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Abstract
Admission trauma whole-body CT is routinely employed as a first-line diagnostic tool for characterizing pelvic fracture 
severity. Tile AO/OTA grade based on the presence or absence of rotational and translational instability corresponds with 
need for interventions including massive transfusion and angioembolization. An automated method could be highly beneficial 
for point of care triage in this critical time-sensitive setting. A dataset of 373 trauma whole-body CTs collected from two 
busy level 1 trauma centers with consensus Tile AO/OTA grading by three trauma radiologists was used to train and test a 
triplanar parallel concatenated network incorporating orthogonal full-thickness multiplanar reformat (MPR) views as input 
with a ResNeXt-50 backbone. Input pelvic images were first derived using an automated registration and cropping technique. 
Performance of the network for classification of rotational and translational instability was compared with that of (1) an 
analogous triplanar architecture incorporating an LSTM RNN network, (2) a previously described 3D autoencoder-based 
method, and (3) grading by a fourth independent blinded radiologist with trauma expertise. Confusion matrix results were 
derived, anchored to peak Matthews correlation coefficient (MCC). Associations with clinical outcomes were determined 
using Fisher’s exact test. The triplanar parallel concatenated method had the highest accuracies for discriminating transla-
tional and rotational instability (85% and 74%, respectively), with specificity, recall, and F1 score of 93.4%, 56.5%, and 0.63 
for translational instability and 71.7%, 75.7%, and 0.77 for rotational instability. Accuracy of this method was equivalent to 
the single radiologist read for rotational instability (74.0% versus 76.7%, p = 0.40), but significantly higher for translational 
instability (85.0% versus 75.1, p = 0.0007). Mean inference time was < 0.1 s per test image. Translational instability deter-
mined with this method was associated with need for angioembolization and massive transfusion (p = 0.002–0.008). Saliency 
maps demonstrated that the network focused on the sacroiliac complex and pubic symphysis, in keeping with the AO/OTA 
grading paradigm. A multiview concatenated deep network leveraging 3D information from orthogonal thick-MPR images 
predicted rotationally and translationally unstable pelvic fractures with accuracy comparable to an independent reader with 
trauma radiology expertise. Model output demonstrated significant association with key clinical outcomes.
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Abbreviations
LSTM RNN  Long short-term memory recurrent neural 

network
TP  True positive
TN  True negative
FP  False positive
FN  False negative
TPR  True positive rate
TNR  True negative rate
PPV  Positive predictive value
NPV  Negative predictive value
FNR  False negative rate
FPR  False positive rate
FDR  False discovery rate
FOR  False omission rate
DOR  Diagnostic odds ratio

Introduction

Fractures of the pelvic ring are encountered in approximately 
10% of patients admitted to level 1 trauma centers with blunt 
injury mechanisms [1] and 20% of patients with high-velocity 
polytrauma [2]. Pelvic fractures are potentially lethal due 
to the risk of exsanguination [3, 4]. The leading cause of 
death in the first 6 h after pelvic fracture is abdominopelvic 
hemorrhage [5]. In-hospital mortality is as high as 20–50% 
in patients with mechanically unstable pelvic fractures and 
hemodynamic instability [6–10]. Widespread deployment 
of trauma bay-adjacent CT scanners and improvements 

in resuscitation techniques have led to the routine use of 
admission trauma whole-body CT as the first-line diagnostic 
tool for characterizing pelvic fracture severity in all but a 
small subset of patients that require immediate surgery for 
severe refractory hemodynamic collapse [2, 6, 11–13]. A 
recent study across 11 major trauma centers reported use of 
admission trauma CT in 85% of patients with pelvic fractures 
admitted in shock [6].

Basic Anatomy and Biomechanics of Pelvic Fractures

To understand the rationale for algorithm development in this 
work, a basic understanding of pelvic anatomy, biomechanics, 
and instability grading is necessary. The pelvis is a complex 
ring structure comprised of the sacrum and two innominate 
bones that articulate at the sacroiliac joints posteriorly and 
pubic symphysis anteriorly [2, 12]. Because of its multipart 
nature, the bony ring has little inherent stability [9]. Stability 
is derived almost entirely from the strong soft-tissue envelope 
of primary and secondary stabilizing ligaments about 
the posterior sacroiliac complex that bind the sacrum and 
innominate bones together [2]. Pelvic stability requires an 
intact posterior sacroiliac complex [9]. Disruption of the 
posterior ligaments will result in a variety of abnormal 
bony relationships and unilateral or bilateral rotational 
or translational anatomic distortions of the pelvis [9]. An 
accounting of pelvic fracture lines is much less important 
for pelvic fracture severity grading than global assessment 
of pelvic distortions. Some consider “pelvic ring disruption” 
a more apt term than “pelvic fracture” for these injuries [2].

Fig. 1  a Illustrates anteriorly divergent sacroiliac diastasis hinged about 
an intact posterior SI ligament. Rotational but not translational instability 
is the hallmark of a Type B Tile AO/OTA injury. This is associated 
with pubic symphysis widening in b (same patient). Pubic symphysis 
widening can be seen in both Type B and C injuries and is not as 
discriminative as the bony relationships about the SI joint. c–f are Type 

C injuries. In c and d, there is vertical translational displacement of the 
right innominate bone with respect to the sacrum. e Illustrates parallel 
widening of the SI joint characteristic of posterior SI ligament disruption. 
f Illustrates a variant where the juxta-articular sacrum is widely diastatic. 
In this instance the posterior SI ligament is intact, but functionally 
incompetent, with posterior translation of the left hemipelvis
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Grading of Instability

There are several competing pelvic fracture classification 
systems for grading the spectrum of instability [9, 14, 
15]. The Orthopedic Trauma Association (OTA) and 
AO Foundation have adopted the imaging-based Tile 
classification system for pelvic instability grading [12, 16]. 
The Tile AO/OTA comprehensive classification system 
differentiates fractures into three major first-order classes 
based primarily on the integrity of the posterior sacroiliac 
(SI) complex as it appears on CT [17, 18]. In all patients and 
permutations of injury, the integrity of the posterior sacroiliac 
complex (the SI joints and the juxta-articular sacrum and 
ilium) remains the most critical element of instability grading 
[9]. Features of instability and Tile AO/OTA grade are 
illustrated in Fig. 1. Type A fractures are stable as the SI joint 
is effectively intact. Type B fractures are rotationally unstable 
but translationally stable—the weaker anterior SI ligament 
is compromised and the affected hemipelvis can be either 
internally rotated (from lateral compression mechanism), 
or externally rotated (from anteroposterior compression) in 
the axial plane and anteriorly divergent widening of the SI 
joint giving a classic “open book” appearance. The intact 
fibrous posterior sacroiliac ligament acts as a hinge that 
prevents any translation in the vertical or AP direction. Type 
C injuries do not occur without massive force transmission 
that can overcome the structural capacity of the posterior 
sacroiliac ligament. Type C injuries are characterized by 
complete translational instability and result in vertical and 
AP translational distortions and parallel widening about the 
SI joint [2, 9, 12, 17, 19]. As a ring structure, an unstable 
pelvis is typically disrupted anteriorly as well [9, 12, 20], 
manifesting as pubic symphysis diastasis in externally rotated 
injuries, and pubic body override in severely internally 
rotated injuries [9, 21]. Pelvic ring disruptions may involve 
either hemipelvis and are often bilateral [17]. Pelvic binders 
can reduce the pelvis and have been shown to hinder 
discrimination of rotational and translational instability [8, 
22]. Various fracture permutations of the four pubic rami 
are quite common, even in stable fracture patterns and have 
limited utility for severity grading [9]. In published series 
from major trauma centers, Type A and B fractures make up 
70–80% of all pelvic ring disruptions and Type C, 20–30% 
[9, 23, 24].

The Tile AO/OTA fracture grade and outcomes—Tile C 
fractures in particular—have been shown to be independently 
predictive of mortality, transfusion requirement, and arterial 
hemorrhage requiring hemostatic intervention [14, 23, 
25–28]. However, grading pelvic fractures and distortions 
is a challenging non-trivial 3D problem [22]. Mental 
integration of findings on orthogonal multiplanar reformats 
into a single 3D image is nontrivial, and manipulation of 

volumetric images using post-processing software can be 
difficult in a pressured time-sensitive setting [8, 19]. The 
concepts of instability become intuitive with experience and 
trauma subspecialization but are difficult for less experienced 
readers or those who do not regularly encounter high energy 
pelvic ring disruptions in their practice. An explainable 
automated method that accurately and objectively rules in 
rotational or translational instability learned from consensus 
patient-level annotation by experts could improve outcome 
by reducing treatment delays and would be highly beneficial 
for point of care triage in this critical time sensitive setting.

Tile AO/OTA Classification Algorithm Pre‑requisites

Numerous works have described relatively high accuracies 
of convolutional neural networks for detecting orthopedic 
fractures in different body regions (typically in the range 
of 80–90%), but automatic grading of fracture severity has 
remained an elusive task as very high-level abstract outputs 
must be distilled from a large number of parameters and 3D 
contextual data. A successful algorithm for Tile AO/OTA 
grading must have reasonable performance and association 
with outcomes that is similar to grading by human readers. 
Traditional 2D slice-based methods are suboptimal given 
the degree of global contextual information needed for 
classification. On the other hand, while 3D convolutional 
neural networks are highly advantageous, they are 
computationally expensive. Given the high co-occurrence 
between pelvic fracture grade and prevalence of multiple 
injuries in other body regions [11, 13, 23] as well as the 
increased parameter count compared with 2D convolutional 
neural networks, more data is needed for comparable 
performance to reduce overfitting behavior. Traumatic brain 
injury, abdominal organ injuries with hemoperitoneum, 
spine fractures, and extremity fractures are commonly 
encountered together with unstable pelvic fractures [17, 
29–33]. Pelvic fractures should certainly be considered in 
the context of polytrauma management [9], but it is easy 
to imagine how overfitting to injuries that correlate with 
Tile classification, but are unrelated to the classification 
task itself, can occur if the learning task is not modeled and 
supervised accordingly with this risk in mind.

The purpose of our study was to determine the feasibility 
of and compare performance between automated multistage 
machine learning methods that first partition the pelvic 
region from a whole-body CT using template matching 
and then use one of three techniques to efficiently glean 
global 3D information for Tile AO/OTA classification: (i) 
a parallel concatenated multi-view deep learning method, 
(ii) a recurrent neural network (RNN)-based multiview deep 
learning method, and (iii) a 3D deep convolutional neural 
network classifier.
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Materials and Methods

Dataset and Study Population

The work was IRB-approved with waiver of informed 
consent and included a dataset of abdominopelvic CT scans, 
routinely performed as part of a contrast-enhanced whole-
body trauma CT, in 373 adult patients (age ≥ 18 years) with 
bleeding pelvic fractures from two major level I trauma 
centers. Studies were performed on 40-, 64-, and dual 
source 128-section CT scanners and archived at 1.25–3-mm 
section thickness. Those patients who had already undergone 
damage control laparotomy or angioembolization prior to CT 
were excluded. No studies represented follow-up imaging 
in the same patient. Patient-level annotation was performed 
using first-order Tile AO/OTA grading (A—stable, B—
rotationally unstable, or C—translationally unstable) by 
three trauma-subspecialized radiologists at one of the level 
I trauma centers with a best-two-out-of-three consensus 
approach with arbitration of disagreement by the senior-most 
reader. Blinded interpretation for comparison with algorithm 
performance was undertaken by a fourth radiologist with 
trauma expertise at the second level I trauma center.

Deep Learning Method and Neural Network 
Architecture: Prior Art and Rationale

Evolution of Multiview Approaches for Orthopedic Fracture 
Detection: Plain Radiographs

There is a small but growing body of literature reporting 
results of deep learning methods for fracture detection 
using plain radiographs of different anatomic regions 
including the proximal femur, elbow, wrist, and ankle with 
deep networks [34–41]. There has been growing emphasis 
on explainability, and this is currently realized through 
object detection methods and saliency maps. Early fracture 
detection methods performed binomial classification 
of a single view as positive or negative despite routine 
acquisition of two or more views in clinical practice 
[34–37]. At the time of writing, we are aware of three 
groups that have implemented approaches that consolidate 
output from multiple views [38, 40, 41]. Kitamura et al. 
used an ensemble method with majority voting based on 
three plain radiographic views of the ankle [40]. Thian 
et  al. [38] determined per-patient accuracy of region-
proposal networks applied to AP and lateral views of the 
wrist, and Rayan et al. [41] combined a convolutional neural 
network with a recurrent a neural network (a long short-
term memory (LSTM) network) for detection of fractures 

on multiple views of pediatric elbows. The use of bounding 
boxes in the former and saliency maps in the latter provided 
location information, making the networks more transparent 
and believable.

Convolutional Neural Networks for Fracture Severity 
Grading

There are few examples of CNNs being implemented for 
classification of clinically relevant injury grade. Chung 
et al. implemented a ResNet architecture using one shoulder 
radiograph image per patient to classify proximal humerus 
fractures according to Neer’s classification with 65–86% 
accuracy [42]. We have previously reported preliminary 
results of Tile grading from CT scans using a 3D VGG-based 
autoencoder to reduce dimensionality and improve efficiency 
and utilization of global contextual information [43], however 
overfitting to pelvic soft-tissue findings including pelvic 
hematoma [44], another independent predictor of bleeding-
related outcomes but one that does not contribute to Tile 
grading likely adversely affected our results.

Work on pelvic fractures has primarily been relegated 
to fracture detection on plain radiographs, 2D CT, and 
3D volumetric images using handcrafted and rule-based 
approaches including active shape models, discrete wavelet 
transform, and graph cut methods in small cohorts [45–49]. 
Unlike these methods, convolutional neural networks deal 
well with variations in patient size, anatomy, and complexity 
of the fracture including substantial pelvic distortions. Wang 
et al. developed a weakly supervised cascaded coarse-to-fine 
method for pelvic fracture detection on plain radiographs 
using a deep CNN backbone to produce a fracture 
probability map, followed by a second network that performs 
localized analyses in the high probability zones to detect 
fractures [39]. Unlike fracture detection, instability grade in 
the pelvis is more of a global than a local problem. Fracture 
lines are typically seen in all three Tile AO/OTA grades, and 
detection of fracture lines on plain radiographs is of much 
less relevance for severity grading than abnormal spatial 
relationships between the sacrum and innominate bones on 
CT. The high dimensionality of CT data, the non-localized 
abstract nature of pelvic distortions in three dimensions, 
and large volumes of whole-body CT datasets pose unique 
challenges to the classification of pelvic fractures in 
polytrauma patients. We believed that a multiview approach 
using full thickness multiplanar reformats of the cropped 
pelvis offered a promising and computationally efficient 
solution for Tile grading since each view offers valuable and 
complementary information regarding rotation or translation 
of the pelvic ring.
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A Concatenated Triplanar Thick‑MPR Network for Tile AO/
OTA Grading

We are not aware of methods that have concatenated multiple 
2D volumetric views from 3D CT datasets for fracture 
classification. Assessment of pelvic fracture stability is 
inherently a 3D problem that requires a global approach. 
However, recent work in natural image processing has shown 
that 3D representations can be simulated using a compilation 
of 2D views with similar accuracy under current hardware 
constraints to native 3D shape classifiers such as point clouds 
or polygonal meshes that are prone to overfitting from high 
dimensionality [50]. Su et  al. used parallel concatenated 
networks that take a limited number of 2D views from different 
angles as inputs [50]. While recognition rates increase with the 
number of views provided, relatively few are needed to draw 
effective inference about 3D shapes [50].

Orthogonal full-thickness MPRs serve to maximize 
representative 3D spatial information in a single image 
through in-plane aggregation of information over multiple 
slices [51]. The use of bone windowing is meant to prevent the 
network from focusing on irrelevant soft tissue information. 
SI joint translation or widening and pubic symphysis diastasis 
are well characterized on volumetric CT images reconstructed 
in three orthogonal planes [8]. We reasoned that three 
orthogonal bone-window thick-MPR 2D representations 
trained jointly with a view-pooling fully connected layer 
could be used to compile the 3D information necessary to 
discriminate pelvic fractures by Tile AO/OTA grade. The 
full-thickness bone-window multiplanar reformats in three 
canonical orientations (axial, coronal, and sagittal planes) are 
passed independently down each deep network while the fully 
connected layer ensures that model updates for each view are 
based on synthesized information from all three views.

Fig. 2  Flow diagram of automated deep learning method for instability 
prediction and Tile AO/OTA grading. a Automated partitioning of the 
pelvis from the whole-body CT. A bounding cube is created around 
the pelvis following NCC-based registration, and b the pelvic region 
is cropped. c Full thickness bone-window MPRs are generated from 
the cropped pelvic CT in the three orthogonal planes. d These are 
passed down three parallel ResNeXt-50 networks which are joined by 

a fully connected “view-pooling” layer that synthesizes information 
from all three views during discriminative learning and inference. e 
The network predicts whether rotational or translational instability 
are present or absent. The Tile AO/OTA grade is then determined. If 
there is no instability of either form, the fracture is Type A. If rotational 
instability is present but not vertical instability, the fracture is Type B. 
If translational instability is present, the fracture is type C
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Template Matching for Registration and Cropping 
of the Pelvis

We used a template-matching procedure with normalized 
cross-correlation (NCC) as an efficient and robust registration 
method for matching correspondence between subject whole-
body or torso CTs and pelvic template image patches within a 
sliding window of subregions from coronal and sagittal thick 
MPR images of entire CT volumes [52]. In natural image 
processing, NCC is a standard and commonly used metric 
for evaluating the degree of similarity between two image 
patches [52, 53]. With this technique, the greatest weight is 
placed on image patches that are matched with the greatest 
certainty [52]. The calculated NCC values can be plotted to 
create an intuitive, map-like display to visualize the areas of 
peak similarity used to partition the pelvis from the remainder 
of the study which is cropped out. A flow diagram illustrating 
our parallel concatenated method beginning with template 
matching using NCC is shown in Fig. 2.

Implementation Details

All CT datasets were de-identified and converted to NifTI format. 
Each scan was rescaled to a voxel size of 1 mm × 1 mm × 1 mm  

using linear interpolation and re-oriented into a default 
RAS + orientation. The intensities were clamped by applying 
a bone window (Window width: 1300 HU level: 650 HU), 
followed by z-score normalization to achieve zero mean and a 
standard deviation of 1.

As our deep network backbone, we used ResNeXt-50. 
ResNeXt is a state-of-the-art deep 2D CNN which has 
shown improvement over ResNet101 and 152. The ResNet 
architecture allows much greater depth by using residual 
shortcut connections to bypass activation function layers, 
thereby alleviating the problem of vanishing and exploding 
gradients. However, increasing capacity through depth 
(number of layers) and width (number of nodes) has 
diminishing returns. ResNeXt improves performance without 
increasing complexity by branching and then aggregating data 
into and from multiple parallel low-dimensional building 
blocks of identical depth [54]. A comparison between ResNet 
and ResNeXt is shown in Fig. 3. The final convolutional 
outputs of the three ResNeXt networks (one for each 
orthogonal thick-MPR image) were concatenated, and class 
probabilities were determined by using a fully connected layer 
preceding a softmax layer. The algorithm determines whether 
there is rotational or translational instability by application of 
an individual threshold anchored to the Matthews correlation 
coefficient [55, 56]. If there is neither, the injury is Tile A. 

Fig. 3  Comparison between ResNet and ResNeXt backbone building 
blocks. Figure modified from Xie et  al. (54). ResNet is shown left, 
ResNeXt shown right. Both use shortcut residual connections that 
allow very deep networks by alleviating vanishing and exploding gra-
dients. ResNeXt (right) uses multiple reduced dimensionality blocks 

in a split-transform-merge strategy. The parallelization of building 
blocks is referred to as cardinality. The method improved perfor-
mance over ResNet at ILSVRC 2016 and achieved second place for 
classification tasks
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If there is only rotational instability but no translational 
instability, the injury is Tile B, and if there is translational 
instability, the injury is Tile C.

We performed five-fold cross validation to assess the 
algorithm’s performance and generalization capabilities. In each 
fold, 80% of the data was used on de novo fracture classification 
models pretrained using the ImageNet Large Scale Visual 
Recognition Challenge (ILSVRC) [57], and 20% of the data 
was used for validation in five non-overlapping combinations. 
Model convergence was monitored using a cross-entropy loss 
function. AdamW optimizer was used in combination with a 
cyclic learning rate for gradient descent optimization. Models 
were trained on a Quadro RTX 8000 GPU machine with a 
minibatch size of 42, and a cyclic learning rate between 1E−5 
and 5E−5 for 100 epochs with a weight decay of 1E−2. A total 
of 44 epochs were required to achieve convergence. Random 
flip, additive Gaussian noise, random crop, and random rotations 
were used for data augmentation. The network was implemented 
using the Pytorch deep learning platform (version 1.3.1).

We generated class activation (saliency) maps that display a 
heat map with higher intensities corresponding with the parts 
of an image most discriminative for the network [58]. Saliency 
maps for patients with rotational and translational instability 

showed maximum attention at injured sacroiliac complexes 
and pubic symphyses.

Comparison Experiments

Triplanar ResNeXt Combined with an LSTM Network

We combined ResNeXt with a convolutional LSTM recur-
rent neural network (RNN) in a fashion analogous to the 
work of Rayan et al. [41] for multiview detection of pediatric 
elbow fractures. A block-flow diagram is shown in Fig. 4. 
LSTM uses temporal memory to store salient information 
learned from each sequentially analyzed view as it learns 
from the next. This serves as another method to aggregate 
information from all three processed orthogonal thick-MPR 
views in a unified way during discriminative learning. A 
batch size of 42 was again employed, and all other hyperpa-
rameters were also kept constant.

3D Autoencoder‑Based Method

3D convolutional neural networks are potentially highly 
advantageous but very computationally expensive. 

Fig. 4  Block flow diagram of recurrent neural network using ResNext-50 backbone. We implemented LSTM cells with three layers and a hidden 
size of 2048
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Auto-encoders reduce dimensionality, regularize the latent 
space, and increase descriptive capacity in an efficient manner. 
Prior work on vertebral body fractures used autoencoders 
and point cloud reconstructions for efficient detection of 
vertebral body fractures on CT [59]. The network consisted 
of a volumetric CNN with residual connections, in this case 
based on ResNet-50. Volumetric ResNets have previously been 
implemented for segmentation tasks [60]. To our knowledge, 
3D autoencoders have not been used to classify fracture 
severity. For classifying pelvic fractures using CT volumes, 
we employed a 3D ResNet-50-based architecture. Visual 
confirmation that the dimensionally reduced latent space 
retained a meaningful representation of the bony pelvis and was 
not overfitting to unrelated objects in the CT was achieved using 
a decoder and root mean squared error method during training. 
The classifier predicts rotational and translational instability 
from the generated latent space representation.

Statistical and Data Analysis

We assessed sensitivity (recall), specificity, positive predictive 
value (precision), negative predictive value, false omission 
and discovery rates, F1 score, and accuracy, anchored to 
the Matthews correlation coefficient for each network, and 
results were compared. Performance metrics were compared 
for statistical significance using McNemar’s test for paired 
proportions. We then assessed for significant differences 
between automated Tile grades in terms of mortality, massive 
transfusion (≥ 10 U of packed red cells in 24 h or ≥ 4 U packed 
red cells in 4 h) and decision to perform angioembolization for 
arterial hemorrhage using the Fisher exact test.

Results

Exactly 159 patients in the dataset were graded by radiologist 
consensus as Tile A, 129 were Tile B, and 85 were Tile C. 
Ninety patients had pelvic binders in place. The distribution 
is representative of previous reports including Tile’s original 
series [17]. Median patient age was 47, and median injury 
severity score (ISS) was 24.

Template Matching Method

The normalized cross-correlation template matching method 
was very robust, resulting in successful partitioning of the 
pelvic region in all 373 cases.

Deep Learning Method Performance

Confusion matrix results are presented for the three 
networks from highest to lowest model accuracy in Table 1. 
Accuracy of the additional blinded reader is also included. Ta
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The triplanar parallel concatenated method had the highest 
overall accuracies for discriminating translational and 
rotational instability (translational, 85.0%, rotational 
74.0%) with associated specificity, recall, and F1 score of 
93.4%, 56.5%, and 0.63 for translational instability and 
71.7%, 75.7%, and 0.77 for rotational instability. On the 
whole, across the three models translational instability was 
diagnosed with higher accuracy than rotational instability. 
Comparing methods, differences in overall accuracies 
for discriminating translational instability did not reach 
significance (85.0%–parallel concatenated, 84.7%–RNN 
and 81.8% 3D-encoder, p = 0.23–0.92)), while the parallel 
concatenated method had significantly higher accuracy for 
rotational instability than the 3D encoder method—74.0% 
versus 55.8% (p  <  0.0001). At peak MCC, specificity 
for diagnosing translational instability was very high for 
all three algorithms (93.4–96.5%); however, sensitivity 
was limited at the same threshold, ranging from 37.6 to  

56.5%. A representative activation map for a translationally 
unstable (Tile C) patient using the parallel concatenated 
method is shown in Fig. 5. For the independent blinded 
reader-accuracy, sensitivity, and specificity were 76.7, 
81.3, and 70.4% for rotational instability and 75.1, 80.0, 
73.6% for vertical instability. Respective p-values showed 
equivalence for prediction of rotational instability (p = 0.40, 
0.13, 0.80), but improved performance for the triplanar 
concatenated model over radiologist for translational 
instability (p  =  0.0007, 0.001, <  0.0001). Automated 
instability grade using the parallel concatenated method 
was significantly associated with both the decision to 
perform angioembolization (p  =  0.002) and need for 
massive transfusion (p = 0.008). This mirrored associations 
between the same outcomes and consensus grade (Table 2). 
Conversely, both RNN and 3D decoder-graded Tile C 
injuries failed to reach a significant association with need 
for angioembolization (p = 0.063–0.079). Tile grade was 

Fig. 5  Activation maps are shown in three views: a anteroposterior, b 
axial, and c sagittal for a correctly classified Tile C patient using the 
concatenated triplanar ResNeXt architecture. In figure part a, attention 
is primarily focused on the SI joint and posterior pelvic ring of the 

superiorly translated right hemipelvis. In figure part b, attention is 
maximally focused centrally about the SI joints as well as the pubic 
symphysis which demonstrates AP translation. Maximal attention is 
focused on the abnormal pubic symphysis in figure part c 

Table 2  Association of 
rotational and translational 
instability with outcomes (by 
method)

p-values for associations between degree of instability (determined by consensus read and three automated 
methods) and outcomes (i.e., mortality, need for angioembolization, need for massive transfusion) are presented
*Indicates statistically significant p-values (p < 0.05) corresponding with significant associations between 
degree of instability and outcomes

Outcomes/groups compared Method

Ground truth 
(consensus read)

Parallel  
concatenated

Recurrent neural 
network (LSTM)

Volumetric ResNet

Rotationally unstable (Tile B 
and C versus Tile A)

Angioembolization 0.015* 0.002* 0.003* 0.074
Massive transfusion 0.011* 0.002*  < 0.0001* 0.004*
Mortality 0.139 0.154 0.140 0.182
Translationally unstable (Tile 

C versus Tile A and B)
Angioembolization 0.001* 0.008* 0.063 0.079
Massive transfusion 0.011* 0.002* 0.0004* 0.028*
Mortality 0.149 0.201 0.172 0.233
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not associated with an increased mortality rate using either 
ground truth or automated grading.

Assessment of saliency maps derived from the parallel 
concatenated method showed that the network focused 
attention on the sacroiliac complex and the pubic symphysis, 
which fits the paradigm of the Tile AO/OTA classification 
system. The mean runtime per epoch was 15 s with total 
training time of 3.5 h. Mean inference time was < 0.1 s per 
test image.

Discussion

Pelvic instability grading has not been previously explored 
using machine learning approaches. To our knowledge this is 
the first study to present a method for automated Tile AO/OTA 
classification from CT scans. Overall, our method employing 
a triplanar concatenated ResNeXt architecture demonstrated 
performance similar to expert radiologists for predicting the 
degree of instability and demonstrated the same associations 
with clinical outcomes (need for angioembolization and 
massive transfusion) as did our patient-level ground truth 
consensus labels.

This represents an advance over prior work limited to 
pelvic fracture detection using either handcrafted features or 
deep learning methods. Automated methods of orthopedic 
fracture detection using plain radiographs have achieved 
accuracies typically ranging between 80–90% [35–39]. Wang 
et al. recently achieved an accuracy of 91% for pelvic fracture 
detection on plain films [39].

However, identification of a pelvic fracture line is not 
sufficient to assess severity of injury [49]. Pelvic stability is 
largely a function of ligamentous integrity which is assessed 
by observing spatial relationships between the two innominat 
e bones and sacrum about the SI joints and pubic symphysis 
in three orthogonal planes. Automated classification of 
pelvic fracture severity is therefore a very challenging task 
that involves integration of complex and global spatial 
information. The task is made all the more challenging by 
presence of pelvic binders in a substantial proportion of 
patients, which are known to reduce and mask pelvic ring 
disruptions.

In prior work, experienced trauma and musculoskeletal 
radiologist interpretations result in sensitivity (53 and 86%) 
and specificity (82 and 100%) for rotational and translational 
instability respectively [8]. The results of our parallel 
concatenated algorithm (specificity 93.4%, sensitivity 
56.5%, accuracy 85.0%-translational instability; specificity 
71.7%, sensitivity 75.7%, accuracy 74.0%—rotational 
instability) are comparable to these results. Accuracy for the 
independent blinded reader was equivalent for prediction of 
rotational instability (74.0%—algorithm versus 76.1-reader; 
p = 0.40), but lower than the triplanar concatenated model for 

translational instability (85.0%—algorithm, versus 75.1%—
reader; p = 0.0007). In many cases, trauma whole-body CT 
will initially be interpreted by trainees or radiologists without 
trauma subspecialization during after-hours care when limited 
staffing and high workloads result in fatigue and distraction. A 
rapid automated algorithm that is able to predict instability with 
equivalent or improved accuracy to radiologists as well as the 
need for major interventions—specifically angioembolization 
and massive transfusion—may assist with rapid objective 
decision support in these settings and could improve patient 
outcomes by facilitating earlier catheter-directed intervention 
and a more aggressive transfusion strategy, especially in the 
face of the most severe (Tile C) injury type.

The use of orthogonal thick MPR volumetric images 
appears to be a viable and computationally efficient 
alternative to native 3D CT volumes for Tile AO/OTA 
grading, especially for discrimination of translationally 
unstable (Tile C) injuries. Bone segmentation has been 
considered an important initializing step for DL approaches 
for fracture detection using CT, but not for plain radiographs 
[38, 41]. Unlike prior hand-crafted methods [45, 47, 48], 
our method is effective without requiring an explicit and 
potentially error-prone bone segmentation step. Our method 
relies on multiple thick-MPR views rather native 3D data. 
Efficient 3D methods currently require techniques to reduce 
dimensionality and may still result in overfitting to soft 
tissues. This likely explains the improved performance over 
our 3D autoencoder method.

Recent work in orthopedic fracture identification has 
emphasized the use of class activation maps as a transparent 
means of illustrating where the algorithm is focusing 
its attention during decision making [41]. We found that 
with the use of a fully connected “view-pooling” layer, the 
algorithm learns to triangulate its attention primarily to the 
posterior sacroiliac complex and pubic symphysis, on which 
Tile AO/OTA grading is based.

Our method still leaves room for improvement in accuracy. 
Our algorithm was trained on a total of 1119 thick-MPR 
views from 373 CTs provided by two level I trauma centers. 
This is a relatively small number of patients and images. We 
will need to expand the size of the dataset through further 
collaboration with investigators at other institutions. A larger 
number of rotating thick MPR views reconstructed at small 
(e.g. 15°) intervals would be expected to improve the 3D 
representation generated by multiple parallel concatenated 
networks and should improve Tile/OTA grading; however, 
with current hardware, the memory footprint is substantial 
and would require compromises such as decreased batch 
size. Multi-parcellated labeling of characteristic features of 
pelvic fractures (e.g. pubic symphysis widening, SI joint 
widening, and a variety of fracture sites) was impracticable 
and risky without an initial study demonstrating the feasibility 
of automated Tile AO/OTA classification. However, this is 
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an area we are now exploring. Object detection networks 
exploiting these features could result in a single unified 
method for both anomaly detection and grading. Tile 
classification by expert radiologists offers a relatively 
objective but still imperfect reference standard. Learned 
network features can only be as good as the annotation 
used for training [38]. Label noise is unavoidable and is 
undoubtedly responsible for some of our misclassifications. 
Binders contribute significantly to label uncertainty due to 
their potential masking effect and were used in a substantial 
proportion of patients. Another limitation of this study is our 
exclusive focus on Tile AO/OTA classification for bleeding 
risk prediction. The grading system is also important for 
orthopedic fixation of pelvic fractures. These decisions are 
usually made by seasoned orthopedic traumatologists once 
life-threatening vascular injuries and hemorrhage are already 
controlled and may depend on additional information garnered 
from stress testing and manipulation under anesthesia [2, 12, 
13]. Utility of Tile AO/OTA grading for guiding the reduction 
and fixation strategy is beyond the scope of the current work.

Prior methods have not addressed the reality that life-
threatening pelvic fractures are routinely assessed as part of a 
whole-body CT. We offer a computationally efficient template-
matching method for the purpose of automated pelvic region 
extraction. Automated cropping and classification supported 
by explainable activation maps are necessary elements of a 
fully automated end-to-end workflow. However, in the future, 
a pelvic CT fracture detection step is also required, and this is 
an avenue we are further pursuing. Automated segmentation 
algorithms have already been developed for pelvic contrast 
extravasation (CE) and extraperitoneal hematoma. Pelvic 
fracture grade, pelvic hematoma volume, and CE are the most 
important determinants of outcome [23, 28, 61] and could 
ultimately be combined into a single automated method for 
precise objective forecasting and decision support in patients 
with potentially life-threatening bleeding pelvic fractures.

Conclusion

A multiview concatenated deep network leveraging 3D 
information from orthogonal thick-MPR images was effective 
in capturing global 3D CT information necessary to predict 
both rotational and translational instability with accuracy on 
par with radiologist prediction. The approach demonstrated 
significantly improved performance over a 3D classifier. 
Further improvements may be possible by increasing the 
number of views. A fully end-to-end clinical workflow will 
require addition of a pelvic fracture detection step. Pixel-
level annotations and object detection networks could be 
used to both detect pelvic fractures and classify pelvic ring 
disruptions in the future.
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