation of  
NETs and neutrophil lysis can be synonymous. Identifica-
tion of cell-free/extracellular DNA associated with citrullinated 
histones and/or neutrophil granule proteins is consistent with  
neutrophil lysis in vivo, a phenomenon linked to tissue destruc-
tion and disease. Indeed, the vast majority of studies published 
on the topic of NETs within the past two years underscore the 
role of NETs in disease. These data are consistent with the  
long-held tenet that uncontrolled release of neutrophil com-
ponents, as occurs in cytolysis, is detrimental to health and  
exacerbates disease. Notably, the host immune system has 
evolved numerous tightly controlled mechanisms to prevent 

cytolysis, which implies that the formation of NETs via cell 
lysis is incidental, as is the contribution of such NETs to host  
defense.

Here we considered phagocytosis and NETs as components of 
host defense. Based on an assessment of historic and recently  
published studies and established paradigms, it seems clear 
that phagocytosis coupled to rapid phagosome–granule fusion  
and ROS production remains the primary means by which neu-
trophils eliminate invading microbes. More work is needed to  
determine the relative contribution of NETs and other lytic  
cell death mechanisms to host defense in vivo.
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