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Abstract

Corticosteroid-binding globulin (CBG) is the specific carrier of circulating glucocorticoids,

but evidence suggests that it also plays an active role in modulating tissue glucocorticoid

activity. CBG polymorphisms affecting its expression or affinity for glucocorticoids are asso-

ciated with chronic pain, chronic fatigue, headaches, depression, hypotension, and obesity

with an altered hypothalamic pituitary adrenal axis. CBG has been localized in hippocampus

of humans and rodents, a brain area where glucocorticoids have an important regulatory

role. However, the specific CBG function in the hippocampus is yet to be established. The

aim of this study was to investigate the effect of the absence of CBG on hippocampal gluco-

corticoid levels and determine whether pathways regulated by glucocorticoids would be

altered. We used cbg-/- mice, which display low total-corticosterone and high free-corticoste-

rone blood levels at the nadir of corticosterone secretion (morning) and at rest to evaluate

the hippocampus for total- and free-corticosterone levels; 11β-hydroxysteroid dehydroge-

nase expression and activity; the expression of key proteins involved in glucocorticoid activ-

ity and insulin signaling; microtubule-associated protein tau phosphorylation, and neuronal

and synaptic function markers. Our results revealed that at the nadir of corticosterone secre-

tion in the resting state the cbg-/- mouse hippocampus exhibited slightly elevated levels of

free-corticosterone, diminished FK506 binding protein 5 expression, increased corticoste-

rone downstream effectors and altered MAPK and PI3K pathway with increased pY216-

GSK3β and phosphorylated tau. Taken together, these results indicate that CBG deficiency

triggers metabolic imbalance which could lead to damage and long-term neurological

pathologies.
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Introduction

Glucocorticoids, cortisol in humans and corticosterone in rodents (CORT), are endogenous

steroid hormones secreted by the adrenal glands under the regulation of the hypothalamic-

pituitary-adrenal (HPA) axis. They have pleiotropic functions involved in the stress response

[1, 2], energy metabolism [3], reproductive function [4], and inflammatory and immune

responses [5]. Excessive circulating CORT levels have been linked to insulin resistance and

type 2 diabetes through their role in inhibiting the actions of insulin [6] and through

impairment of pancreatic β-cell function [7, 8].

CORT also plays an important role in the central nervous system. High levels of circulating

CORT are associated with memory impairment [9–11]. The effect of excess CORT on cogni-

tive impairment is largely attributed to reduced volume of the hippocampus, deficits in neuro-

genesis, and CORT-mediated synaptic plasticity [12]. It has been suggested that the cognitive

impairment associated with type 2 diabetes may involve CORT [13, 14], and CORT hyperse-

cretion has been reported in Alzheimer’s disease [15, 16] with the speed of cognitive decline

being linked to increases in both blood and central nervous system CORT levels at the pre-

dementia clinical stage [17, 18].

The two major receptors that mediate CORT functions are the glucocorticoid receptor

(GR) and mineralocorticoid receptor (MR). These receptors have different spatial distributions

in the brain and peripheral organs with GR being more broadly distributed and serving as the

main receptor at times of stress [19]. In the hippocampus, MR and GR coexist in the same cells

[20]. GR and MR sensitivity to CORT can be modulated by FK506 binding protein 5 (FKBP5),

which inhibits the receptor’s activity by delaying its translocation to the nucleus, resulting in

decreased dependent transcriptional activity and thereby acting as a regulator of the HPA axis

[21].

Corticosteroid-binding globulin (CBG) is a specific carrier of circulating CORT. The role

of CBG is to regulate the free biologically active fraction of CORT, and approximately 80%-

90% of CORT in the blood is bound to CBG with high affinity [22, 23]. However, some evi-

dence suggests a more active role for CBG in directly modulating glucocorticoid activity [24].

In humans, several CBG mutations in the gene encoding CBG (SERPINA6) have been identi-

fied that affect the expression of CBG or its affinity for glucocorticoids, and some mutations

knockout CBG entirely [25]. The most common clinical symptoms of patients with CBG

mutations include chronic pain, chronic fatigue, chronic headaches, depression, relative hypo-

tension, and obesity. These patients also display irregular activity of the HPA axis with low

plasma levels of total-CORT and normal amounts of free-CORT, resulting in an elevated free-

CORT fraction [25]. CBG-knockout mice exhibit higher mortality in response to septic shock

[26], impaired response of the HPA axis to emotional stress [27], and larger adipocytes in vis-

ceral adipose tissue upon consumption of a high-fat diet [28]. Under basal conditions, CBG-

deficient mice also display low total-CORT circulating levels [26, 27] with normal free-CORT

levels in the evening (maximum CORT-secretion in rodents) [27] and elevated free-CORT lev-

els at nadir CORT-secretion [26, 27]. In addition, CBG-deficient mice lose the usual sexual

dimorphism of total-CORT circulating levels, and both sexes show similar values [29, 30].

Adrenal gland functionality is altered in CBG-deficient mice with diminished expression of

genes involved in CORT synthesis, in spite of the increased adrenal CORT concentration in

females, indicating an active role of CBG in regulating CORT adrenal excretion [31]. In con-

trast, it has also been shown that CBG-deficient mice present a more inflamed white adipose

tissue [32]. We previously described the expression of CBG in the white adipose tissue, lung

and adrenal gland [28, 30, 31, 33]. Lung CBG expression in males is greater than that in

females, in contrast to the expression observed in the liver [30, 34]. In pro-inflammatory
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physiological environments, such as diet-induced obesity, CBG expression is increased in

white adipose tissue [28]. CBG expression in the lung is also increased in the cases of acute

pancreatitis and cystic fibrosis, which are characterized by serious lung inflammation [30, 34].

It has been suggested that circulating CBG may be important in delivering CORT to the brain,

where it acts on neurons through fast non-genomic actions to modulate stress-induced behav-

ior, learning, memory retrieval [35], and consolidation [36]. Furthermore, CBG has been

found in different locations of the brain in humans and rodents [37–40], but its function is yet

to be established.

There are two types of 11β-Hydroxysteroid dehydrogenase (11BHSD) enzymes, both of

which are involved in CORT tissue bioavailability [41]. Type 1 (11BHSD1) activates CORT to

convert cortisone to cortisol in humans or 11dehydrocorticosterone to corticosterone in

rodents, whereas type 2 (11BHSD2) inactivates CORT, which catalyzes the reverse reaction

[41]. We found that CBG-deficient mice show lower 11BHSD2 expression levels in the liver

and lungs, but higher levels in visceral adipose tissue compared to those in wild-type mice [28,

30].

Based on these previous findings, the aim of the current study was to determine whether

the absence of CBG would modify hippocampal CORT levels and whether pathways regulated

by CORT would also be altered. For this purpose, we used cbg-/- mice, which display low total-

CORT and high free-CORT blood levels at the nadir of CORT-secretion under basal condi-

tions [28]. We evaluated the hippocampus for total- and free-CORT levels, 11BHSD1 and

11BHSD2 gene expression, 11BHSD activity, and key protein expression associated with

CORT activity, insulin signaling, tau phosphorylation, and neuronal and synaptic function.

Our results revealed that, in the basal state, cbg-/- mice exhibited slightly increased nadir free-

CORT levels, elevated MR expression, increased expression of CORT target genes, reduced

FKBP5 expression, altered MAPK and PI3K pathways with increased pY216-GSK3β, and

greater levels of phosphorylated tau protein. There were no significant changes in the protein

levels of the neuronal and synaptic function markers examined.

Materials and methods

Animals and experimental protocols

Sixteen-week-old wild-type (cbg+/+) and CBG-deficient (cbg-/-) male mice were used. The col-

ony of mice was established in-house by crossing the heterozygous breeds kindly provided by

Dr. T.E. Willnow [26]. The procedure used to generate CBG-knockout mice has been previ-

ously described [26]. Two mice per cage were housed in polycarbonate cages (220 mm w × 220

mm w × 145 mm h) under a controlled environment of a light cycle from 08:00 to 20:00 and in

a temperature of 20–22˚C. The mice were provided access to a standard laboratory pelleted

formula (Teklad Global 2018, Harlan-Interfauna Ibérica, Sant Feliu de Codines, Spain) and

tap water ad libitum. For the study, twelve mice of each genotype were selected and before the

sacrifice were fasted overnight. The mice were weighed (36.9 ± 1.0 g cbg+/+ and 34.3 ± 1.2 g

cbg-/-) and then euthanized under isoflurane anesthesia between 07:00 and 09:00. The hippo-

campi were carefully removed and frozen at -80˚C until use. To prevent stress, the mice were

kept in a separate room different from which they were anesthetized and euthanized individu-

ally. To avoid HPA activation, the handling from the cage to the sample obtention lasted no

more than two minutes, and the time between the sacrifice of both mice from the same cage

did not exceed 5 minutes. All procedures were conducted in accordance with the guidelines

for the use of experimental animals established by the European Union, Spain, and Catalonia,

and were approved by the Animal Handling Ethics Committee of the University of Barcelona.
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Determination of total and free corticosterone in the hippocampus

Hippocampal fractions of approximately 10 mg were used for lipid extraction and subsequent

determination of CORT levels using a Correlate-EIA Corticosterone Enzyme Immunoassay Kit

(Assay Designs, Inc., Ann Arbor, MI, USA). The hippocampal fractions were homogenized in

Assay Buffer Concentrate 151 assay buffer provided in the kit. Homogenates were then soni-

cated on ice for 5 s at 200 W (Branson Sonifier 2501 Analog Ultrasonic, Branson Ultrasonics,

MI, USA) in ice. The homogenates were centrifugated at 10,000 g at 4˚C for 20 min and the

supernatants collected and frozen at -80˚C until further use. A portion of the supernatant was

used to determine the levels of free-CORT levels while the other portion was used to determine

the total-CORT levels after displacement treatment. For total-CORT determination, the super-

natant samples used were incubated with Steroid Displacement Reagent1 (1:40) provided with

the kit for 15 min to release the steroids bound to the proteins. For lipid extraction ethyl acetate

(1:1) was then added to both, the aliquot for total-CORT and for free-CORT, the mixture was

stirred, and the upper phase corresponding to the fat-soluble phase was extracted and collected.

This extraction process was repeated three times. Finally, the samples were desiccated at -20˚C

on carbonic dry ice overnight and resuspended in assay buffer. The samples were stored at

-80˚C until use. For quantitative measurement of CORT in the hippocampus, the commercially

available competitive enzyme immunoassay Correlate-EIA Kit (Assay Designs) was used. The

kit contained a polyclonal antibody with high specificity to free-CORT present in standards

(20,000, 4,000, 800, 160, and 32 pg/mL CORT) or in biological samples. The sensitivity of the

assay was 26.99 pg/mL. The Correlate-EIA assays were performed according to the supplier’s

specifications. Briefly, 200 μL of each sample and standard were included. For the B0 standard

(0 pg/ml) and nonspecific binding (NSB) control, 100μL and 150 μL of the standard diluent

(Assay Buffer 151) were added, respectively. The corticosterone solution conjugated to alkaline

phosphatase (Corticosterone EIA Conjugate1) and anti-CORT antibody (Corticosterone EIA

Antibody1) were added to all wells except the NSB control well. After incubation for 2 h at

room temperature with shaking (400 rpm), the wells were washed three times using Wash

Buffer Concentrate1. Then, 200 μL of p-Npp Substrate1 solution was added to all wells and

the plate was incubate for an additional 1 h at room temperature without shaking. Immediately

after the final incubation, Stop Solution1 (50 μL) was added to all wells and the absorbance

was read at 405 nm using a Multiskan Thermo LabSystem spectrophotometer (Thermo Scien-

tific, MA, USA). All samples and standards were measured in duplicate.

11β-hydroxysteroid dehydrogenase activity in hippocampal homogenates

To evaluate 11BHSD activity, an assay mixture was used containing 100 nM 3H-corticosterone

(specific activity 16.6 GBq/mmol; Perkin Elmer, MA, USA) in Krebs Ringer buffer (pH 7.4), 2

mM nicotinamide adenine dinucleotide phosphate (NADP), 0.2% glucose, and hippocampal

homogenates obtained for western blotting that were diluted with Krebs buffer to 1.5 mg pro-

tein/mL. Blanks were included by adding buffer instead of homogenates. The reaction mixes

were incubated for 2 h at 37˚C. Steroids were extracted using 2 mL ethyl acetate and separated

by thin layer chromatography (TLC) using dichloromethane:acetone (4:1) as the mobile phase.

The radioactivity in each TLC fraction was measured using standard liquid scintillation. The

assay was performed in duplicate for each sample. The activity was expressed as pmol of

11-dehydrocorticosterone per mg of protein and hour of incubation.

RNA isolation and Real Time PCR

Total RNA from 10–20 mg hippocampus samples was extracted using TRI Reagent solution

(Ambion, Inc., TX, USA). The RNA was quantified using a NanoDrop ND-1000
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spectrophotometer (NanoDrop Technologies, NC, USA) and its quality verified by electropho-

resis. Complementary DNA (cDNA) was then synthesized using 2 μg of RNA as template,

MMLV reverse transcriptase (Promega, WI, USA), and oligo-dT primers (Attendbio, Barce-

lona, Spain). The reaction was incubated at 72˚C for 5 min followed by 42˚C for 60 min and

then stored at -80˚C until use. Real-time PCR was conducted using SYBR Green Master Mix

(Life Technologies, CA, USA) and an ABI PRISM 7900 HT system (Applied Biosystems, CA,

USA) using 10 μL of amplification mixtures containing 10 ng of cDNA and 300 nM of the cor-

responding forward and reverse primers. Primer sequences forward and reverse used were:

11β-hydroxysteroid dehydrogenase 1 (11BHSD1) 5’-CAAGGTCAACGTGTCCATCA-3’ and

5’-TCCCAGAGATTTCCTTCATAGC-3’; 11β-hydroxysteroid dehydrogenase 2 (11BHSD2)

5’-CTCCAAGGCAGCAATAGCAC-3’ and 5’-CGTTTCTCCCAGAGGTTCAC-3’; Gluco-

corticoid Receptor (GR) 50-AACCTGACTTCCTTGGGGGC-30 and 50-GGCAGAGTTTGGGA
GGTGGT-30; Mineralocorticoid Receptor (MR) 50-TGGACAGAGTTGGCAGAGGTT-30 and

50-CCACCTTCAGAGCCTGGGAT-30; Plasminogen activator inhibitor-1 (PAI-1) 5’-CGCC
TCCTCATCCTGCCTAA-3’ and 5’-TGTGCCGCTCTCGTTTACCT-3’; Dual specificity

phosphatase 1 (DUSP1) 50-GCTGGAGGGAGAGTGTTTGT-30 and 50-ATACTCCGCCTCTG
CTTCAC-30; Period circadian regulator 1 (PER1) 5’-GAGGGATTTTGGCAGATGAA-3’ and

5’-GGGACAAGGGGGTTTATTGT-3’; Serum and glucocorticoid-regulated kinase 1 (SGK1)

5’-GTGTCTTGGGGCTGTCCTGT-3’ and 5’-GGTGCCTTGCCGAGTTTGT-3’; FK506

Binding Protein 5 (FKBP5) 50-GGCGAGGGATACTCAAACCCA-30 and 50-CAACGAACAC
CACATCTCGGC-30; Insulin Receptor β (IRβ) 50-ACCTTCGAGGATTACCTGCACA-30 and

50-CGCTTTCGGGATGGCCTACT-30; Microtubule-associated protein tau (Tau) 50-GCA
ACGTCCAGTCCAAGTGTG-30 and 50-CTCAGGTCCACCGGCTTGTA-30 and for β-actin 50-
ACTGCTCTGGCTCCTAGCAC-30 and 50-GAGCCACCGATCCACACAGA-30. Reactions were

performed in duplicate and threshold cycle values were normalized to β-actin gene expression.

Specificity of the products was determined by melting curve analysis and the ratio of the rela-

tive expression of target genes to β-actin was calculated using the ΔC(t) formula.

Western blot analysis of hippocampal homogenates

Hippocampal samples for western blot analysis were prepared by homogenizing hippocampal

tissue (10 mg) at 4˚C in HEPES-buffered saline (100 mM HEPES, 200 mM NaCl, 2 mM

Na4P2O7, 10% glycerol, and 5 mM EDTA, pH 7.2) containing 1% Nonidet P-40 (Roche,

Basel, Switzerland) and Complete Protease Inhibitor Cocktail (diluted 1:100; Roche). Samples

were sonicated on ice for 5 s at 200 W using the Branson Sonifier 2501 Analog Ultrasonic

sonicator. After centrifugation at 10,000 × g and 4˚C for 20 min, the pellet was discarded and

supernatant collected and stored at -80˚C until use. Protein concentration was measured using

the bicinchoninic acid (BCA) Protein Assay (Thermo Scientific, MA, USA). Samples (10–

30 μg of protein) were separated electrophoretically by SDS-PAGE and electrotransferred to a

polyvinylidene fluoride membrane (Millipore Corporation, MA, USA). For each group, hippo-

campal homogenate samples from 12 mice were transferred to two membranes, alternating

two samples from cbg+/+ mice with 2 samples from cbg-/- mice, except for CBG and DUSP1

where six hippocampus samples from cbg+/+ mice were followed by six samples from cbg-/-

mice. Prestained Protein Standard (161–0318, BioRad, CA, USA) was run along with the sam-

ples on each electrophoresis gel to determine the molecular weight of the samples. The mem-

branes were incubated in 5% nonfat milk or 2.5% bovine serum albumin (BSA) in 0.05%

TBS-Tween (pH 7.4) for 60 min at room temperature to block nonspecific binding. The mem-

branes were then incubated overnight at 4˚C with one of the following primary antibodies:

anti-CBG (1:1,000; LC-C39044, LifeSpan, RI, USA), anti-GR (1:1,000; sc-12763, Santa Cruz
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Biotechnology, CA, USA), anti-MR (1:500; Ab64457, Abcam, MA, USA), anti-PAI-1 (1:1,000;

#PA5-79980, Thermo Fisher Scientific, MA, USA), anti-DUSP1 (1:700; sc-37384, Santa Cruz

Biotechnology), anti-pY1361-IRβ (1:1,000; #3023, Cell Signaling Technology, MA, USA), anti-

IRβ (1:1,000; #3025, Cell Signaling Technology), anti-Akt (1:1,000; #9272, Cell Signaling Tech-

nology), anti-p-Akt S473 (1:1,000; #9271, Cell Signaling Technology), anti-p-ERK T202/Y204

(1:1,000; #OSE00009W, Osenses, Keswick, Australia), anti-ERK (1:2,000; sc-514302, Santa

Cruz Biotechnology), anti-p-JNK T183/Y185 (1:1,000; #9251, Cell Signaling Technology),

anti-JNK (1:1,000; sc-7345, Santa Cruz Biotechnology), anti-p-Tau AT8 (1:1,000; #MN1020,

Thermo Fisher Scientific), anti-Tau (1:100; 57780, Sigma, MO, USA), anti-pY216-GSK3β
(1:1,000; ab75745, Abcam, MA, USA), anti-pS9-GSK3β (1:1,000; #9336, Cell Signaling Tech-

nology), anti-GSK3β (1:1,000; #9315, Cell Signaling Technology), anti-synaptophysin

(1:50,000; MAB368, Millipore Corporation), anti-PSD95 (1:1,000; #04–1066, Millipore Corpo-

ration), anti-NR1 (1:1,000; #05–432 Millipore Corporation), anti-NR2A (1:1,000; #04–901,

Millipore Corporation), anti-Arc (1:1,000; sc-15325, Santa Cruz Biotechnology), or anti-

mBDNF (1:500; VPA00760, AbD Serotec). Anti-β-actin (1:2,000; sc-47778, Santa Cruz Bio-

technology or 1:10.000 A-5316 Sigma-Aldrich, MO, USA.) was used as a loading control. The

immunoreactive proteins were then detected by anti-rabbit or anti-goat horseradish peroxi-

dase-conjugated secondary antibody (1:2000; sc-2054 or 1:20,000; sc-2922, Santa Cruz Bio-

technology, USA) according to the primary antibody used. Immunopositive bands were

visualized with enhanced chemiluminescence (ECL) using Amersham ECL Western Blotting

Detection Reagents (Amersham, Buckinghamshire, United Kingdom) or using the Luminata™
Forte Western HRP Substrate (Millipore Corporation). Optical density (OD) of the reactive

bands visible on the X-ray film was densitometrically determined using ImageJ IJ1.46r free

software (Wayne Rasband, National Institutes of Health). Results are expressed as the percent-

age of OD values relative to that of the cbg+/+ mice. Some of the blots were re-probed after

treatment with stripping buffer, pH-6.7 (62.5mM Tris-HCl, 2% SDS, deionized water) for 15

min at 50˚C.

Statistical analysis

Data were analyzed using GraphPad software version 5.0 and are expressed as mean ± SEM.

Normality was checked using Kolmogorov-Smirnov test and/or Shapiro-Wilk test depending

on the sample size. Statistical comparisons were made using Student’s t-test or Mann-Whitney

test with two-tailed, and P < 0.05 was considered statistically significant.

Results

Fig 1 shows CBG protein levels, total and free-CORT levels, 11BHSD1 and 11BHSD2 mRNA

levels and 11BHSD activity in hippocampal homogenates of cbg-/- and cbg+/+ mice. The results

confirmed the presence of CBG in the hippocampi of cbg+/+ mice, while it was absent in the

hippocampal homogenates of cbg-/- mice (Fig 1A). Total-CORT levels in the hippocampus did

not change as a consequence of CBG deficiency (20.34 ± 2.62 vs. 22.31 ± 2.28 ng CORT/g pro-

tein in cbg+/+ and cbg-/- mice respectively, P = 0.512), but the free-CORT levels were slightly

elevated in cbg-/- mice compared to those in cbg+/+ mice (20.90 ± 3.11 vs. 12.61 ± 3.45 ng

CORT/g protein respectively, P = 0.047) (Fig 1B). There were no differences in 11BHSD activ-

ity (449 ± 82 vs. 349 ± 56 pmol 11-Dehydrocorticosterone /mg protein, P = 0,699) (Fig 1E)

and neither 11BHSD1 (93 ± 7 vs. 100 ± 9, P = 0.273) and 11BHSD2 mRNA levels (195 ± 67 vs.

100 ± 15, P = 0.222) between cbg-/- and cbg+/+ mice (Fig 1C and 1D).

Fig 2A shows mRNA levels of the two types of CORT receptors and their target genes PAI-

1, DUSP1, SGK, and PER-1. The GR, MR, PAI-1, and DUSP1 respective protein levels were
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determined by western blotting (Fig 2B). The mRNA levels of FKBP5, a regulator of CORT

activity, are shown in Fig 2C. The levels of GR mRNA and protein were unchanged in the hip-

pocampus of cbg-/- mice compared to those of cbg+/+ mice, but MR mRNA and protein levels

were significantly increased in CBG-deficient mice. FKBP5 expression was reduced in cbg-/-

mice, which allowed CORT action through GR and MR with increased DUSP1, PAI-1, SGK1

and PER-1 expression, all of which are downstream genes regulated by CORT through GR,

MR, and GR/MR activity.

IRβ expression and its phosphorylation at residue tyrosine-1361, which are associated with

IR transduction through IRS1/2 to PI3K or MAPK signaling, are shown in Fig 3A. Increased

levels of IRβ mRNA and protein were found in cbg-/- mice compared to those in cbg+/+ mice;

however, there were no changes in total phosphorylation levels (pY1361IRβ). Consequently,

Fig 1. From hippocampal samples of cbg+/+ and cbg-/- mice: A) Representative western blot of CBG, B) Total and free-CORT, C) mRNA levels of

11BHSD1, D) mRNA levels of 11BHSD2 and E) 11BHSD activity. 11-DHC = 11-Dehydrocorticosterone. Western blots show 4 representative samples for

each genotype. Data are the mean ± SEM of 6–12 mice and differences between cbg+/+ vs cbg-/-: �P<0.05.

https://doi.org/10.1371/journal.pone.0246930.g001
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was observed a tendency of decreased pY1361IRβ/IRβ ratio, but this was not statistically signif-

icant. Downstream effectors of the IR-PIK3 pathway, such as Akt, showed no changes in the

levels of total protein in the hippocampus of cbg-/- mice, but did demonstrate reduced phos-

phorylation (Fig 3B). A similar pattern was observed for downstream effectors of the

IR-MAPK pathway, including ERK and JNK (Fig 3C and 3D). Taken together, these data indi-

cate that the insulin signaling pathway in cbg-/- mice was altered compared to that in cbg+/+

mice.

No differences in Tau mRNA or total protein levels were found between cbg+/+ and cbg-/-

mice; however, CBG deficiency was associated with a significant increase in the phosphoryla-

tion of Tau protein at residues serine-202 and threonine-205, both of which were detected by

the anti-AT8 antibody (Fig 4A). The active form of GSK3β, which is phosphorylated at residue

tyrosine-216, was elevated in cbg-/- mice, while levels of the inactive form, which is phosphory-

lated at residue serine-9, were reduced compared to that in cbg+/+ mice (Fig 4B). Lower levels

of the inactive form of GSK3β were in accordance with the reduced levels of pAkt, which is

responsible for GSK3β phosphorylation at serine-9 and increased levels of phosphorylated Tau

(pTau).

Fig 5 shows the protein levels of neuronal and synaptic function markers. Although CBG

deficiency altered insulin signaling and Tau phosphorylation in the hippocampus of cbg-/-

mice, no significant differences in the protein levels of the neuronal and synaptic function

markers evaluated were detected between cbg+/+ and cbg-/- mice.

Fig 2. From hippocampal samples of cbg+/+ and cbg-/- mice: A) mRNA levels of GR, MR and their target genes PAI-1, DUSP1, SGK1 and PER1, B) protein levels by

western blot of GR and MR and their target gene PAI-1 and DUSP1, C) mRNA levels of the regulator of CORT activity FKBP5. All western blots show 4

representative samples for each genotype. GR = Glucocorticoid Receptor MR = Mineralocorticoid Receptor, PAI-1 = Plasminogen activator inhibitor-1,

DUSP1 = Dual specificity phosphatase 1, SGK1 = Serum and glucocorticoid-regulated kinase 1 and PER1 = Period circadian regulator 1 and FKBP5 = FK506

Binding Protein 5. Data are the mean ± SEM of 6–12 mice and differences between cbg+/+ vs cbg-/-:�P<0.05.

https://doi.org/10.1371/journal.pone.0246930.g002
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Discussion/Conclusion

The current study investigated whether CBG deficiency affected glucocorticoid levels and

activity in the hippocampus, an area of the brain that is involved in learning and memory pro-

cesses and contains a high density of GR and MR [20, 42] and, in which CORT plays an impor-

tant role [10–12]. The presence of CBG has been reported in cells from the pineal gland,

hypothalamus, hippocampus, and cerebrospinal fluid [37–40], although its role is currently

unknown. Here, we confirmed the presence of CBG protein in the mouse hippocampus and

found that at rest, CBG deficiency resulted in slightly elevated morning levels of free-CORT

and features typical of CORT excess, suggesting that CBG regulates CORT availability in this

part of the nervous system. Tissue bioavailability of CORT is regulated through 11BHSD activ-

ity. In the present study, we measured 11BHSD1 and 11BHSD2 expression and the overall

11BHSD activity. It is difficult to specifically determine type 1 activity because 3H-11-dehydro-

corticosterone is not commercially available. It has been previously reported that the hippo-

campus is one of the brain areas that is rich in 11BHSD1 activity [43], where it acts as a

reductase [44] providing corticosterone, and is responsible in part for circadian and stress cor-

ticosterone fluctuations in the hippocampus [45]. Although we previously reported altered

local 11BHSD1 and 2 expression in tissues such as liver, lung, and white adipose tissue due to

CBG deficiency [28, 30], herein we identified no differences in the hippocampus. According to

Fig 3. From hippocampal samples of cbg+/+ and cbg-/- mice: A) IRβ mRNA levels and total IRβ and phosphorylated IRβ (tyr-1361) protein levels; B) Total Akt and

phosphorylated Akt protein levels; C) ERK and phosphorylated ERK protein levels; D) JNK and phosphorylated JNK protein levels. All western blots show 4

representative samples for each genotype. Data are the mean ± SEM of 6–12 mice and differences between cbg+/+ vs cbg-/-: �P<0.05.

https://doi.org/10.1371/journal.pone.0246930.g003
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our results, while plasma total-CORT levels are lower in cbg-/- mice, the similar hippocampal

total-CORT levels compared to cbg+/+ mice cannot be explained by locally increased 11BHSD

activity.

The knockout mouse model used in the present study exhibits reduced serum levels of

total-CORT compared to those in cbg+/+ mice (90-175nM in cbg-/- vs. 200-300nM in cbg+/+)

and higher amounts of free-CORT compared to cbg+/+ mice (10-30nM in cbg-/- vs. 3-5nM in

cbg+/+) measured at the nadir of the circadian rhythm and under basal conditions as previously

reported [26, 28, 30, 31]. In contrast, we observed similar levels of total-CORT, but signifi-

cantly higher free-CORT levels in the hippocampus of cbg-/- mice compared to those in cbg+/+

mice, which represented 93% of the total CORT. However, other authors have reported

reduced levels of free-CORT in the dorsal hippocampus of CBG-deficient mice after exposure

to stress [35]. Differing experimental conditions can explain these discrepancies. In the present

study, hippocampal CORT content was evaluated from a tissue homogenate at a specific point,

in the morning (the nadir point of CORT secretion), and under basal conditions, whereas

Minni et al. [35] evaluated the CORT level over time through microdialysis of a cannulated

dorsal hippocampus before and after a stress test. Similar corticosterone levels have also been

found in the adrenal gland of cbg-/- compared to cbg+/+ mice, particularly in females. This was

found despite the downregulation in the expression of enzymes involved in CORT synthesis as

a consequence of CBG deficiency, suggesting a role of CBG in mediating tissue CORT release

[31]. We investigated whether cbg-/- mice hippocampi showed increased glucocorticoid activ-

ity. While there were no differences in the levels of GR, increased MR expression was observed.

In the same way, Solas et al. found that in situations of glucocorticoid excess, there was a

decrease in GR but an increase in MR levels [46, 47] which is consistent with our results. This

Fig 4. From hippocampal samples of cbg+/+ and cbg-/- mice: A) Tau mRNA levels, total Tau and phosphorylated Tau protein levels; B) Protein levels of

GSK3β, phosphorylated GSK3β (tyr-216) active form and phosphorylated GSK3β (ser-9) inactive form. All western blots show 4 representative samples for

each genotype. Data are the mean ± SEM of 6–12 mice and differences between cbg+/+ vs cbg-/-: �P<0.05.

https://doi.org/10.1371/journal.pone.0246930.g004
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implies that different levels of CORT may elicit different responses by binding to the MR and/

or GR, leading to the formation of homodimers (GR-GR) or heterodimers (GR-MR) that trig-

ger the expression of different responsive genes, and thereby, different signaling pathways [46,

48, 49]. Datson et al. reported that CORT in the hippocampus mediates its actions mainly

through either the MR or GR, while only a few targets are responsive to both MR and GR acti-

vation [50]. Here, consistent with elevated CORT activity being regulated through the MR, we

observed increased gene expression of PAI-1, a known downstream effector of activated MR

[51]. However, the increased levels of DUSP1 in CBG-deficient mice, a CORT target gene

induced through GR [52], suggest that GR-mediated actions are also increased in the absence

of CBG. In addition, increased gene expression of SGK-1 and PER-1, GR/MR target genes [53,

54], also occurs in CBG-deficient mice. An increase in GR and MR receptor expression is nor-

mally expected when CORT levels are deficient, for example, after adrenalectomy [55]. Minni

et al. [56] found a tendency of increased GR and MR mRNA levels in the hippocampus of

CBG-deficient mice 3 hours after stress, which would be consistent with low CORT activity.

However, Solas et al. [46, 47], as mentioned above, in mice under a CORT-excess environment

found a decrease in GR but an increase in MR, approaching that found in CBG-deficient mice.

On the other hand, FKBP5 is a co-chaperone that promotes receptor-complex conformation,

lowering the affinity of CORT to the GR [21] and MR [57], inhibiting receptor activity, and

downregulating CORT activity Thus, FKBP5 enables homeostatic regulation of the HPA axis,

Fig 5. From hippocampal samples of cbg+/+ and cbg-/- mice: synaptophysin, mBDNF, arc, PSD95, NR1 and NR2A protein levels. All western blots show 4

representative samples for each genotype. Data are the mean ± SEM of 6–12 mice and differences between cbg+/+ vs cbg-/-: �P<0.05.

https://doi.org/10.1371/journal.pone.0246930.g005
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which is essential for the stress response [58]. In the current study, we found an unexpected

decrease in FKBP5 in cbg-/- mice. FKBP5 expression typically increases under the action of

CORT, with a role in restraining the effects of CORT and preventing the interaction of CORT

with the GR and MR [21]. Polymorphisms affecting FKBP5 affinity for CORT receptors have

been associated with HPA axis disorders, such as anxiety or stress altered responses [21, 58,

59]. As noted above, CBG-deficient mice have an altered HPA axis with elevated ACTH

plasma levels [26] and a diminished adrenal response that entails adrenal hyperplasia [28, 31],

with impairment of CORT synthesis and secretion [31]. Collectively, our current findings, in

addition to those previously reported, reinforce the hypothesis that CBG has an unexplored

role in CORT action and homeostatic regulation of the HPA axis.

It has been suggested that cognitive impairment in diabetes may be linked to elevated gluco-

corticoid levels that are frequently associated with this disease [13]. Although a clear decrease

in IRβ phosphorylation in the hippocampus of cbg-/- mice was not found, a decrease in down-

stream IR-regulated effectors was observed, despite the significant increase in IRβ total expres-

sion. cbg-/- mice exhibited alterations in the PI3K signaling pathway with reduced levels of

phosphorylated Akt and thereby lower levels of pS9GSK3β, the inactive form of GSK3β. These

results are in agreement with a previous study where CORT excess was shown to induce insu-

lin resistance through increased MR expression [46]. However, we previously reported that

cbg-/- mice do not show altered serum glucose or insulin levels [28].

MAPK pathway activation by insulin triggers ERK and JNK phosphorylation. CBG defi-

ciency is associated with a reduction in phosphorylated forms of both ERK and JNK. In addi-

tion, JNK is central to the stress-induced insulin resistance response, as it phosphorylates IRS1

at the inhibitory site Ser-307 and blocks insulin signal transduction [60, 61]. Previously, Solas

et al. reported that chronic CORT administration elicits insulin resistance in the hippocampus

by promoting JNK activation [46], the opposite to our finding in CBG-deficient mice. The

main difference between these experiments is the lack of CBG. DUSP1 upregulation observed

in cbg-/- mice may be responsible for the decreased levels of pJNK, as DUSP1 is known to

block MAPK and JNK activation [62].

Excess CORT has been linked to cognitive impairment and Alzheimer’s disease, with pTau

protein also being involved [46]. In parallel, cbg-/- mice had significantly increased pTau levels

in the hippocampus, perhaps due to the slight increase in free-CORT levels. Tau phosphoryla-

tion is carried out by several kinases belonging to different signaling pathways, such as GSK3β.

Our current results suggest that increased pTau levels in CBG-deficient mice may be a conse-

quence of an altered Akt-Gsk3β pathway, as cbg-/- mice showed increased pY216-GSK3β
(active form of GSK3β) and decreased pS9-GSK3β (inactive form of GSK3β) levels, which

would be expected to result in increased levels of pTau.

Despite the changes in the MAPK and PI3K signaling pathways and Tau phosphorylation,

cbg-/- mice did not show any apparent impairments in synaptic function, as there were no

changes in the synaptic markers evaluated here. Although excess CORT promotes neurode-

generation and decreases neurogenesis through the reduction of mBDNF expression [63], we

did not observe any change in the hippocampal content of mBDNF in cbg-/- mice. Previous

behavior experiments have shown normal short-term memory, choice latency times, and ini-

tial responses to turn alternation patterns in cbg-/- mice of comparable age [35], but impaired

contextual and recognition memory consolidation [36].

In conclusion, our results showed that CBG-deficiency elicits significant alterations in hip-

pocampal CORT activity. Under basal conditions, CBG-deficient mice showed slightly ele-

vated morning levels of free-CORT in the hippocampus, FKBP5 downregulation, high MR

expression, and increased MR and GR downstream gene expression without changes in local

11BHSD expression and activity. In addition, CBG-deficient mice displayed altered MAPK
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and PI3K signaling pathways, with decreased pERK, pJNK and pAkt, and increased

pY216-GSK3β (active form) and Tau phosphorylation. An important limitation of the present

study is that CORT quantification has been made only at one specific time-point, in the nadir

of CORT secretion, and at baseline. Further studies characterizing the full circadian rhythm

and the response to physiological insults are required to confirm the role of CBG on central

nervous system, specifically the hippocampus, and its possible involvement in the progression

of neurological damage.
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