Skip to main content
. 2020 Nov 6;34(1):116–123. doi: 10.1007/s10278-020-00394-2

Table 3.

Optimized DCNN architecture determined by Bayesian optimization

Layer Test dataset A Test dataset B Test dataset C
Input 224 × 224 × 5 224 × 224 × 5 224 × 224 × 5
Conv. + ReLu Filter size: 7 × 7
Num. of filter: 193 Filter size: 7 × 7x
Num. of filter: 214 Filter size: 7 × 7
Num. of filter: 160
Normalization Size of the channel window: 5 Size of the channel window: 5 Size of the channel window: 5
Max-pooling Filter size: 3 × 3 Filter size: 3 × 3 Filter size: 3 × 3
Conv. + ReLu Filter size: 5 × 5
Num. of filter: 49 Filter size: 5 × 5
Num. of filter: 442 Filter size: Num. of filter: 148
Normalization Size of the channel window: 5 Size of the channel window: 5 Size of the channel window: 5
Max-pooling Filter size: 3 × 3 Filter size: 3 × 3 Filter size: 3 × 3
Conv. + ReLu Filter size: 5 × 5
Num. of filter: 440 Filter size: 5 × 5
Num. of filter: 533 Filter size: Num. of filter: 122
Conv. + ReLu Filter size: 5 × 5
Num. of filter: 440 Filter size: 5 × 5
Num. of filter: 533 Filter size: Num. of filter: 122
Conv. + ReLu Filter size: 5 × 5
Num. of filter: 440 Filter size: 5 × 5
Num. of filter: 533 Filter size: Num. of filter: 122
Max-pooling Filter size: 3 × 3 Filter size: 3 × 3 Filter size: 3 × 3
Conv. + ReLu Filter size: 3 × 3
Num. of filter: 123 Filter size: 3 × 3
Num. of filter: 96 Filter size: 3 × 3
Num. of filter: 209
Conv. + ReLu Filter size: 3 × 3
Num. of filter: 134 Filter size: 3 × 3
Num. of filter: 104 Filter size: 3 × 3
Num. of filter: 228
Conv. + ReLu Filter size: 3 × 3
Num. of filter: 146 Filter size: 3 × 3
Num. of filter: 113 Filter size: 3 × 3
Num. of filter: 247
Conv. + ReLu Filter size: 3 × 3
Num. of filter: 157 Filter size: 3 × 3
Num. of filter: 122 Filter size: 3 × 3
Num. of filter: 266
FC 2 2 2
Output Benign/Malignant Benign/Malignant Benign/Malignant