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Abstract

Purpose—Most patients with pancreatic ductal adenocarcinoma (PDAC) present with surgically 

unresectable cancer. As a result, endoscopic ultrasound-guided fine needle aspiration (EUS-FNA) 

is the most common biospecimen source available for diagnosis in treatment-naïve patients. 

Unfortunately, these limited samples are often not considered adequate for genomic analysis, 

precluding the opportunity for enrollment on precision medicine trials.

Experimental Design—Applying an Epithelial cell adhesion molecule (EpCAM)-enrichment 

strategy, we show the feasibility of using real-world EUS-FNAs for in depth, molecular-barcoded, 

whole-exome sequencing (WES) and somatic copy number alteration (SCNA) analysis in 23 

PDAC patients.

Results—Potentially actionable mutations were identified in >20% of patients. Further, an 

increased mutational burden and higher aneuploidy in WES data were associated with an adverse 

prognosis. To identify predictive biomarkers for first line chemotherapy, we developed an SCNA 
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based complexity score (CS) that was associated with response to platinum-based regimens in this 

cohort.

Conclusions—Collectively, these results emphasize the feasibility of real-world cytology 

samples for in depth genomic characterization of PDAC and show the prognostic potential of 

SCNA for PDAC diagnosis.
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ductal adenocarcinoma

Introduction

Pancreatic ductal adenocarcinoma (PDAC) is a disease with a dire prognosis and one of the 

few cancers with a rising incidence, leading to estimates of it becoming the second leading 

cause of cancer related death in the United States within the next decade (1). A series of 

studies on large-scale molecular characterization of PDAC have elucidated the 

comprehensive genomic landscape of this neoplasm, including the so-called “long tail” of 

potentially actionable mutations (many at as low prevalence rates as ~1%), which may form 

the basis for precision oncology and clinical trial inclusion (2)(3)(4)(5)(6). Most of these 

prior “discovery” studies have used archival surgically resected specimens with optimal 

tumor cellularity (e.g. >60% for the TCGA cohort), limiting much of our current knowledge 

to localized, and therefore resectable tumors (3)(4). Nonetheless, the majority of PDAC 

patients (~80–85%) are diagnosed with locally advanced or metastatic disease, precluding 

surgical options, which, in turn, restricts many patients from the opportunity for in-depth 

genomic analyses from resected specimens (1)(7).

All PDAC patients, irrespective of disease stage, are required to have histological or 

cytological confirmation of their underlying diagnosis prior to onset of therapy (7). The two 

most common avenues for obtaining diagnostic biospecimens in advanced disease include 

either endoscopic ultrasound-guided fine needle aspiration (EUS-FNA) of the primary 

tumor, performed by a gastroenterologist, or a percutaneous core biopsy of a biopsy-

amenable metastatic lesion, when possible, the latter performed by an interventional 

radiologist. Overall, with the gastroenterology clinic being the typical “portal of entry” for 

symptomatic individuals, an EUS-FNA represents one of the most common, if not the most 

common, sample type obtained in PDAC patients at the time of de novo presentation. 

Although both sources of biopsies are comprised of minimal tissue material, the challenges 

of using EUS-FNA from PDAC for next generation sequencing (NGS) studies are unique. In 

contrast to the generally high cellularity of metastatic samples obtained by core biopsy, 

EUS-FNA samples of desmoplastic primary PDAC tend to be hypocellular, and potentially 

contaminated with non-neoplastic gastric and duodenal mucosa, replete with mucosal 

inflammatory cells, which can “drown” cancer-associated alterations (8). Further, the limited 

neoplastic DNA yield from EUS-FNA samples often precludes the use of even the currently 

available targeted NGS panels, let alone more comprehensive WES. Consequently, most 

published studies have been limited to assessing a few common “hotspot” mutations in 

PDAC, such as KRAS or BRAF (9). At the same time, it is worth noting that the currently 
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available targeted NGS panels are geared towards common actionable genes, and not 

included are the aforementioned low frequency alterations (so-called “long tail”). Third, the 

most commonly used first-line, and by some measures, most efficacious therapy in advanced 

PDAC is FOLFIRINOX, a platinum-containing multi-drug regimen (10). While preclinical 

data supports that patients with PDAC with homologous recombination repair defects 

(HRD) are likely to bear greatest susceptibility to platinum agents like oxaliplatin (an 

integral component of FOLFIRINOX), the targeted NGS panels only interrogate a fraction 

of HRD, such as the ~5% of patients with deleterious BRCA1/2 mutations. Yet, prior studies 

have suggested that the full compendium of HRD in PDAC, as reflected in the “unstable 

genome” phenotype comprised of multiple structural abnormalities, might be several fold 

higher in prevalence (3). As a result, most first-line therapy decisions in the advanced 

disease setting are made empirically, warranting strategies that can provide improved 

treatment prediction information from the PDAC genome.

In this study, we use real-world limited biospecimens obtained via EUS-FNA, almost all in 

the diagnostic “first encounter” that a PDAC patient has with their gastroenterologist, for in-

depth genomic analysis of PDAC. Applying a relatively facile enrichment strategy, we were 

able to significantly increase neoplastic cell fraction, which allowed us to detect actionable 

mutations using molecularly barcoded WES for clinical decision making. Further, we 

demonstrate the ability to use the WES information paired with bioinformatics pipelines to 

determine potential HRD status in the cases, which can help guide the choice of first line 

regimen in a clinically feasible timeline. Our data establishes the feasibility for WES in the 

most commonly obtained diagnostic biospecimen in PDAC, EUS-FNA samples, with 

consistent results compared to previous studies.

Materials and Methods

Patient cohort

Investigators obtained written informed consent under MD Anderson protocol Lab00–396 

from each patient prior to tissue and blood sampling. The study was performed in 

accordance with standard ethical guidelines approved by the institutional review board (IRB) 

and in accordance with the Declaration of Helsinki. All patients had clinically and 

histologically confirmed localized or metastatic PDAC. In the pilot phase, resected tissue 

specimens were only included if tumor cellularity was below 10%. (Supplementary Figure 

1b). All biopsies (CT guided core or EUS-FNA) were taken within routine clinical 

procedures. No EUS-fine needle biopsy (FNB) samples have been included. All research 

passes harvested were sampled after routine diagnostic EUS-FNA passes and ROSE-rapid 

on-site cytology assessment which showed adequate cellularity in diagnostic specimens.

No complications have been reported in any tissue sampling.

Tissue digestion and EpCAM pulldown

Biopsy samples were mechanically and enzymatically digested into single cell suspension as 

described before (11). The cell suspension was then processed using the EasySepTM Human 

EpCAM Positive Selection Kit (Stemcell, Vancouver, Canada, cat#18356) following the 
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manufacturer’s protocol to enrich for EpCAM positive epithelial cells. In brief, cell 

suspensions were incubated with EpCAM antibodies and magnetic beads, followed by 

subsequently clean-up steps using magnetic separation (Supplementary Figure 1c).

DNA isolation, QC, and Digital Droplet PCR Analysis

Bulk genomic DNA was extracted from enriched and non-enriched cell suspensions using 

the QIamp DNA Micro Kit (Qiagen, Hilden, cat#56304) and DNeasy Blood & Tissue Kit 

for PBMCs (Qiagen, Hilden, cat#69506) following the manufacturer’s protocol. At least two 

different quantification methods for DNA quality and quantity were performed in parallel 

using a QubitTM dsDNA BR Assay Kit (Thermofisher, cat#Q32853), a NanoDropTM 

2000/2000c spectrophotometers (Thermo Fisher, Waltham, cat#ND2000) and/or high 

sensitivity D1000 screentape (HSD1000) with a Tapestation 2200 system (Agilent, Santa 

Clara, cat#5067–5584). Droplet digital polymerase chain reaction was performed for 

validation of KRAS mutations and MYC amplification as described in the supplementary 

materials.

Library construction and sequencing

A median of 160ng of enriched tumor DNA or 200ng of matched PBMC DNA was diluted 

in a total volume of 52ul low TE buffer and fragmented to 150–200bq using a Covaris LE 

220 ultrasonicators system (Covaris, Woburn USA). The following optimized settings were 

used: Duty Factor 30%, Peak Incident Power PIP W 450, cycles per burst 200, time 300s, 

temperature 7°C and water level 6. Adequate fragmentation was documented using 

HSD1000. Molecular-barcoded libraries were constructed following the SureSelect XT HT 

targeted enrichment protocol (Version A1, July 2017). In brief, end repair and dA-tailing 

were followed by ligating individual molecular-barcoding to each strand, PCR- 

amplification and bead-based cleaning. Libraries are then hybridized and incubated with a 

whole-exome capture library (SureSelect Clinical Research Exome V2, cat#5190–9492, 

Agilent, Santa Clara), captured to streptavidin-coated beats, washed and amplified. Libraries 

were multiplexed, denatured and diluted to a final concentration of 1.8 pM for sequencing 

and cluster generation as per manufacturer’s recommendation. Clustered flow-cells were 

sequenced on the Illumina NextSeq 500 instrument (Illumina, San Diego, USA) using 

standard Illumina paired-end primers and chemistry. A median of 74,991,096 reads/PBMC 

(range: 25,067,034 – 251,278,724 reads) and 144,308,769 reads/enriched tumor (range: 

25,451,842 – 236,573,016 reads) was detected. Median on-target coverage reached 56x 

(range: 23–157x) for matched PBMC and 108x (range:14–177x) for enriched tumor samples 

for family size of 1 library.

Sequencing Data Analysis:

Sequencing data was processed as detailed in the supplementary materials. Three algorithms 

were used for SNV calling and these were filtered as detailed in the supplementary 

materials. Of note, the median mutational burden of non-PBMC paired samples (n=5) was 

higher than in paired samples but did not reach statistical significance (4.89 mut/Mb, range: 

0.72 – 23.91 vs. 1.63 mut/Mb, range: 0.29 – 21.46, p=0.06) and seemed to had no impact 

our ability to identify patients with increased TMB (Supplementary Figure 3c).
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When available, clinical CLIA reports were used for SNV validation. These reports were 

generated from resected or core biopsied tissue samples during the course of treatment. 

Reports were available for one core biopsy patient (pilot phase) and for four FNA patients 

(second phase). Four of the CLIA reports were generated in-house at MDACC with a PCR-

based sequencing platform and assembled using GRCh37/hg19 builds. MDACC CLIA 

reports included a panel of 134 individual genes (Solid Tumor Genomic Assay V1 report). 

The fifth patient report was performed by an outside CLIA-certified laboratory using a 

company specific gene panel (Perthera).

DFCI cohort data were processed using the same bioinformatics pipeline used in our study 

with the exception of unique molecular identifiers specific processing.

Actionable mutation

We evaluated each sample for presence of 24 potentially targetable genes/alterations and 

SCNAs: BRCA1, BRCA2, PALP2, FGFR1, FGFR2, FGFR3, FGFR4, PDGFR, c- Kit/

CD117, ROS1 (fusion), MET, NOTCH1, JAK1, JAK2, JAK3, mTOR, BRAF, RNF43, 

PI3K /PIK3CA, AKT, NTRK, MYC, KRAS wild type (wt), HER2 amplification.

Tumor Mutational Burden (TMB)

Tumor mutational burden was defined by the sum of all synonymous SNV, non- 

synonymous SNV, stopgain, stoploss, frameshifts or indels per sample that passed filter 

criteria as described above. For PBMC matched samples germline mutations called by 

HaplotypeCaller were excluded but for mutations in important PDAC genes like e.g. 

BRCA1/2, PALB2 or ATM (12). Non-PBMC matched samples are indicated in the analysis 

workflow and throughout results. TMB was then calculated by dividing the total number of 

mutations/patient by the coding region target of the SureSelect Clinical Research Exome V2 

panel used (67.3 Mb).

Mutational signatures

Mutational signature analysis of FNAs was performed using MutationalPatterns following 

the steps outlined for cancer/COSMIC signature analysis (13). Only FNA samples with a 

matched germline control (PBMC sample) and those from treatment naive tumors were 

included in the mutational analysis.

Detection of chromosomal alterations

Two algorithms were used for detection and classification of somatic copy number 

alterations SCNAs (amplifications, deletions, and cnLOH). HapLOHseq, was used for 

detection of genomic regions exhibiting allelic imbalance (AI). Results from this algorithm 

were combined with output from standard log2 copy ratio segmentation data as described in 

the supplementary materials.

This approach detects B-allele frequency (BAF) shifts at germline heterozygous sites, 

indicative of AI, allowing for detection of chromosomal alterations in low mutant cell 

fraction settings (14,15). Germline heterozygous sites with a depth greater than or equal to 

10 were included as input for AI analysis. The hidden Markov model of hapLOHseq was 
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used to compute the probability that a set of adjacent markers span a region of AI. An AI 

event was defined as a continuous set of markers with posterior probabilities exceeding the 

threshold of 0.85.

GATK (16) was used for segmentation of log2 copy ratio data. SCNA’s were called by 

overlaying HapLOHseq AI and GATK segmentation calls (Supplementary Figure 5a). For 

SCNA calls exclusive to GATK only those with a log2 copy ratio below −1 and above 0.58 

for deletion/amplifications were included in the final call set. This approach allows for the 

inclusion of balanced amplifications/losses, which do not result in AI, as well as focal 

SCNAs spanning a modest number of germline heterozygous sites. Genomic regions with 

posterior probability of AI > 0.85 were included in the final SCNA call set and were 

classified using GATK segmentation values, log2 copy ratio below −0.41 and above 0.32 

were called as deleted and amplified, respectively. Copy neutral loss of heterozygosity 

(cnLOH) was defined as genomic regions with a log2 copy ratio between ±0.15 and a BAF 

deviation >0.1. Events with a posterior probability of > 0.85 and log2 copy ratio between 

±0.15 and −0.41 or +0.32 were defined as undetermined (Supplementary Fig. S4b). An 

aneuploidy score was calculated for each sample. It was defined as the number of 

chromosome arms (out of 39) with arm-level aneuploidy, following principles previously 

used in the analysis of genomic instability (17). A chromosome arm (except for the short 

arm of acrocentric chromosomes 13, 14, 15, 21 and 22) was categorized as aneuploid when 

an amplification, deletion, cnLOH, or undeterminable SCNA(s) spanned more than 75% of 

the chromosome arm. To accommodate for high-confidence AI events, with subtle log2 copy 

ratio deviations, an arm-level SCNA was also called in cases where one type of SCNA 

(amplification, deletion, or cnLOH) plus undeterminable SCNA(s) spanned more than 75% 

of the arm, but a single type of SCNA did not reach the 75% threshold.

For identification of SCNA patterns suggestive of DNA damage repair deficiencies, we 

calculated a new and easy to compute score. This complexity score was calculated by 

summing the number of chromosome arms with two SCNAs with opposing classification (ie 

gain and loss, or gain cn-LOH). Undetermined events and those smaller than 1Mb were 

excluded. This chromosome-arm level signature is inferred to have arisen from double 

strand breaks, thus higher scores are present in patients with deficiencies in DNA- repair.

Statistical analysis:

PFS was defined as time period from the start of any treatment (chemo, radiation or surgery) 

to date of disease progression (defined by RECIST 1.1 guidelines (18)) or death. OS was 

defined as time from tissue sampling (surgery, core biopsy or EUS-FNA) to death for any 

reason. Survival curves were estimated using the Kaplan–Meier method. Statistical analyses 

were performed with SPSS statistical software, version 24 (IBM, Armonk, NY) or Prism 8 

(GraphPad Software, Inc, San Diego, USA). All tests were two- sided. Statistical 

significance was defined as a P value of <0.05. We used bootstrapping to estimate the 

sampling distribution of the CS score in the DFCI cohort.
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Results

Patient cohort and workflow

To analyze the feasibility and impact of epithelial cell enrichment, we utilized samples from 

either surgically resected primary PDAC (N = 5) or CT guided metastatic core biopsies (N = 

4, 3 patients) in a pilot “first phase” of this study. The nine pilot phase samples were 

obtained from eight independent patients. Subsequently, for the main (“second phase”) 

study, we assessed 23 cytology samples from 23 PDAC patients undergoing endoscopic 

FNAs between April 2017 and November 2018 at MD Anderson Cancer Center (MDACC). 

Patient details and processing workflow for both phases are summarized in Supplementary 

Table 1 and Supplementary Figure 1a. Matched blood samples were obtained in 24/31 

patients (77.4%).

Pilot phase: Significance and feasibility of EpCAM enrichment

A major obstacle for genomic characterization of small biopsies, especially using whole 

exome sequencing, is the limited amount of starting material and the generally low tumor 

cellularity of pancreatic cancer. To overcome this known hurdle, we used a magnetic 

EpCAM-pulldown approach to enrich for epithelial tumor cells. In the pilot phase, we used 

five fresh resected tissues samples with a low cellularity (<10%) and four CT or ultrasound 

guided core biopsies (liver and lung metastases, N=2 each, Supplementary Figure 1a and b). 

All samples were mechanically and enzymatically dissociated into a single cell suspension 

before further processing. EpCAM-enrichment was performed using an EpCAM-based 

magnetic pulldown followed by DNA isolation (Supplementary Figure 1c). Digital droplet 

PCR (ddPCR) showed a significant increase in KRAS MAF (median 4.3% vs. 21.7%, 

P=0.049) (Figure 1a and b). In four patients with a non-enriched KRAS MAF falling below 

the cut-off for inclusion in CLIA reports (<5%), enrichment increased the MAF above this 

threshold (Figure 1a and b). Additionally, we compared performance for WES SNV and 

somatic copy number alterations (SCNA) calls between EpCAM- enriched samples from 

resected PDAC and matched archived formalin-fixed paraffin- embedded (FFPE) slides of 

the matched tumor at resection (n=2). While this comparison showed only a few alterations 

in FFPE tissues, a greater number of genomic alterations were observed in the enriched 

samples, underscoring the value of EpCAM-enrichment (Supplementary Table 2 and 

Supplementary Figure 2a and b). For example, in patient 13, sequencing of the FFPE block 

did not identify any mutations in PDAC driver genes, whereas they were detected in the 

EpCAM-enriched sample (KRAS, SMAD4 and RNF43) (Supplementary Table 2). 

Additionally, no major allelic imbalance events were found in the matched FFPE-derived 

samples compared to the enriched counterpart in both patients (Supplementary Figure 2a 

and b).

All but one sample (1/9) of this pilot phase (patient 16, resected tumor) passed sequencing 

quality control (QC), which was therefore excluded from further analysis, with the exception 

of ddPCR profiling. The genomic landscape of mutations in known PDAC- associated genes 

in this pilot phase generally match those previously reported (3,4)(19)(20) (Figure 2).
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Second phase: EUS-FNA biopsies resemble commonly reported PDAC genomic 
landscapes from high quality tissue sources

In the second phase of this study, we applied our EpCAM-enrichment strategy to 23 

independent real world EUS-FNA samples collected during routine diagnostic procedures 

(18/23 with paired PBMC, median of one FNA pass, range 1–2). Comparable to the results 

of the pilot phase, EpCAM-enrichment followed by ddPCR showed a significant increase in 

KRAS MAF (median 13.9% vs. 28.0%, P=0.03) (Figure 1c and d). These results were also 

seen by sequencing as we split up one pooled FNA with two research passes (patient 18) to 

conduct WES on matched enriched and non-enriched DNA. The median MAF of all 

overlapping mutations and SCNAs, in the enriched versus the non-enriched samples, 

increased significantly (p<0.001, Supplementary Table 2 and Supplementary Figure 2c). 

Only three cases showed either no demonstrable KRAS or a MAF below 5% after EpCAM-

enrichment (range KRAS MAF: 0–4.39%). Non-diagnostic EUS-FNA passes cannot be 

excluded in these cases as our single research passes were acquired after routine clinical 

passes and may therefore harbor lower levels of cancer cells (21).

All 23 enriched FNA samples had enough DNA to proceed with library preparation and 

passed sequencing quality control (QC). The genomic landscape of mutations in known 

PDAC-associated genes generally matched those from previous reports (3,4,10,15). In our 

cohort, significantly recurrent mutations (>10%) were identified in KRAS, TP53, CDKN2A, 

SMAD4, GNAS, RNF43 and ARID1A (Figure 2). Prevalence of KRAS mutations using 

sequencing alone was 82.6% (19/23 patients) whereas combination of both sequencing and 

ddPCR increased the KRAS mutation detection rate to 91.3% (21/23 patients). In order to 

confirm our methods for calling SNVs and CNVs in patients that underwent a subsequent 

resection or core biopsy, we used pre-generated targeted sequencing CLIA laboratory reports 

as the gold standard for validation. All but one SNV (patient 6: TP53) showed a 

concordance (92.3%) between the CLIA report and our sequencing results (Supplementary 

Table 3). Additionally, comparison of sequencing with ddPCR results for KRAS MAF and 

GNAS p.R201C showed significant correlation (R2=0.93, p<0.0001, Supplementary Figure 

3a, b and Supplementary Table 4).

Although not present in a majority of PDAC patients, low frequency, potentially actionable 

alterations were found in individual cases. Based on knowledge of recently published 

actionable mutations (2) and by including only highly deleterious SNVs from the Catalog of 

Somatic Mutations in Cancer (COSMIC) database and amplifications with more than 3 

copies, a total of 5/23 EUS-FNA patients (21.7%) showed potentially actionable alterations 

such as MYC amplifications = 1 (SCNA with a level of 5.5), MTOR = 1 (nonsense 

mutation, p.A835S), BRAF = 1 (nonsense mutation, p.R509L), MSH6 = 1 (nonsense 

mutation, p.P1087R), POLE = 1 (frameshift insertion, p.F699Vfs*11)) (Figure 3a). These 

results match prevalent actionable mutations previously reported in 17%−48% of PDAC 

cases (19,20,22). Potential treatment options for these mutations include GSK525762 for 

MYC-dependent carcinomas, Everolimus, VS5584 or LY3023414 for MTOR-mutant 

tumors, Vemurafenib for BRAF-mutant PDACs and agents targeting tumors with mismatch 

repair defects caused by MSH6 and POLE such as Pembrolizumab and Nivolumab which 

have shown response rates of over 30% in non-colorectal cancer patients (2)(23). 
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Nonetheless, it should be emphasized that estimates for the proportion of actionable 

mutations in PDAC vary widely depending on the inclusion criterion.

Taken together, we were able to show that EpCAM- enrichment of epithelial tumor cells 

significantly increases mutant allele frequency (MAF) and facilitates genomic profiling in 

PDAC, especially in challenging sample types like EUS-FNA and samples with low overall 

tumor cellularity.

Tumor mutational burden is correlated with mutations in DNA repair genes

PDAC is known for a relatively modest mutational burden, compared to melanoma or lung 

cancer (1–3)(4). Matching previous reports, our median mutational burden for (non-) 

synonymous SNVs (18/23 PBMC paired samples) was 1.63 mutations/Mb (range: 0.29 

mut/Mb - 21.46 mut/Mb) (24). TMB was not affected by the presence of matching germline 

samples, stage, or tissue origin (Supplementary figure 3c and d, e).

Two of 23 individuals in our EUS-FNA cohort (8.7%) showed an increased mutational 

burden (TMBhigh), defined as carrying more than 10 mutations/Mb by recent Pan-cancer 

analysis (25) (Figure 3b). Both TMBhigh patients harbored SNVs in DNA-damage response 

(DDR) genes or mismatch repair defects genes, while the majority of TMBlow displayed no 

mutations in these genes (p<0.001) (Figure 3c), which is in line with previously reported 

results (26). Patient 29 harbored a MSH6 germline mutation (Lynch syndrome) which has 

been confirmed by clinical CLIA germline testing as a variant of unknown significance and 

an additional non-synonymous mutation (Supplementary Table 3). This patient had an 

extensive family history of multiple cancers including a mother with breast cancer, a sister 

with PDAC, a parental cousin with an aggressive melanoma, and two parental cousins with 

brain tumors. Patient 8 had a COSMIC annotated frameshift insertion in POLE 
(COSM2001733, p.F699Vfs*11, no clinical CLIA testing performed) and also reported a 

family history for cancer (gastrointestinal cancer: mother and grandfather). In our limited 

EUS-cohort, TMBhigh patients demonstrated a trend toward improved progression-free 

survival (PFS) (median PFS: 674 days vs 191 days, p=0.09) (Figure 3d) but not overall 

survival (OS) (417 days vs. undefined, p=0.19) compared to non-TMBhigh (Supplementary 

Figure 4a).

Prognostic impact of chromosomal alterations in WES

To ensure a rigorous standard for annotating somatic copy number alterations (SCNA), we 

used two independent algorithms: HapLOHseq (14), a powerful tool to analyze the presence 

of allelic imbalance (AI) in low purity samples and the genome analysis toolkit (GATK) 

standard segmentation pipeline (Supplementary Figure 4b). The results from these tools 

were merged to obtain a high confidence SNCA call set, which was validated by a 

significant correlation of the MYC amplification estimates between sequencing and ddPCR 

results (n=7, R2=0.91, p<0.0001, Supplementary Figure 5a–c).

Consistent with previous studies, deleterious SCNAs were mainly detected in known tumor 

suppressor genes such as CDKN2A (9/23, 39.1%), SMAD4 (7/23, 30.4%), TP53 (7/23, 

21.7%) and ARID1A (6/23, 26.1%) (all p<0.05) (3,4,19,20). Interestingly, CDKN2A 
showed a large number of focal SCNA events (5/9, 55.5%), whereas most other loci showed 
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a mixture of both focal and larger events. Not unexpectedly, amplifications were most 

commonly centered on established oncogenes such as GATA6 (5/23, 21.7%) or MYC (3/23, 

13.0%) (Figure 2, Figure 4 and Supplementary Figure 6a). Mirroring results from previous 

PDAC publications, at least one arm-level SCNA occurred in 78.3% of patients. The 

majority of patients harbored multiple SCNAs, most frequently spanning chromosome arms 

6q (9/23, 39.1%), 8p (8/23, 34.8%), 9p (7/23, 30.4%), 17p (11/23, 47.8%), 18p (7/23, 

30.4%), 18q (11/23, 47.8%) and 19p (9/23, 39.1%) (4,17) (Figure 4 and Supplementary 

Figure 6).

Genomic instability from SCNA data across cancer types can be estimated using a number 

of different approaches. For PDAC, structural rearrangements contributing to an “unstable 

genome” (>200 rearrangements) have been used as a measure of genomic instability (3,27). 

We were unable to derive this previously described “unstable genome” phenotype from the 

exome capture platform (SureSelect, Agilent), as it only covers 71 possible breakpoints. 

Therefore other previously proposed quantitative metrics, such as HRD-LST (large-scale 

state transitions), HRD-LOH (loss of heterozygosity), the total SCNA burden, as well as 

aneuploidy were analyzed (17,28,29), and all of these quantitative assessments were readily 

feasible on EUS-FNA WES data. All scores were significantly correlated with each other, 

which is why we used aneuploidy in the subsequent analyses (all p<0.015, Supplementary 

Table 5). In our cohort, aneuploidy score was not affected by patient’s gender, primary 

tumor location, tissue source or age (Supplementary Figure 7a–d). Somatic TP53 mutation 

carriers showed a significantly higher aneuploidy score than patients without a TP53 
mutation (median: 0, range 0–8 vs. 11, range 3–22, p=0.0002), as has been previously 

reported (Supplementary Figure 7e) (17). The magnitude of aneuploidy measured by the 

number of aneuploid chromosome arms on WES has previously been used as an indirect 

measure of genomic instability, the prognostic value of which is an area of active research 

(17). Correspondingly, studies in many solid tumors (30), showed a correlation of high 

aneuploidy with later stage disease and poorer prognosis (e.g. colorectal cancer (31) and 

esophageal cancer (32)). We therefore evaluated the prognostic potential of the aneuploidy 

score. Classification of patients based on the median aneuploidy level into a low-level 

aneuploidy (Aneuploidylow: bottom half=0–7 arm-level events), and high-level aneuploidy 

(Aneuploidyhigh: top half≥8 arm-level events) revealed a significant and deleterious impact 

on prognosis (Figure 5a– c). Aneuploidyhigh tumors showed a median PFS of 104.5 days, 

whereas tumors with low-level aneuploidy experienced a significantly longer PFS of 365 

days (p=0.009) (Figure 5b). Additionally, Aneuploidyhigh showed a trend for worse OS 

(225 days vs. undefined, p=0.06) (Figure 5c). Importantly, the aneuploidy score maintained 

its prognostic trends also in localized patients (Figure 5d–e), which suggested that 

aneuploidy’s prognostic value is not based on advanced tumor stage. Correspondingly, after 

restricting the analysis to non-surgically treated patients (n=19) in this group, prognostic 

impact of aneuploidy remained significant (OS: 286.6±58.8 days vs. 466.9±69.5 days, 

p=0.039 and PFS: 130.0±51.4 days vs. 317.0±24.4 days, p=0.005). A potential confounder 

for our analysis may be the inclusion of TMBhigh samples as these samples demonstrated 

longer PFS and therefore results have to be interpreted with caution. To further validate the 

prognostic impact of the aneuploidy score, we used an independent cohort from the Dana-

Farber Cancer Institute (DFCI) in Boston (MA) (20). There are several details that need to 
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be highlighted when comparing the two datasets. In the DFCI cohort: 1) Most of the 

specimens (96%) were taken using core needles or intra-operative biopsies, primarily from 

metastatic lesions, while only 4% of cases were sampled by EUS-FNA with 9% coming 

from primary pancreatic lesions. 2) No enrichment of the biopsies was performed and the 

authors report a median cellularity of 40% (range 5–80%). 3) Most of the cohort (91%) and 

all of the patients with a cellularity >20% were diagnosed with metastatic disease. 4) No 

UMI-enhanced sequencing was used for WES.

To minimize bias in the aneuploidy score related to low cellularity samples in the DFCI 

cohort, we restricted the analysis to specimens with a tumor cellularity of >20% (n=52/73). 

The median aneuploidy score of the DFCI cohort was 15 (range 2–33) and only 8/52 

patients showed an aneuploidy score below 8. This may be due to the advanced stage in the 

DFCI cohort and mirrors our findings that metastatic patients show a trend for higher 

aneuploidy score compared to localized patients (median of 5.5 (range 0–18) vs. 11 (range 

0–22), p=0.07). PFS for most patients in the DFCI cohort was unavailable; therefore we used 

OS data. Using our cutoffs for aneuploidyhigh (≥8) and aneuploidylow (≤7) there was no 

prognostic value for patients with aneuploidyhigh (median OS in days: 625±35.8 vs. 

635±74.8, p=0.60). Because of the differences between the cohorts as detailed above, we 

then evaluated median aneuploidy score as a cohort specific cutoff value and found a 

significantly worse OS survival for aneuploidyhigh (≥15) patients (313.2±38.4 vs. 

792.7±160.8, p=0.0013, Supplementary Figure 7f)).

Collectively, we speculate that increased aneuploidy in localized patients may be associated 

with more aggressive disease and earlier metastatic spread.

Prediction of platinum response using treatment naive EUS-FNA

Therapeutic decisions on first-line therapy in PDAC are currently mostly made on a clinical 

basis (e.g., performance status), without using biomarkers, unlike established markers for 

other cancer types, like colon cancer (33). There have been ongoing efforts using genomic or 

transcriptomic data to predict response to platinum-based therapy. In particular, cancers with 

BRCA1/2 mutations or HRD show superior response to platinum- based therapies in 

multiple cancers, including PDAC (22,34–36). We therefore evaluated the potential of WES 

data within our unique EUS-FNA set to predict response to platinum regimens.

Eight patients (four localized and four metastatic) whose EUS-FNA samples were 

sequenced, were treated with platinum-based therapies. Three of these showed a response to 

FOLF(IRIN)OX - defined as stable disease or partial response based on RECIST 1.1 criteria 

- while five patients progressed. None of the patients harbored deleterious SNVs in the 

following genes: BRCA1/2, PALB2, FANCM, XRCC4/6, CHEK2, BRIP1 or BARD1, 

except for two patients with ATM variants (patient 26 and 29). There was significance 

between patients with higher TMB and platinum response (8.86 mut/Mb, range 4.89–21.37 

vs. 1.1 mut/Mb, range 0.79 – 3.36, p=0.04, Figure 6a), which is in line with previous reports 

(3). Previously proposed parameters including aneuploidy, HRD- LST and HRD-LOH 

(17,29) did not show a significant correlation (Figure 6b and Supplementary Table 5) with 

platinum response, while signature 3 showed a marginal positive association with response 

(p = 0.06), a finding that is in line with previous results (37).
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We therefore evaluated our SCNA data for new approaches to predict platinum response 

which might correlate with HRD or DDR deficiency. Based on the assumption that DDR 

deficiency and especially an impaired DNA double strand break repair contributes to HRD, 

we analyzed the number of chromosomal arms with opposing SCNA segments (e.g. gain and 

deletion present in the same chromosome arm, Figure 6c) and use the sum of arms 

exhibiting this pattern to calculate a “complexity score” (CS). Our assumption is that a 

higher CS is inversely correlated with DNA double strand repair capabilities. The CS is 

novel with regards to the integration of copy number (segmentation data) with allelic 

imbalance calls derived using a haplotype-based approach. However, this approach is similar 

in concept to using large-scale state transitions as a signature for homologous repair 

deficiency (HRD), which identifies adjacent chromosome segments with different copy 

number states (38). Patients with platinum therapy response showed a significantly higher 

CS than those with progressive disease (complexity score: 3, range 2–3 vs. 0, range 0–1, 

p=0.04, Figure 6d). Additionally, a high CS showed a trend for better PFS (674 days vs. 175 

days, p=0.11, Figure 6e), OS (417 days vs. undefined, p=0.14, Supplementary Figure 7g) 

and a positive TMB correlation with tumors harboring a mutation in DDR genes with 

highest CS (R2=0.37, p=0.002, Figure 6f). In addition to the eight patients treated with a 

platinum-based therapy, eight patients of the FNA cohort received a Gemcitabine based 

regimen. Seven patients were excluded from this analysis due to trial treatment, upfront 

surgery, side effects, fragility or patient’s choice not to undergo any therapy. When 

examining CS for chemotherapy prediction, we observe a marginally significant association 

between the CS score and response: median1.5, range 0–3 for responders and median 1, 

range 0–1 for non-responders (p=0.07, Supplementary Figure 7h). We also attempted to test 

the predictive value in the DFCI cohort (see above). There were three responders in the data 

set (with 1 having an estimated tumor purity of only 4%), this severely restricted power to 

test for an association between the CS score and response to platinum therapy. However, we 

do note that patients with BRCA1/2 mutations (4 germline and 1 somatic) in the DFCI 

cohort have significantly higher CS scores than patients without these mutations (p = 0.008, 

mean = 3.6 CS for those with a mutation and mean = 0.7 CS for those without). In addition, 

we performed mutational signature analysis as described previously (13) on FNA samples 

from treatment naive tumors (Supplementary Figure 8). Herein, signature 3 which is 

associated with double strand repair deficiency showed a positive association with the 

complexity score (R2 = 0.49, P = 0.07).

Taken together CS shows potential as a predictive biomarker to estimate platinum 

responsiveness based on an indirect DDR evaluation even from limited FNA samples.

Longitudinal follow-up of an immune checkpoint treated patient gives insight into a 
possible mechanism of resistance

To demonstrate the clinical significance and feasibility of WES from limited clinical 

biopsies, we interrogated two consecutive endoscopic lung biopsies in a patient (patient 17) 

with recurrent metastatic PDAC to the lung (both biopsies were included in the pilot phase). 

The first biopsy (timepoint 1, T1) was taken prior to immunotherapy with a PD-L1 antibody 

(Durvalumab) and a STAT3-inhibitor (AZD9150) (39). The second endoscopic biopsy 

(timepoint 2, T2) was taken after progression on aforementioned therapy and prior to 
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initiation of a hypoxia-activated prodrug regime with Evofosfamide (40). Before immune 

therapy initiation, this patient was diagnosed with a multifocal pulmonary recurrence two 

years after upfront distal pancreatectomy. The recurrent tumor was then treated with Xeloda 

and Oxaliplatin but progressed within a year (Figure 7a).

Comparative analysis of the biopsy taken before immunotherapy treatment (T1) and after 

progression (T2) revealed new-onset focal deletions of STK11, TSC2 and the CD274 locus 

(PD-L1) (Figure 7b). These loci have been previously reported to have a great impact on 

immunotherapy resistance. STK11 loss, for example, has been repeatedly linked to the 

development of immunotherapy resistance in KRAS-mutant lung cancer (41) and PD-L1 
loss is associated with adaptive immune resistance in Hodgkin lymphoma and other 

neoplastic diseases (42). In addition to these focal deletions, chromosome 3q, 10q, 17q, 6p 

and 6q also developed new arm-wide SCNAs, indicating loss of heterozygosity at all major 

histocompatibility complex genes, as evident by high confidence AI calls. Excluding these 

focal changes, T1 and T2 had overall congruous allelic imbalance profiles. T1 and T2 

biopsies shared focal deletions in major PDAC tumor suppressors such as SMAD4 and 

CDKN2A, as well as amplifications in GATA6 and MYC. T1 and T2 SNVs in established 

drivers, KRAS, SMAD4, and TP53 were shared (Figure 7c). Only two of the non-

overlapping deleterious SNVs had a COSMIC annotation (CCDC42: p.R104W, 

COSM4443319 and RCBTB2: p.V347M, COSM6445879); upon inspection and literature 

review, these do not have a known mechanistic link that would explain the development of 

immunotherapy resistance. Overall, mutational burden remained roughly the same between 

T1 and T2 (2.1 mut/Mb vs. 1.6 mut/Mb). As illustrated by this example, paired longitudinal 

endoscopic biopsies obtained over the course of therapy in PDAC patients might elucidate 

genomic alterations that could explain the development of resistance to immunotherapy (or 

targeted therapies).

Discussion

Over the past decade, precision oncology has improved clinical outcomes for many patients 

with solid cancers. Melanoma and breast cancer patients are now routinely screened for their 

V600E proto-oncogene B-Raf (BRAF) (43) and human epidermal growth factor receptor 

type 2 (HER2) status, respectively (44). Targeting these aberrations has alleviated prognosis 

in both entities. Despite significant efforts, PDAC has proven less susceptible to targeted or 

immune therapies, mainly due its stroma- dense, immune “cold” tumors that additionally 

show a remarkable genomic heterogeneity (1–6).

Previous WES, whole genome sequencing (WGS), and whole transcriptomic approaches in 

molecular profiling of PDAC have used tissue from multiple imaging-guided core biopsies 

for DNA and RNA profiling. The amount of tissue from these multiple cores is substantially 

greater than our “one-pass” EUS-FNA starting material (20,22)(11,13). It is also important 

to mention that multiple EUS-FNA passes are not necessarily associated with an increased 

amount of neoplastic cells harvest (45,46) nor with an increased sensitivity of detection 

(21),and indeed, might increase the associated risk of complications (21,47). Other sampling 

techniques such as EUS-fine needle biopsies (FNB) have shown promising results for in-

depth genetic analysis, but their applicability and wide-spread use can be constrained by 
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their significant expense (48)(49). Additionally, a major advantage of EUS-FNA compared 

to EUS-FNB is that the former allows for ROSE-rapid on-site cytology assessment that 

ensures that there is adequate cellularity and a diagnostic specimen. Here, we report our 

efforts to characterize EpCAM-enriched real-world, limited EUS-FNA. Despite the fact that 

most PDAC patients are diagnosed using EUS-FNA, these samples have so far been deemed 

not suitable for in-depth molecular analysis such as WES (50,51). To increase the tumor to 

normal cell proportion, many studies have either enriched their specimens e.g. laser 

microdissection (time- and labor-intensive) or excluded low tumor cellularity samples from 

analysis altogether (2–6,20). In contrast, we used a simple and fast enrichment method to 

successfully isolate tumor cells resulting in an improved detection of deleterious mutations.

There is evidence that evaluation of aneuploidy as a marker for genomic instability may be a 

valid surrogate in metastatic PDAC (22,52). Aneuploidy demonstrated prognostic 

significance independent of disease stage within the current study and an independent 

dataset of pancreatic cancer patients. This finding is in line with results showing a worse 

prognosis and later disease stage correlated with increased aneuploidy (3,24,32). In this 

regard, tumor with high aneuploidy have shown increased tumor progression and 

chemotherapy resistance due to a higher intra-tumoral heterogeneity and ultimately an 

elevated capacity for adaptation (53). It is important to mention, that aneuploidy seems to be 

context-dependent and therefore might differently affects distinct tumor types (32).

One of the important clinical questions in PDAC is the susceptibility to platinum-based 

therapies as one of two first line regimens, which should ideally be discernible in WES data 

on limited samples material like EUS-FNA. In light of recent findings, up to 25% of PDAC 

patients harbor a genomic footprint of HRD (3) and many of these potential responders 

might be missed using only “classic” DDR mutations for identification, like BRCA1/2 or 

PALB2 that are present in 5–7% of PDAC patients (54). Other HRD causing alterations like 

BRCA1 promoter hypermethylation or biallelic loss of PALB2 are even more challenging, if 

not impossible, to detect by most commonly used targeted sequencing panels (2). In a cohort 

of breast cancer patients, over 30% of HRD positive tumors had no underlying genetic 

alteration associated with HRD and yet demonstrated platinum susceptibility (35). Within 

this aforementioned study, HRD has been estimated by an WGS algorithm called 

“HRDetect” but the algorithm performed suboptimally with WES data because essential 

predictor components such as rearrangement signatures and indels analysis are restricted 

(35,36).

We identified a relatively facile WES-based scoring system of the “complexity” of SCNA 

events within a chromosomal arm that predicts platinum response in this PDAC patient 

cohort. This “complexity score” (CS) analyzes the presence of alternating SCNA events 

(gains, losses and cnLOHs > 1M) within a single chromosomal arm boundary. This kind of 

event pattern can only occur upon a severe disruption of double strand DNA repair and 

results in mis- segregation of “shattered” arm fragments in mitosis. It is relatively easy to 

calculate using WES data and standard GATK segmentation pipeline which makes it an 

attractive possible biomarker. We therefore hypothesize that CS may be a marker for 

increased genomic instability indicating susceptibility to platinum-based treatment. 
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Interestingly, CS positively correlated with increased TMB that by itself also showed a 

predictive value but did not show a correlation with other SCNA markers, like aneuploidy.

We acknowledge important drawbacks in our study. One downside of our approach is that it 

requires a freshly acquired aspiration biopsy with dissociated cells as starting material, as we 

did not attempt WES on archival cytology samples. On the other hand, dissociation of cells 

from FNAs is a relatively simple procedure when compared to the dissociation of core 

biopsies which is time consuming. We were also not able to conduct a transcriptional 

analysis to validate loss or gain of function of genes because EUS-FNA provided sparse 

material to conduct additional assays. Additionally, our WES library design refrained us 

from analyzing important RNA fusion patterns which are accessible primarily using WGS.

Although significant EpCAM expression is seen in epithelial derived carcinoma cells when 

compared to normal epithelial, up to one third of pancreatic cancers may have low to no 

EpCAM expression (55)(56). This underlines a potential limitation of the EpCAM 

enrichment approach of tumor cells, and may warrant alternative strategies such as negative 

selection by targeting cells expressing CD45, CD31 and FAP to clean the sample of 

immune/blood cells, endothelial cells and fibroblasts. Based on the minimal amount of 

cellular material acquired from a single EUS-FNA pass, we were not able to process each 

pass with multiple selection methods to compare intra-patient accuracy and performance. 

Additionally, with advances and improvements in sampling strategies (like EUS-FNB), 

enrichment in the context of adequate tissue acquisition may become redundant. Finally, due 

to the small number of overall patients, the non-CLIA setting of our assay and the inherent 

cohort heterogeneity, our conclusions need to be validated in a larger prospective EUS-FNA 

cohort.

In conclusion, in this proof-of-concept study we show the importance and ease of EpCAM 

enrichment for genomic analysis of real-world limited aspiration (EUS-FNA) samples. 

Using enriched EUS-FNA samples, we were able to perform an in-depth whole high- quality 

molecular barcoded WES analysis, reproducing genomic patterns consistent with previous 

results. We show the prognostic potential of SCNA (namely aneuploidy) for PDAC 

diagnosis, and also identify a novel predictive biomarker (complexity score, CS) for 

platinum responsiveness in our cohort. CS may be a relatively facile biomarker for 

predicting platinum responsiveness in newly diagnosed PDAC not harboring overt mutations 

in canonical DDR genes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Statement of Translational Relevance

Genomic characterization of PDAC is infeasible in most patients mainly due to limited 

tissue availability and quality. Using an enrichment protocol combined with molecular 

barcoded WES sequencing, we demonstrate feasibility, prognostic and predictive value of 

genomic characterization from limited FNA samples.
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Figure 1. 
Detection of mutant KRAS in FNAs and core biopsies. a) and c) Fractional abundance of 

mutant KRAS in enriched (dark gray) and non-enriched (light gray) samples measured by 

ddPCR. Samples of the pilot phase derived from resected tumor specimens (n=5, marked 

with T) or core biopsies (n=3, marked with c) are shown in a) and b), one sequential core 

biopsy was not processed with ddPCR. Samples derived from FNAs in the second study 

phase (n=23) are summarized in c) and d). b) and d) gray lines indicate changes in KRAS 
MAF between non-enriched and enriched samples with a median increase of 95%. Straight 

lines indicate a percentage increase of >10%, connected lines show a difference <10%. 

Samples marked with Q represent KRAS mutations in Q61.
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Figure 2. 
Genomic alterations identified during the pilot and subsequent study. Heatmap of genomic 

data for 30 patients (columns) for pilot phase including resected specimens and core biopsies 

(left side) and for EUS-FNA derived samples (right side). Heatmap includes SNV (classified 

as missense, silent, InDel, frameshift, stopgain, stoploss, and germline) as well as SCNA 

(classified as amplifications, deletions, and cnLOH) in selected PDAC driver genes 

organized by their functional classes. Germline mutations are only shown if identified in a 

CLIA certified clinical test (Supplementary Table 3) in addition to our calling algorithm. 

Patients’ clinical pathological data are shown as tracks at the top. The percentage of PDAC 

samples with an alteration of any type is noted at the left and the proportions of alterations 

per genes at the right.
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Figure 3. Clinicopathological significance of mutational burden (only EUS-FNA cohort, n=23).
a) Potential actionable alterations based on literature findings (2). Alterations included are 

deleterious SNVs found in the COSMIC database and gene amplifications with copy number 

of 3 or greater. b) Sum of all somatic mutations (missense, silent, frameshift, InDel, stopgain 

and stoploss) per patient (column) arranged in decreasing order. TMBhigh cases are defined 

as > 670 mutations/patient (>10 SNVs/Mb). Samples without paired PBMC for germline 

correction are marked with v, all other samples are FNAs with paired PBMC. c) TMB shown 

as tracks at the bottom with TMBhigh cases left of vertical dotted line and mutations in 

DDR genes highlighted (p<0.0001). d) Kaplan Meier curves showing progression free 

survival (PFS) comparing TMBhigh vs. TMBlow (p=0.09).
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Figure 4. 
SCNA(s) across all patients. Arm-level SCNA(s) with classification information (deletion, 

amplification, cnLOH, or undetermined) per chromosomal arm (left y-axis) and fraction of 

patients with events (right y-axis)
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Figure 5. 
Prognostic significance of aneuploidy in patient samples. a) Exemplary segmentation plots 

intersected with HapLOHseq calls (lavender background) showing samples classifying into 

aneuploidy low (<=7 chromosomal arm events) and aneuploidy high (>=8). b) Kaplan Meier 

curves comparing progression free survival (PFS) of patients with low vs. high aneuploidy 

levels (p=0.009). c) Kaplan Meier curves comparing overall survival (OS) of patients with 

low vs. high aneuploidy levels (p=0.06). d) Kaplan Meier curves comparing progression free 

survival (PFS) of patients with low vs. high aneuploidy levels for patients with localized 

tumors only (p=0.02). e) Kaplan Meier curves comparing overall survival (OS) of patients 

with low vs. high aneuploidy levels in localized patients only (p=0.04). *For this and 

subsequent figures HapLOHseq calls shown pass a threshold of posterior probability of AI 

>0.85.
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Figure 6. Predictive value of SCNAs in platinum-based therapy response
a) Scattered box plot showing the TMB level of responders vs. non-responders to platinum-

based therapy (p=0.04). b) Scattered box plot showing the aneuploidy level of responders vs. 

non-responders to platinum-based therapy (p=0.73). c) Exemplary segmentation plots of two 

patients intersected with HapLOHseq calls (lavender background) showing samples with 

areas highlighted and zoomed in showing chromosomal arms rated positive for complexity 

score calculation. d) Scattered box plot showing the complexity score of responders vs. non-

responders to platinum-based therapy (p=0.04). e) Kaplan Meier curves comparing 

progression free survival (PFS) of patients with low vs. high complexity score (p=0.11). f) 

Linear regression plotting complexity score vs. TMB (R2=0.37, p=0.002), half-filled dots 

mark samples with alterations in known DDR genes.
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Figure 7. 
Longitudinal follow-up of patient 17. a) Time course of disease plotting the total measurable 

tumor burden (TMTB) (right y-axis) and Ca19–9 (left y-axis) with therapy regime 

administered at bottom. Green areas mark time periods with stable disease or partial 

response defined by RECIST 1.1, whereas red areas show progression. Time points of tissue 

sampling (T1 and T2) are indicated by arrows. b) Venn diagram plotting overlapping and 

distinct (non-) synonymous SNVs at T1 (n=139, left) and T2 (n=110, right). c) Left: 

Segmentation plots of T1 and T2 with intersected HapLOHseq calls (lavender background). 

Red arrows indicate loci that might be associated with acquired resistance to immune-

therapy. Right: Exemplary CTC images showing an increase of pulmonal metastasis 

between T1 and T2 (red arrow).
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