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Pairwise maximum entropy model explains the role
of white matter structure in shaping emergent co-
activation states

Arian Ashourvan® 2% Preya Shah'2, Adam Pines', Shi Gu® 3, Christopher W. Lynn4,
Danielle S. Bassett® "4>67, Kathryn A. Davis"? & Brian Litt"27

A major challenge in neuroscience is determining a quantitative relationship between the
brain’s white matter structural connectivity and emergent activity. We seek to uncover the
intrinsic relationship among brain regions fundamental to their functional activity by con-
structing a pairwise maximum entropy model (MEM) of the inter-ictal activation patterns of
five patients with medically refractory epilepsy over an average of ~14 hours of band-passed
intracranial EEG (iEEG) recordings per patient. We find that the pairwise MEM accurately
predicts iEEG electrodes’ activation patterns’ probability and their pairwise correlations. We
demonstrate that the estimated pairwise MEM'’s interaction weights predict structural con-
nectivity and its strength over several frequencies significantly beyond what is expected
based solely on sampled regions’ distance in most patients. Together, the pairwise MEM
offers a framework for explaining iEEG functional connectivity and provides insight into how
the brain’s structural connectome gives rise to large-scale activation patterns by promoting
co-activation between connected structures.
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matic relationship between the brain’s large-scale function

and its underlying white matter structure!-3. How does
the complex array of functional dynamics observed in the brain
emerge from the static architecture of structural white matter
connections (i.e., structural connectivity) between brain regions?
Previous studies demonstrate that the resting-state fMRI func-
tional connectivity networks, defined as the statistical relation-
ships between all pairs of sampled brain regions’ time series?,
share important organizational features with the structural con-
nectome”%. Moreover, studies have discovered hierarchical and
small-world organization in both the functional connectivity
between brain regions as well as in the network of structural wires
connecting them!0-12. Additionally, coupling between functional
and structural connectivity is not constant over time, but rather
evolves throughout adolescence!?, and is altered in mental health
disorders!%1>, Commonly used functional connectivity measures,
such as the Pearson correlation, can reveal dynamic patterns of
neural activity and the brain’s functional organization at short
(e.g.,'%) and long time scales (e.g.,!”>18), respectively.

Such model-free measures, however, quantify the functional
similarity between neural units (e.g., neurons or brain regions),
and therefore are fundamentally limited in their ability to discern
between different underlying mechanisms!®20, For example,
given two brain regions with a high Pearson correlation, one
cannot distinguish between the following three scenarios: (i) The
regions are communicating directly via a structural connection,
(ii) the regions are communicating indirectly via a structural
pathway bridging intermediate regions, or (iii) the two regions are
not communicating at all, but are rather being driven by a
common third region. Recent research shows that accounting for
indirect and higher-order structural connections between brain
regions can further improve predictions of the functional con-
nectivity that is supported?!-22,

To distinguish between direct and indirect communication,
one must begin with a model of how patterns of activity are
generated in the brain and then infer the network of underlying
interactions that best describes correlations in the data. Biophy-
sical microcircuit modeling such as dynamical causal
modeling?324 aims to address these limitations using neural mass
models of synaptic dynamics, informed by empirical ion channel
and structural priors. Although these biophysical models enable
us to estimate the effective connectivity between a small set of
brain regions, the space of parameters rapidly expands as more
regions are incorporated in the model. More recently, one sto-
chastic model of neural activity — the pairwise maximum entropy
model (MEM) - has generated particular interest, primarily
because it is formally minimal in the sense that it accounts for the
observed pairwise correlations in the data while remaining
explicitly agnostic to all higher-order correlations?>.

In recent studies, this model has proven sensitive to the spa-
tiotemporal co-activation patterns in neuronal spiking at the
micro-scale26-28 and in patterns of blood-oxygen-level-dependent
(BOLD) activity at the macro-scale?®-31. The pairwise MEM is
based on the principle of maximum entropy, which states that the
probability distribution (i.e., the model) that best represents one’s
current state of knowledge about a system is the one with the
largest entropy (or uncertainty) in the context of previously
observed data. Fitting a pairwise MEM entails iteratively adjusting
the strength of individual region activation and all region pair
interactions until the estimated correlations match the correla-
tions observed in the data. In this way, the MEM makes quan-
titative predictions about the frequencies of global activity
patterns, rather than simply quantifying the similarities between
regions, as is common in studies of functional connectivity.
Notably, prior studies using resting-state fMRI data have

Q n age-old question in neuroscience concerns the enig-

demonstrated that the pairwise MEM accurately predicts the
observed patterns of regional activations, and provides a more
accurate map of the underlying structural connectivity than
conventional functional connectivity methods?’.

As the number of sampled brain regions (N) increases, the
number of all possible states increases exponentially (2N).
Therefore, it is progressively more likely that we will not observe
many of the activation states as we record from more regions.
Based on this intuition, it has been suggested that for a dataset
with N regions and L samples, the accuracy of the pairwise MEM
scales as a function of 2%32. Consequently, these observations
suggest that once the dimensionality of recordings exceeds = 25
regions, brute force sampling is no longer a viable strategy for
measuring the underlying distributions of all states. However,
while there are 2V possible states, there is reason to expect that a
much smaller number of measurements is sufficient for capturing
the fundamental structure essential to the collective behavior in
the recorded regions. For instance, Tkacik et al. demonstrated
that it is possible to infer maximum entropy models for more
than one hundred neurons from approximately only 2h of data
without any sign of overfitting?3. Therefore, in theory, large
datasets with relatively static correlation structure would allow
the pairwise MEM to estimate the expected probabilities of
activation states.

In the same vein, we examine several hours (14.6 + 2.5) of iEEG
recordings over a day in 5 patients with partial-onset refractory
epilepsy across several frequency bands, between 4-180 Hz, and
show that the functional connectivity between brain regions are
effectively static when examined over extended recordings (>12
h). We hypothesize that fitting a pairwise MEM allows us to
capture the essential underlying structure that shapes the
observed functional activation patterns. We construct a series of
pairwise MEMs capable of accurately reproducing the correlation
structure observed in binarized iEEG power amplitude states. We
observe a high cross-frequency similarity between the functional
connectivity matrices estimated using pairwise MEM, which
suggests that a common underlying mechanism supports the
functional dynamics across all frequency bands. Therefore, we
hypothesize that the brain’s physical wiring likely comprises this
common scaffold, and we test this hypothesis by comparing the
network topology of the inferred maximum entropy interactions
with the architecture of white-matter fibers between regions. We
observe strong correlations between the structural connectivity
and pairwise MEM interactions. Receiver operating characteristic
curve analysis also reveals that the pairwise MEM provides
accurate predictions of the underlying structural connectivity
across several frequency bands in most patients. To control for
spatial autocorrelation®3>, we test the significance of these
findings by proposing a resampling approach for creating subject-
specific structural nulls with conserved distance features. Finally,
we show that the pairwise MEM explains the observed co-
activation states’ probability over a broad range of frequencies.
Together, these findings demonstrate the pairwise MEM’s utility
in explaining the functional connectivity and co-activation pat-
terns in multi-channel iEEG and uncovering their underlying
anatomical substrates.

Results

Pairwise correlations stabilize over several hours of iEEG
recordings. Here, we examine the volume of data needed to
establish stable relationships between brain regions. We do this
by tracking the magnitude of the difference between pairwise
correlations (i.e., co-activation rates) of power amplitude states
(Fig. 1) in two sets of non-overlapping datasets from each patient
with progressively longer durations. Our results demonstrate that
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Fig. 1 Construction of power amplitude states from iEEG time-series. a The raw iEEG time-series recorded from a sample electrode. b A wavelet

decomposition of 100's of raw iEEG time-series8!. Color-coded dashed lines show the 6, @, f, 7, and high y frequency bands. ¢ The average power of all
frequencies within each band is high-pass filtered at 0.5 Hz, and normalized to obtain a z-score. The resultant time series were then thresholded at zero
separately for each band, to create the binarized power amplitude states on which the MEM operates. Note that the ‘on’ states are marked by color-coded

dots under each curve.

the difference between within-frequency band correlations sta-
bilize across all frequency bands after several hours of recordings
in all subjects (Supplementary Fig. 1). Next, we examine the
degree to which estimated correlations change as we incremen-
tally increased the temporal span of each datasets. We hypothe-
size that the correlation values will become stable after several
hours, after incorporating several hours of the available inter-ictal
data from patients’ multi-day recordings. Figure 2 demonstrates
that the changes in correlation matrices become progressively
smaller and plateau on small values after several hours (=12 h).
We also note that the high y band exhibits higher variability over
time, indicating a requirement of longer recordings for stable
estimation of correlations in 3 out of 5 patients (as seen in Fig. 2).
Together, these results suggest that long iEEG recordings allow
accurate estimation of the static functional connectivity between
electrodes across a wide range of frequencies. Because multiple
days of recordings are still theoretically insufficient to capture all
2N possible states, this stabilization of co-activation rates indicates
that the state space of practical co-activations is smaller than this
theoretical limit. Therefore, we believe the pairwise MEM allows
us to measure the strength of the essential relationships between
sampled brain regions, which enables us to explain the fre-
quencies (i.e., probabilities) of anticipated activation patterns.

Pairwise MEM reveals high cross-frequency similarity in
functional connectivity. Given our hypothesis that the inferred
maximum entropy parameters should reflect the underlying
structural connectivity, one would expect these pairwise

interactions to maintain a similar architecture across a broad
range of frequencies. Indeed, the matrix Jj, which encodes the
inferred pairwise interactions between electrodes, displays notably
high cross-frequency similarity. Although cross-frequency simi-
larities are higher between the J; matrices estimated from more
adjacent frequency bands, the average similarly values are high
even between the lowest and the highest frequency bands (Sup-
plementary Fig. 2). Scatter plots in Fig. 3a demonstrates the
similarity between elements of the J;; matrices estimated from a
representative patient’s (#5) inter-ictal power amplitude states at
0 and high y frequency bands - See Supplementary Fig. 3 for all
patients’ scatter plots. The fit of a simple linear regression model,
which explains more than half of the variance, and the small
intercept value of the model (slope = 0.51, intercept = 0.02, p =0
and R?=0.52) highlight the similarity between the interaction
matrices.

As seen in Fig. 3b, the similarity between the co-activation rates
at low- and high-frequency bands is relatively smaller, highlighted
by the weak effect size of the linear regression model and its
bigger intercept values (slope = 0.61, intercept =0.28, p =3.1 x
107119, and R? = 0.23). Note that the relatively high co-activation
rates at high y between distant brain regions without direct
anatomical connectivity in Fig. 3b also limits using the co-
activation rates at higher-frequency bands for predicting the
structurally connected regions. The iEEG recordings are relative
measures of electrical potentials against potential in another
electrode and therefore the recording configuration (i.e., choice of
reference electrode) or montage can effect the signal-to-noise
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Fig. 2 The relationship between length of dataset and stability of pairwise correlations. Plots show the mean (10,000 iterations) difference between the
two correlation matrices calculated from randomly selected (1-h inter-ictal segments) datasets with lengths of n and n — 1 hours. We use the matrix norm
to quantify the difference between correlations matrices. The shaded-area around the means (dashed line) highlights the standard error, and colors

indicate the frequency bands.
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Fig. 3 Cross-frequency similarity of the estimated functional interactions. a Normalized weights of pairwise MEM interaction matrices, J;, estimated

from the lowest (i.e., 8) and highest (i.e., high y) frequency bands for a representative patient (#5). Edges from the interaction matrices with corresponding
direct anatomical connections are marked by ‘o’ and their size indicates the number of estimated streamlines between each pair of regions. The functional
edges without any detected anatomical connections are marked by '.". Edges are color-coded based on the pairwise Euclidean distance between recorded
brain regions. Red line represents the linear fit to the scatter plots (slope = 0.51 and intercept = 0.02 in panel a, slope = 0.61 and intercept = 0.28 in panel
b) and each dashed red lines represent the 95% confidence interval. b Co-activation rates calculated from the same patient'’s binarized band-passed power
amplitude states at the lowest (i.e., ) and highest (i.e., high y) frequency bands.

levels (see Materials and Methods for details on recording
configurations). We also find that although parameters such as
the recording montage and state binarization threshold can
notably impact the cross-frequency similarity of co-activation
rates, the cross-frequency similarity of the estimated J; interac-
tion matrices remain high across various parameters in all
patients (Supplementary Fig. 2). Together, the pairwise MEM
captures the intrinsic propensity for direct functional interactions
between brain regions similarly across a wide range of
frequencies.

Pairwise MEM’s interaction weights reflect the white matter
connectivity. Since the pairwise MEM takes the indirect propa-
gation of influence between the electrodes into account, we

hypothesized that compared to correlation, the distribution of
estimated pairwise maximum entropy interaction weights to be
heavy-tailed and skewed towards zero. Because of this explicit
delineation of indirect and direct connectivity in the pairwise
MEM, we hypothesized that it would improve functionally-
derived estimates of direct structural connectivity. Consistent
with our first hypothesis, we find that the J; weights are notably
more heavy-tailed than the co-activation rates consistently across
all frequency bands (Supplementary Fig. 4). The significantly
(paired t-test, p<0.05, p=64x10"7, N=5 patientsx 5 fre-
quency bands) high kurtosis of J;; interaction weights” distribu-
tions compared to that of the correlation values, also indicate the
heavier tail of J;; weight distributions (Supplementary Fig. 5). To
test our second hypothesis, we examined the similarity between
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Fig. 4 Predicting structural connectivity from estimates of functional connectivity. a A structural connectivity matrix from a single representative patient
(#5), each element of which indicates the number of streamlines estimated between a pair of brain regions. b The interaction matrices, J;; obtained from
19 h of inter-ictal iEEG power amplitude states (referential montage, binarization threshold = 0) using the pairwise MEM. ¢ The functional connectivity
matrices estimated from band-passed binarized power amplitude correlations (i.e., co-activation rates). For regions covered by multiple electrodes, we
selected only the electrode closest to the region’s centroid for display in these plots as well as in the ROC analysis. d ROC curves for identification of
anatomically connected regions based on interaction matrices (solid lines) and band-passed power amplitude correlations (dashed lines). Lines are color-
coded based on the frequency band. e Brain overlay providing the position of the selected electrodes (red dots). f Streamlines connecting the regions

covered by the selected electrodes in the same patient. Here the 3-dimensional orientations of the streamlines are coded by color.

the functional and structural connectivity (i.e., log normalized
streamline count) matrices, as well as the ability of the pairwise
MEM interaction weights to predict underlying structural con-
nectivity. Cross-modality correlations and prediction-based
receiver operator characteristic (ROC) analyses both revealed a
high degree of similarity between J;; interaction matrices and
structural connectivity. Figure 4 depicts ROC curves for identi-
fying structural connectivity using J;; interaction matrices and co-
activation rates from the same representative patient in Fig. 3.
The Jj; interaction matrices’ Area Under the ROC Curve (AUC)
values in Fig. 4b and average cross-modality correlation of 0.56 +
0.08 indicate the strong coupling between modalities across a
wide range of frequency bands. We provide the AUC and cross-
modality correlation values for all patients in Supplementary
Figs. 6 and 7, respectively. We also note that overall across all
patients, recording montages, and frequency bands, the cross-
modality correlation on average is significantly higher (average
difference in correlation coefficient r = 0.04, two-sided t-test, p =
1.03 x 10~24) after normalization (i.e, log 1o(streamline count 4
1)) of streamline counts (Supplementary Fig. 8).

Extensive prior work has demonstrated that the weights of
structural connections between brain regions decreases as a

function of inter-regional distance36-38. The effects of distance on
structural connectivity are potentially even more pronounced
with respect to iEEG data because the electrode grids and strips
are distributed focally rather than uniformly across the brain.
Indeed, we observe that the most structurally connected electrode
pairs are proximal and that long range fibers are scarce
(Supplementary Fig. 9). In fact, the distance between electrodes
is highly predictive of the presence of a structural connection
between them (average AUC across subject=0.986 + 0.003).
Finally, recording artifact such as volume conductance and
presence of common sources disproportionately affect the
estimated functional relationship between proximal regions.
Therefore, to better account for distance-related artifacts, we
adopted two strategies. First, we re-examined the results using
two alternative recording montages to further account for global
and local noise sources. Second, we compared all results against
structural null models with equivalent distance profiles as the
recoded brain regions. This enabled us to establish the robustness
of our observations above and beyond distance-dependent
relations. To create each structural null, we determined the
structural connectivity between N (=number of empirically
sampled brain regions) randomly resampled regions from the
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Fig. 5 Schematic of geometric structural connectivity null algorithm. a
The brain overlay shows the position of all electrodes from a sample patient
(#5). Selected electrodes are colored-coded (dark red). b We create
geometric null by resampling the patient’s brain regions. At the first step,
we find two random distant brain regions and find a pair of empirically
sampled brain regions such that the Euclidean distance between the
empirical pair maximally matches that of the resampled null pair. The red
circles in panel a highlight the empirically sampled electrodes and the
center of corresponding null regions with red spheres. Next, out of all
possible remaining 598 null regions of interest and the remaining N — 2 (N
= total number of selected electrodes) empirically sampled regions, we find
two brain regions, one from null and one empirical, with the most similar
distances to the regions identified at the first step. At each following step,
we repeat this process until we resample N null regions. Here we illustrate
this procedure by showing an example of matched empirical (color-coded
circles in panel a) and null (color-coded spheres in panel b) regions over
five steps.

patient’s brain. To maintain the pairwise empirical distance
profiles, we first select a random pair of distal null regions and
identify the pair of empirical regions with the most similar
pairwise distance. Next, the remaining null regions are identified
iteratively such that at every iteration, the pairwise distances
between the new null region and all null regions selected in
previous iterations are maximally similar to those of its
corresponding empirical region and all empirical regions
identified at previous iterations (Fig. 5) — see the methods section
Geometric structural connectivity null for more details.

The similarity between the empirical structural and functional
connectivity matrices estimated using the pairwise MEM is
significantly higher than nulls in all frequency bands (one-sided
permutation test, n = 10,000 p < 0.05, false discovery rate (FDR)
corrected for multiple comparisons across all frequency bands), in
at least one of the recording montages across all patients. We
presented the difference between the empirical and null’s
similarity (correlations) of the structural (log normalized stream-
line count) and functional connectivity matrices in Supplemen-
tary Fig. 10 using different recording montages. Also, we tested
these results against a host of conventional functional connectiv-
ity methods including: Pearson correlation, partial correlation,
phase-locking value (PLV), weighted phase-locking index (WPLI)
using iEEG, and iEEG power time series (Supplementary Fig. 10).
These methods provide converging results showing the high
structure and function similarity using local or global montages,
though the pairwise MEM and partial correlation of iEEG power
reveal significant differences at a broader range of frequency
bands and overall structure-function coupling. Similarly, we
compared the ROC results for the detection of empirical and null
structural connectivity matrices using different functional meth-
ods and recording montages in Supplementary Fig. 11. These
results show that pairwise MEM and partial correlation of iEEG
power provide the most accurate and significant (one-sided
permutation test, n = 10, 000, p < 0.05, FDR corrected for multi-
ple comparisons across all frequency bands) identification of
anatomical connectivity from functional estimates in 3 out of 5

patients across several frequency bands. Our results also
demonstrate that increasing the power amplitude states’ binar-
ization threshold in general either yields comparable outcomes, or
further enhances the structure-function coupling (as seen in
Supplementary Figs. 10 and 11). We also note that unlike other
methods, WPLI fails to reveal multi-modal agreement in regional
coupling, which suggests the functional relevance of near zero-lag
synchro’nizations between proximal brain regions. In Fig. 6 we
provide the aforementioned results from a representative subject
(#5). Together, these results suggest that, although the presence of
structural connectivity is highly confounded with inter-regional
distance, the pairwise MEM reveals high structure-function
coupling across a broad range of frequencies, beyond those
anticipated by inter-regional distance alone.

Next, to examine the relationship between the strength of
structural and functional connectivity, we repeated the structure-
function coupling analyses after removing a variable percentage
of the weakest structural connections. We hypothesized that
removing weak edges would increase the structure-function
coupling in some patients, as false-positives in structural
measurements are more likely to manifest as higher in weaker
connections. Supplementary Fig. 12 shows the results from
patient #1 after progressively removing a portion of weak
structural edges. Although the outcomes vary to a degree across
different recording montages, removing weak edges increased the
structure-function coupling across all frequency bands in this
patient. Supplementary Fig. 13 shows the result of a similar
analysis for all patients using referential montage. These results
also demonstrate that removing weak edges increased the
correlation between structural and functional connectivity
matrices in all patients (Supplementary Fig. 13b). At the same
time, the ROC analyses in Supplementary Fig. 13a reveal our
ability to detect structural connectivity does not improves after
pruning weak structural edges, except in patient #1. Overall, these
results demonstrate that more stringent structural connectivity
estimations increases the measured structure-function coupling in
some patients.

Pairwise MEM accurately predicts co-activation states’ prob-
abilities. We assessed the performance of the pairwise MEM first
by comparing the empirically observed and activation and co-
activation rates with those approximated by the model. As shown
in Supplementary Fig. 14, the learning algorithm accurately
reconstructs the activation and pairwise activation rates, well
within experimental precision across all frequency bands and
patients. These results demonstrate that the pairwise MEM pro-
vides a statistically robust prediction of the observed correlation
structure of the power amplitude states across all frequency
bands. Next we examined the goodness-of-fit of the pairwise
MEM, which reveals how well a simple model using only a
combination of the estimated activation rates and pairwise co-
activation rates can predict the probability of the iEEG power
amplitude states. One way to assess the goodness-of-fit fit for
the pairwise MEM is to calculate the degree to which the esti-
mated probabilities for the observed activity states diverge from
the empirically measured probabilities. As a baseline, this diver-
gence between the pairwise model and the observed statistics is
often compared to the divergence of the simpler first-order
model, which assumes that each brain region is behaving inde-
pendently from the others. It is important to note that this cal-
culation can be computationally expensive for large systems
because the state space increases exponentially (2N) with the
number of electrodes (N).

To circumvent this issue, we compare the probability of all
empirically observed states to their predicted probabilities.
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Fig. 6 Similarity between structural (log normalized streamline count) and functional connectivity estimates. The detection accuracy (measure via
AUC) of structural connectivity between brain regions using several functional connectivity estimation methods, or a representative patient (#5) using
three recording montages -- referential (a), local multiple linear regression (c), and global mean signal regression (e) montages. b, d, f The structure-
function coupling, measured as the correlation between structural and functional connectivity weights of sampled brain regions for the same patient and
three recording montages. Functional connectivity estimates based on the pairwise MEM and co-activation rates were calculated from binarized (‘0" and
‘1") power amplitude states. The remaining functional connectivity estimates (Pearson correlation, partial correlation, PLV, and WPLI) were derived from
the band-passed iEEG and band-passed iEEG power time series. The results for different frequency bands are color-coded based on the legend in panel e.
The AUC and correlation values significantly higher than those of geometric structural nulls (one-sided permutation test, n =10, 000, p < 0.05) are
depicted as ‘X', and values significant after FDR correction for multiple comparisons across frequency bands are depicted as ‘O'.

Calculating predicted’ probabilities usually is very difficult in
high-dimensional datasets as calculating the normalization
constant in the Boltzmann distribution (i.e., partition function)
involves summing over all possible states. Therefore, we
approximate the partition function using the empirical prob-
ability of the silent state (i.e., ‘all-off) — see333° for more details.
Scatter plots in Fig. 7 show the high similarity between the

empirical and the estimated probabilities of all empirically
observed states at 6, B, and high y frequency bands from a
representative patient (#5) using local recording montage
binarized at 1. These results show that the pairwise MEM
predicts the probabilities of the most frequently observed states
with high accuracy. Similar results are also found in all five
patients, as seen in Supplementary Fig. 15.
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Fig. 7 Empirical and estimated probabilities of all observed states. Plots represent the empirical and estimated probabilities of all observed states from a
representative patient (#5) at 6(a), #(b), and High y(c) bands using local montage and state binarization threshold of ‘I". The co-activation states’ size (i.e.,
the percentage ‘on’ elements of states) is color-coded based on the color bar on top of each panel. Insets depict the highest probability states within their
respective frequency band. States in the inset-plots are also color-coded based on the number of ‘on’ elements of each state (see panel b for color-code

legend). Supplementary Fig. 15 shows the results for all five patients.

Our results also show that the goodness-of-fit of the pairwise
MEM decreases linearly with the number of selected electrodes
for each patient, as seen in Fig. 8a. We measure the goodness-of-
fit by quantifying the divergence between the empirical and the
estimated probabilities using a modified version of
Kullback-Leibler divergence (see Materials and Methods section
for details). We find a significant (two-sided Wilcoxon rank-sum
test, p<0.05) divergence of the predicted from empirical
probabilities in iEEG power amplitude states binarized at 0 than
1 (Fig. 8b) using both referential and global mean regression
montages. The goodness-of-fit is also significantly different
between recording montages only at the higher (ie, 1)
binarization threshold. As seen in Fig. 8b, divergence values are
significantly (two-sided Wilcoxon rank-sum test, p < 0.05) smaller
in the referential montage than both local and global montages.
Finally, we find significant differences in the pairwise MEM’s
predication accuracy across low- and high-frequency bands. As
seen in Fig. 8c and d, the pairwise MEM’s divergence from the
empirical probabilities is significantly lower than low-frequency
bands (two-sided Wilcoxon rank-sum test, p <0.05, Bonferroni
corrected for multiple comparisons) at binarization threshold of
0, and significantly higher than low-frequency bands at binariza-
tion threshold of 1. Together, these results demonstrate that the
pairwise MEM’s accuracy is highest in predicting co-activation
probabilities at low-frequency bands (i.e., 6, « and § bands).

Discussion

A critical open question in neuroscience is how the relatively
fixed white matter structure of the brain gives rise to complex
functional dynamics. Some have argued that these complex
dynamics are well-approximated by a single underlying
process?%:41, while others favor a model comprised of multiple
processes that the brain can switch between?04243 In either

scenario, it is critical to understand from a statistical perspective
whether the observed dynamics can be explained by a fixed
structural scaffold, such as that represented by the pattern of
white matter fiber bundles connecting large-scale brain regions.
The answer depends to some degree on whether or not one can
identify statistical features of the functional dynamics that display
relatively time-invariant properties. Some evidence for such time-
invariance has recently been obtained from eletrocorticography,
where patterns of functional connectivity between electrodes
appear relatively stable in windows larger than a few
minutes!”1844, Our observations also provide converging evi-
dence that the correlation patterns and, consequently, the
intrinsic pairwise relationships between brain regions that give
rise to power amplitude dynamics, are effectively stable in long
multi-hour recordings. Thus, these findings further motivate a
careful investigation into the correspondence between those
functional relationships and the underlying anatomical
projections.

A second line of evidence supporting the existence of a com-
mon structural scaffold for the observed dynamics is the presence
of notable similarity in the estimated pairwise interactions across
frequency bands. This statistical similarity is reminiscent of the
cross-frequency interactions that have been observed in other
studies, and that are thought to play a role in integrating infor-
mation across brain structures that are functionally specialized
and spatially segregated*>=#7. It is commonly thought that the
diverse rhythms present in different frequency bands are asso-
ciated with different spatio-temporal scales of neural activity*8:49,
with low frequencies driving activity over larger spatial areas and
high frequencies driving activity over smaller spatial areas®®. Our
work offers a useful complement to these prior studies by
demonstrating that the pairwise MEM provides higher cross-
frequency similarity in estimated interactions than conventional
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Fig. 8 Goodness-of-fit of pairwise MEM. \We measure the divergence between the empirically observed states’ empirical and estimated probabilities using
a modified version of Kullback-Leibler divergence (see Materials and Methods section for details). a The relationship between the average (across all
frequency bands, and recording montages) divergence of the empirical and estimated probabilities and the number of selected electrodes for each patient
at ‘0’ (marked by ".") and ‘1" (marked by 'x’) state binarization thresholds. The close fits of the linear regression models for both ‘0" (slope = 0.55, p = 0.013,
R2=0.9) and ‘1" (slope = 0.34, p = 0.003, R?2 = 0.96) thresholds suggest a negative relationship between the iEEG dimensions and the goodness-of-fit of
pairwise MEM. b Bar plots show the average and standard deviation of divergence values for different recording montages and binarization thresholds (n =
5 patients x 5 frequency bands, except for the local montage states binarized at ‘0’ (n =10) where the silent state (i.e., ‘all-off’) used for approximating the
estimated probability function was observed only in 2 patients’ states). Statistical comparisons reveal that the divergence values are significantly smaller at
higher binarization thresholds in the referential and the global montages (two-sided Wilcoxon rank-sum test, p < 0.05, marked by "*'). The divergence
values are also lower in the referential montage compared to the other two montages only at the higher binarization threshold (two-sided Wilcoxon rank-
sum test, p < 0.05, marked by "*"). ¢, d The normalized (i.e., z-scored across frequency bands) divergence values at different frequency bands for
binarization thresholds of ‘O’ and ‘1", respectively. Each dot represents a single patient, and their colors indicated the recording montage (color-coded
similar to panel b). The open circles and error bars show the distributions’ mean and the standard deviation (n =5 patients x 3 recording montages, with
the above mentioned exception of local montage states binarized at ‘0"). Statistical comparisons reveal that the divergence values are significantly lower
and higher at high y compared to lower frequency bands using binarization thresholds of ‘O’ and ‘T, respectively (two-sided Wilcoxon rank-sum test, p <

0.05, Bonferroni corrected for multiple comparisons, marked by *).

measures of functional connectivity. Future work could examine
the real-time dynamics of cross-frequency coupling by combining
power amplitude states across all bands in a single model. Taken
together, our observations of high cross-frequency similarity
indicate that a common underlying physiological®! or anatomi-
cal®? mechanism is likely driving the functional interactions
between brain regions across all frequency bands.

We validate the possibility that patterns of functional interac-
tions track an underlying structural scaffold, by showing the
similarity between structural connectivity and pairwise MEM
interaction matrices. We demonstrate that strength of interac-
tions can be used to predict the underlying white matter structure
in the same patients across a wide range of frequency bands,
consistent with prior work in other imaging modalities?”. It is of
interest to determine the contribution of distance to structure-
function coupling. The strength of a structural connection
between two brain regions tends to be negatively correlated with
the distance between them, as does the strength of the functional
connection between them3>. One possibility is that common

sources that are simultaneously measured by nearby electrodes
drive the structure-function coupling. Therefore, we established
the significance of our findings by rigorous statistical compar-
isons against structural null models, which we created by
resampling patients’ brain regions with distance profiles similar to
the recorded brain regions. Inline with our prior findings®3, we
also show that alternative functional connectivity methods such
as PLV>* provide converging results at several frequency bands.
Nevertheless, compared to phase- and correlation-based methods,
the pairwise MEM and partial correlation of iEEG power time
series produced the biggest divergence from the null and revealed
significant structure-function coupling even at higher frequency
bands. Inline with to prior work by Watanabe et al.?%, these
results provide evidence that accounting for global patterns of
pairwise interactions likely reduces the spurious correlations and
contributes to the partial correlation and pairwise MEM’s ability
to uncover the multi-modal coupling. Together, our observations
suggests that the functional dynamics captured by the pairwise
MEM extends beyond common sources or local spreading
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phenomena, and that the presence of a structural connection
between brain regions likely plays a crucial role in shaping the
emergent functional activity across a wide range of frequencies.

Our results also demonstrate that overall the functional con-
nectivity estimated using pairwise MEM and partial correlation of
iEEG power time series across all three montages reveals sig-
nificant coupling to the underlying white matter connectivity
between the recorded regions across a wide range of frequencies.
Other functional connectivity methods such as PLV and pairwise
correlations provide convergent results, only after spatial filtering,
usually from 0 to y (4-50 Hz) frequency bands. These observa-
tions highlight the relative insensitivity of the pairwise MEM to
shared reference noise. In general, however, our results show that
local montage results in higher similarity and more robust
detection of structural connections across more patients and at
higher frequencies, which suggests that volume conductance
effects are major source of artifacts that negatively impact
structure-function coupling estimations. Our results also show
the poor performance of the WPLI measure, which highlights the
functional relevance of near zero-lag synchronizations.

Pairwise MEMs have been employed effectively to explain
patterns of collective neural activity across a range of spatial
scales?®2%31 A good fit of the pairwise MEM indicates that the
observed patterns of power amplitude states can be accurately
described with a combination of first-order activations and
second-order (pairwise) co-activation between electrodes. A poor
fit signifies that higher-order effects (e.g., triplet or quadruplet
interactions between regions) or that common inputs from other
external regions may be required to explain the behavior of the
system. Here, we demonstrate that the pairwise MEM allows us to
accurately approximate the empirical correlation patterns of
power amplitude states in several biologically relevant frequency
bands. Moreover, we find that the pairwise MEM can predict the
frequency (ie., probability) of the empirically observed co-
activation patterns with relatively high accuracy in all patients.
Our results also suggest that the difference in sampling likely
contributes to the observed inter-subject variability, as the accu-
racy of the model correlates negatively with the number of
examined brain regions in each patient. Overall, we demonstrate
that the goodness-of-fit of the model - the degree of divergence
between the observed and predicted probabilities - is highest at
the higher iEEG power amplitude binarization threshold (ie.,
one) and low-frequency bands (i.e., 6, &, 5 bands). These results
suggest that higher thresholds improve the fit of the model likely
by increasing the signal-to-noise ratio. We expect some approx-
imation error, as the likelihood of empirically observing the lower
probability states is incredibly low. In fact, we observe the biggest
probability estimation errors in the least frequently observed
states. In addition, the relatively longer inter-ictal dataset needed
for a stable estimation of iEEG power functional connectivity (i.e.,
co-activation rates), likely contributes to the larger errors at high
y band.

Nevertheless, we speculate that the relatively higher error at
low binarization threshold (i.e., zero) and higher frequency bands
might also originate from biophysical mechanisms contributing
to nearby electrodes’ co-activation. Examples of such biophysical
mechanisms include the spatially distributed activation sources
and wave patterns, including traveling and spiral waves®>°, It is
important to note that even though iEEG electrodes cover a large
portion of the cortical surface in these patients, we are still only
able to capture a small fraction of the full system, and it is highly
likely that some amount of co-activation is driven by input from
external sources that are not covered by an electrode. Although
the MEM could be extended to include higher-order parameters
beyond the pairwise interactions considered here (e.g.,’%), the
practical limitation of partial brain coverage and the previously

noted biophysical mechanisms combine to hinder the interpret-
ability of higher-order mechanisms. Together, our findings sug-
gest that a simple pairwise MEM allows us to explain how the
strength of the intrinsic interactions between brain regions gives
rise to the observed functional connectivity structure and shape
the frequency of emerging co-activation patterns.

One common concern regarding the use of iEEG datasets from
patients with epilepsy to study the functional organization of the
human brain is their documented aberrations of structural con-
nectivity as well as structure-function coupling!>>7>8. One could
argue that aspects of our results dependent on such aberrations
may not generalize, as they may not reflect the structure-function
relationship in healthy brains. Since iEEG datasets from healthy
controls do not exist, we cannot directly address these concerns.
Nevertheless, we draw on recent work demonstrating that the
patterns of iEEG functional connectivity in patients show statis-
tical similarities to structural connectivity estimated in healthy
volunteers®2, and that this statistical similarity is upheld and even
strengthened during ictal epochs®®%0. Future work using data
from patients with other pathologies, or using source-localized
MEG in healthy patients, could be helpful in further under-
standing the nature of the structure-function correspondence
accessible to the MEM.

Our results reveal that the functional connectivity estimated
using the pairwise MEM corresponds closely to the underlying
structural connectivity between sampled regions, and we tested
the significance of these observations using conservative struc-
tural null models. Although preprocessing methods and para-
meter choices can impact estimates of structural connectivity, we
observed that the correspondence between functional interactions
and structural connections were robust to reasonable variation in
these choices. Future work could test the robustness of our
findings to other important preprocessing parameters such as
region size and contemporary streamline filtration techniques.

We show that our proposed geometric structural null preserves
the distribution of the distances between regions, with a relatively
small degree of error. We further demonstrate that given our
current experimental design, this amount of error is within the
tolerance range, as the average distance between iEEG electrodes
and the centroid of their most proximate ROIs were significantly
larger. Future work can aim to reduce the former by biasing the
geometric null algorithm towards regions with a high distance
error (e.g., by initializing the algorithm with a small set of
empirical ROIs with high distance errors), and the latter type of
error by defining electrode-centric ROIs. It is worth noting that
our results show that the distance error is larger only in a few
electrodes, which suggests that the idiosyncratic electrode place-
ments likely contribute to the systematic divergence of the null
distance profiles.

Our observations have potentially important implications for
understanding large-scale functional brain dynamics as well as
our ability to modulate these dynamics via stimulation or resec-
tion. Our findings are consistent with the notion that the pairwise
MEM may be particularly sensitive to structurally-driven func-
tional relations while conventional functional connectivity
methods may be sensitive to non-structurally-driven functional
relations that might vary appreciably over short time intervals.
The observed high degree of structure-function coupling suggests
that structural connectivity is a useful proxy for time-invariant
functional relationships®>°?. This observation could be useful in
the treatment of epilepsy patients, where access to the brain is
traditionally limited to recording loci but could be augmented
with non-invasive measurements of structural connectivity for
more informed surgical planning®. Indeed, it is intuitively
plausible that computational models built to inform the mod-
ulation of abnormal functional dynamics via stimulation®! or
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resection®® may be able to utilize patient-specific structural con-
nectivity in place of or to augment patient-specific functional
connectivity.

Materials and methods

Patient information. Five patients (mean age 41.6, standard deviation 4.8; 3
female) undergoing surgical treatment for medically refractory epilepsy at the
Hospital of the University of Pennsylvania underwent implantation of subdural
electrodes for localization of the seizure onset zone. All patients had unilateral
temporal lobe epilepsy, determined by comprehensive clinical evaluation and
validated by seizure free one-year outcomes following temporal lobectomy. This
study was approved by the Institutional Review Board of the University of Penn-
sylvania, and all subjects provided written informed consent prior to participating.

Intracranial EEG acquisition. De-identified patient data was downloaded from the
online International Epilepsy Electrophysiology Portal (EEG Portal, http://www.
ieeg.org)®3. iEEG signals were recorded at 512 Hz at the Hospital of the University
of Pennsylvania, Philadelphia, PA. Subdural electrode (Ad Tech Medical Instru-
ments, Racine, WI) configurations consisted of linear strip and two-dimensional
grid arrays (2.3 mm diameter with 10 mm inter-contact spacing). Inter-ictal per-
iods were selected to be at least 6 h away from clinically marked seizures.

Recording configurations. iEEG recordings are relative measures as they measure
the electrical potential against potential in another electrode. Usually, this reference
electrode is placed far from the recording site on the brain or bone. This recording
configuration is referred to as referential montage, and in the past, has been utilized
in two-dimensional local field potential recordings®4%>. However, since the refer-
ence electrode itself contains signal fluctuations, it can contaminate the activations
at the recording electrode. This common noise is either ignored (e.g.,°) or
extracted by re-referencing to a global signal average (e.g.,’>%7). This global
montage is referred to as the common average reference.

However, if the profile of the noise is less homogeneous, for instance, due to the
considerable distance between electrodes in stereotactic EEG (sEEG) recordings,
references such as local Laplacian montage can be used for noise reduction via local
spatial filtering®®%°. Laplacian montages also suppress the volume conductance
effects by removing the potentials accounted for by the local references®*.
Nevertheless, due to this property, local Laplacian montage can also introduce
error, as they strongly attenuate the broadly-distributed co-activations patterns.

In this study we used a referential montage utilizing a reference electrode
distant to the seizure onset zone for recording iEEG signals. Also, we explored two
alternative recording configurations. First, to account for common reference noise,
we implemented a global average reference montage by regressing out the global
mean signal from individual electrodes’ time series. Second, in the same vein as
Laplacian montages®®, we regressed out the effect of local noise (such as volume
conductance) by fitting a multiple linear regression model to each electrode’s iEEG
time series using the time series of four closest electrodes as explanatory variables.
Despite the fundamental similarity between local multiple linear regression and
local weighted averaging montages, local multiple linear regression does not
explicitly account for distance differences of each electrode to the other four
selected local electrodes. Nevertheless, this property of local multiple linear
regression allows us, in theory, to remove the locally inhomogeneous noise (i.e.,
noise shared between only a few local electrodes) more effectively.

Image acquisition. MRI data were acquired using a 3-Tesla Siemens scanner
(Siemens Magnetom Trio Tim Syngo MR B17, Germany) at the Hospital of the
University of Pennsylvania. Diffusion-weighted images were acquired in a single-
shot echo-planar imaging, multi-shell protocol (2.5 x 2.5 x 2.5 mm? resolution, TR
= 5216 ms, TE = 100 ms, FOV = 220 mm, MB acceleration factor = 2, flip/refocus
angle = 90/180°, phase encoding direction = anterior to posterior). A total of 119
volumes were acquired at =0 (16 volumes), b =300 (8 volumes), b= 700 (31
volumes), and b = 2000 (64 volumes). T1-weighted MPRAGE images were also
obtained for each subject (0.94 % 0.94 x 1.0 mm?3 resolution, TR = 1810 ms, TE =
3.51 ms, FOV = 240 mm, flip angle = 9°, phase encoding direction = right to left).

Structural connectivity. T1-weighted MPRAGE images were used to co-register
MNI-space atlases to subject structural space via AntsRegistrationSyN??. Similarly,
we used the first b0 image from each patient’s diffusion sequence to calculate co-
registration transforms from subject-specific diffusion to structural space. Using
this set of transforms, we brought individualized AAL 600 atlases” for all five
patients into diffusion space for tractography. Atlas to diffusion co-registrations
were performed using ANTs and FSLs FLIRT. Eddy current and motion correc-
tions were performed using FSLs 5.0.9 EDDY patch. To mitigate susceptibility
distortions, we used the subjects MPRAGE T1 structural scan. This image was first
brought to diffusion space by using the inverse of our FLIRT transformation for
each subject, and then contrast-inverted and intensity-matched to the DWI image
using FSLMATHS. Finally, the DWT image was non-linearly transformed to the
shape of the MPRAGE scan, as these acquisitions are not subject to the same
susceptibility distortions observed in DWIs.

We evaluated several distinct methodological approaches, and we also assessed
the consistency of our findings across them. We performed deterministic and
probabilistic tractography in Camino’! on distortion-corrected DWTs to construct
adjacency matrices for structural connectivity. Deterministic tractography
parameters were stringent so we could err on the side of caution in evaluating the
physiological feasibility of our reconstructed white matter connections. These
parameters included removing estimated fibers in areas of the brain where 90% or
greater of diffusion was estimated to be isotropic versus restricted’2, where
fractional anisotropy was determined to be below 0.05, or where a T1-derived brain
mask ended. We also removed fibers that curved more than 50° over 5 mm to again
restrict fiber reconstructions to physiological feasibility. Finally, we removed fibers
shorter than 10 mm to minimize spurious short-range connections based on only a
few voxels, and we also removed fibers over 400 mm to prevent looping artifactual
fibers from impacting our results. Structural adjacency matrices were constructed
from the number of streamlines that begin and end in each pre-defined ROI. We
employed equivalent parameters for probabilistic tractography and utilized the
PICO algorithm?3. Processing power limited us to seeding 400 times per voxel.
Within deterministic and probabilistic tractography, we evaluated streamline count
(SC) weighted adjacency matrices.

Pairwise maximum entropy model. To form unbiased predictions for the prob-
abilities of various functional brain states, we fit a pairwise maximum entropy
model, which is motivated by the principle of maximum entropy. The principle of
maximum entropy states that when estimating a probability distribution given
some desired constraints, one ought to consider the distribution that maximizes the
uncertainty (i.e., entropy); choosing any other distribution that lowers the entropy
would assume additional information beyond our desired constraints. Fitting the
pairwise MEM entails tuning the first and second-order interaction parameters
between regions so that the predicted activation rates and co-activation rates match
the empirically observed values. An accurate fit of the pairwise MEM implies that
the observed patterns of collective activity can be understood as emerging from
each region’s independent activation rate combined with regions’ joint activation
rates. In other words, the pairwise MEM allows us to establish a model of iEEG
functional power dynamics as a probabilistic process shaped by underlying pair-
wise relationships between brain regions.

Our use of the power amplitude envelope to define the activation states is
motivated by several factors. First, it has been shown that the BOLD fMRI signal
echoes the envelope of high-frequency neural activity’47, specifically when
measured by iEEG°%%%7677, Thus, in light of studies linking BOLD fMRI
functional connectivity to white matter structural connectivity®2?, we hypothesize
that the power of iEEG recordings should also exhibit a clear relationship with the
underlying structural connectivity. Second, a large body of evidence has
demonstrated that iEEG oscillations play an important role in healthy cognitive
function, and that breakdowns in oscillatory power are linked to cognitive
disorders’37. Third and finally, by defining our activity states using band-passed
power amplitudes, we gain the ability to analyze patterns of activity across both
time and frequency, thereby mitigating inconsistent phase relationships between
electrodes caused by spatially non-stationary signal sources, such as iEEG spiral
waves>>. However, recent modeling work suggests that the metastable wave-like
patterns are also able to recapitulate the empirically observed functional
connectivity patterns, if they are plentiful on longer time scales®.

Following prior works, such as®0, we define ‘on’-‘off activation states for each
brain region by binarizing the normalized envelope of the power amplitude of each
frequency band (Fig. 1). We fit the pairwise MEM to the thresholded and binarized
normalized power amplitude states of electrodes from concatenated 14, 16, 14, 13,
and 19 h of inter-ictal iEEG recording of patients 1-5, respectively. We picked only
the single closest (Euclidean distance) electrode to the ROI’s center for analysis
when more than one electrodes exist within the same ROI. A total of 69, 36, 76, 70,
and 64 electrodes were selected from patients 1-5, respectively. To calculate the
power amplitude states, we first segmented the time-series into 36 100-second
windows (Fig. 1a). Next, for each segment and each electrode we calculated the
wavelet power8! of the time-series (Fig. 1b). We band-passed the wavelet power by
averaging the power amplitude across all the frequencies within each band. Next,
the power amplitude time-series (all bands) were high-pass filtered at 0.5 Hz to
minimize the effect of ultra-slow fluctuations of power on the binarized states. The
high-passed time series were then z-scored and binarized by thresholding at zero to
create band-passed power amplitude states (Fig. 1c). We also explored higher
binarization threshold of one. Finally to reduce the temporal dependence of
samples we down-sampled the states by the factor of 10. At each time ¢, the power
amplitude state is defined by V' = [0}, 0%, ..., o], where 0! is the binarized power
amplitude of electrode i at time , where of = 1 (0) for power above (below) the
threshold, and N is the total number of electrodes. For electrode i, the empirical
power amplitude activation rate (g;) is given by () ZLI !, where T'is the number
of time slices. Likewise, the empirical co-activation rate between electrodes i and j,
(0;07), is defined by () ST ata}.

Here, our only constraints were that the model averages (0;),,

and (0;0;)
matched the empirical values of (0;) and (0;0;), respectively. Given these

constraints, it is known that the probability distribution that maximizes the
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entropy is the Boltzmann distribution?>

2V

P(V) = e B0 S e, 1)

q=1

where P(V}) is the probability distribution of the kth state Vi, and E(V}) is the
energy of this state, which is given by:

Zh‘f Vi) **Z]x]”(vk Vi), (2)

le

E(Vy) =

where 0;(Vy) is the value of o; for state Vi, h; represents the expected base power
amplitude rate of electrode i in isolation, and Jj; represents the functional
interaction between electrodes i and j.

Fitting the pairwise MEM entails iterative adjustment of the parameters h; and
J;; with a gradient descent algorithm®® until the empirical averages (0;) and (0,0/)

match those in the model, namely (0;),, = Z;nzl 0;(V,)P(V,) and

<Ui‘7j>m = 22:1 0;(V)o;(V)P(V,
our data, we followed®? by approximating the model averages (g;),, and (alaj) by
calculating the correlation of a sequence of random samples (N = 10,300,000, after
discarding the first 300,000 and downsampling by a factor of 500) from the
probability distribution using the Metropolis-Hastings algorithm®3. However, our
preliminary analysis reveals that the error in the approximated activation rates is
notably high. Therefore, instead of the aforementioned likelihood maximization
approach, alternatively, we utilized the pseudo-likelihood maximization algorithm
using MATLAB scripts provided by Ezaki et al.32 to estimate the parameters of the
model. In pseudo-likelihood maximization scheme, we aim to solve

o)- Since the state space is prohibitively large in

(h,]) = argn}gxﬁ(k,]), 3)

where the pseudo-likelihood function, £(h,]), is defined as

Lmax N

~ [ T1Pw@ilh.1.0,(0). )

=1 i=1

Here, P represents the Boltzmann distribution for a single spin (i.e., electrode), a;,
given that the other o;(j # i) values are fixed to 0;i(t) = (0,(t), ..., 0;_1(£), 0311 (D), ...,
ox(t)). Therefore, P is given by

+Z,,— Jj0,0;(t)

P(o,) = - )
o+ Jiio;

201:1,0 Z'r it

This mean-field approximation neglects the influence of g; on o; (j # i), however,
the estimator afforded by the maximization of the pseudo-likelihood converges to
the maximum-likelihood estimator as t,,,,, — o84 The parameters of the model, k
and J, are estimated using a gradient ascent scheme given by

() (6)

d
h:ww - hf = €(<Ji>empirical -

and

](x_ew _ ]?’vld

= €(<5i0j>

Where the superscripts new and old represent the parameters after and before a
single updating step, respectively, € (>0) is the learning rate, and (0;); and <‘7i‘7j>p

- <O-i6j>13)7 (7)

empirical
are the mean and correlation with respect to distribution P (Eq. (5)) and are given
by

5 :—Ztanh

maxt

h; +Z]v’6f } ®)

and

Linax.

Za(t ) tanh | h; +Z],] 0 } 9)

respectively. For more details regarding the pseudo-likelihood maximization
scheme see32. As seen in Supplementary Fig. 14, the approximated activation and
co-activation rates match the empirical values within the experimental precision. It
is worth noting that the reconstruction of activation and co-activation rates using
the gradient ascent method is trivial in the maximum-likelihood method since the
problem is concave with respect to the J and h parameters32. However, for the
pseudo-likelihood maximization method used here, convergence to the correct
solution where the activation and pairwise co-activation rates in the model match
those in the empirical data (Supplementary Fig. 14).

The co-activation states can also be defined as ¢; € {—1,1},(i=1,...,N)
instead of o; € {0, 1}, since mathematically, the energy function representations
are equivalent and have a one-to-one relationship; 20; — 1 = ¢;. Therefore the

pairwise MEM parameters, J;; and h;, also have the following relationships:
~ N ~
hy = 2h; — ZZ]lj
i=1

J ij = 4] ij (11)
Since we used the method from32 to estimate the model parameters that define
the states as 6; € {—1, 1}, we transform the estimated ]Nlj and h; matrices following

Egs. (10) and (11), respectively. Usually, calculating the normalization constant in
the Boltzmann distribution (i.e., partition function) in high-dimensional datasets is
very difficult, as it involves summation over all possible states. This transformation

allows us to approximate the partition function (Z) directly from the probability of
the silent state (i.e., p(000---0)) as Z = m, since it holds that
(000 --0) = 23339,

(10)

Empirical and estimated probabilities divergence measure. To examine the
goodness-of-fit of the pairwise MEM, in the same vein as>®, we measure the
divergence between the empirically observed states’ empirical and estimated
probabilities using a modified version of Kullback-Leibler measure defined as:

Z P(x)|log, < Q((x)))

where P(x) and Q(x) are the empirical and estimated probabilities of state x. Unlike
the original Kullback-Leibler measure, we use the absolute value of the log. Since
the estimated probabilities are not normalized, it is important to penalize states
where the model overestimates their probabilities, as they will reduce the
Kullback-Leibler divergence values.

D(P,Q) = (12)

Phase-base functional connectivity methods. Originating from the field of
physics, studying synchronizations in the brain has been instrumental in expanding
our understanding of its functional organization. In this framework, two brain
regions are considered synchronized if their electrophysiological recordings exhibit
stable phase differences across time or trials. Introduced first by Lachaux et al.>4,
the phase-locking value (PLV) measure calculates the consistency in the difference
between the instantaneous phase of two band-passed signals. Formally, PLV is
defined as:

PLV = [E{e"}| (13)
where E{.} is the expectation operator, and 6 the difference between the instan-
taneous phase values of two filtered iEEG times series. We determine the instan-
taneous phase using a Hilbert transform from the band-passed time series. PLV
values range from zero to one, signifying no to full synchrony (i.e., consistent
phase-difference), respectively. In theory, volume conductance, the signal from a
source simultaneously recorded by two nearby electrodes, would result in apparent
synchronization with a phase difference of 0 (or 77 depending on the position of the
dipole). Phase-locking index (PLI) was introduced®, which aims to reduce sensi-
tivity to volume conductance by disregarding phase-locking with 0 or 7 phase
difference. PLI is formally defined as:

PLI = |E{sgn(3{X})}| (14)

where sgn(J{X}) is the sign of the imaginary part of the cross-spectrum of two
signals S; and S, defined as:

X=27,7 (15)

where Z; and Z, are vectors of complex-valued Fourier spectra, obtained using the
Discrete Fourier Transform of S; and S, time series, and Z; is the complex con-
jugate of Z,. A weighted version of this measure was later introduced by Vinck
et al.3%, based on downweighting the influences of couplings with phase differences
close to 0 or 7, on the final phase-locking values. The Weighted Phase-locking
Index (WPLI) is defined as:

[E{S{X}
E{I3{X}1}

Note that as long as two signals maintain a positive (or negative) phase
difference at all time points, WPLI will return one indicating highest synchrony.
Thus, in theory, WPLI reduces false positives as it will not overestimate

connectivity due to volume conduction. However, WPLI can miss true connections
due to small lags or frequency non-stationarities®”.

WPLI = (16)

Partial correlation. Partial correlation coefficient (p) between any two variables X;
and Xj of a set V, given all others variables (i.e., V\ {X;, Xj}) can be calculated from
the inverse covariance matrix (p) as:

pzj
\/Piiljj
However, we used MATLAB’s partialcorr.m scripts, which instead computes
partial correlation coefficient, py y , as the correlation of the residuals from the
iX;

17)

PX,X,-V\(X,.X,) =
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regression of X; and X; on V\{Xj, X;}. We calculated the partial correlation matrices
from hour-long iEEG and iEEG power time series segments. Similar to the pairwise
MEM analysis, we downsampled the EEG and iEEG power time series prior to
calculating partial correlations by a factor of 10 to reduce the temporal dependence
of samples. Finally, for each patient, we averaged the partial correlation matrices
calculated from all hour-long segments

Geometric structural connectivity null. iEEG electrodes are about one centimeter
from their neighboring electrodes. This high density of iEEG electrodes allows us to
cover a patch of cortex with a large number of electrodes. However, this high
density also increases the possibility of artificially inflating functional connectivity
between proximal electrodes due to factors such as common source signals or
volume conductance issues. Therefore, to tease out the intrinsic functional rela-
tionship for the mentioned recording artifacts expected from nearby electrodes,
prior work has proposed several methods to account for the distance between the
measured brain regions. For instance, to remove the volume conductance effects
and radially symmetric correlations, some groups have suggested adjusting the
functional connectivity using distance regression strategy®®. More recently, other
geometric structural nulls have been introduced that aim to maintain the higher-
order statistical structure of the edge weights based on the distance profile®.

Here, we introduce a new paradigm based on iterative resampling of individual
patients’ brain regions aimed at maximizing the similarity between null brain
region distances and recorded brain region distances. This process is akin to virtual
resampling of the patient’s brain with the same number of electrodes with similar
geometry, as it maintains the distance profile of each pair of electrodes. This
method also benefits from its minimal assumptions on the expected relationship
between structural connectivity weight and distance. Instead, it takes advantage of
each patient’s whole-brain structural connectome and the patient-specific geometry
of iEEG electrodes’ placement, to create individualized structural connectivity nulls
with conserved distance profiles.

Specifically, we first calculate the distance between all pairs of brain regions. We
initiate the algorithm by randomly sampling a pair of brain regions, with distances
close to the most distant pair of the recorded brain regions. Next, we identify the
two brain regions, one null and one recorded region, which are located the most
similarly relative to the pair of null and recorded brain regions identified at the first
step, respectively. This process is repeated, on brain regions at a time, until all the
recorded brain regions and their corresponding nulls are matched.

It is worth noting that the idiosyncrasies of patients’ electrode placements yield
variable regional distance profiles, which should be considered in the initiation step
of the algorithm. For instance, since most edges between the recorded brain regions
are short to mid-range, the algorithm produces comparable distributions when
initiated with the less frequent distance brain regions. In Supplementary Fig. 16, we
provide details regarding each patient’s structural connectivity null and their
distance profiles. These results demonstrate that the estimated null models closely
match the distance profiles of the recorded brain regions, though some null brain
regions are located with a small degree of error relative to other brain regions.
Nevertheless, as seen in Supplementary Fig. 17, we demonstrate that this error is
within the tolerance range, as it is smaller than error associated with the distance
between iEEG electrodes, and the centroid of their most proximate ROIs. As seen in
Supplementary Fig. 18, statistical testing reveals that the empirical distance between
electrodes and the center of their corresponding ROI is significantly larger than the
average null regions’ distance errors (i.e., the mismatches between null and recorded
brain regions) across all patients (two-sided t-test, p < 0.05, p=9.73x 10712, p =
3.16x 10713, p=9.65x 10714, p=2.6x 10716, p =3.29 x 10~13). In Fig. 5, we
provide the schematic representation of our proposed resampling algorithm for
generating geometric structural connectivity nulls. We also provide the pseudocode
of our proposed resampling algorithm in the Supplementary Methods.

Predicting anatomical connectivity from functional connectivity. We conducted
ROC analysis to determine the accuracy with which the strength of the functional
interactions in the pairwise MEM predict the presence of structural connectivity.
We constructed the ROC curves to represent the true positive (structurally con-

nected brain regions with functional interaction weight above the threshold) and
false positive (structurally disconnected brain regions with functional interaction

weight above the threshold) at different detection thresholds. The area under the
curve (AUC) of the ROC plot represents the accuracy of the classification, where an
AUC value of 1 indicates perfect classification, and an AUC value of 0.5 indicates
classification performance at the chance level.

Statistics and reproducibility. We used non-parametric permutation tests to
compare the coupling between the recorded brain regions’ anatomical and func-
tional connectivity against null models that maintain the distance profile between
electrode pairs. We tested the relationship between the recording montage, number
of iEEG electrodes, and frequency bands with the pairwise MEM’s goodness-of-fit
(measured as the divergence between empirical and predicted co-activation
probability) using the Wilcoxon rank-sum test. We used t-test to compare the
empirical distance between the electrode and the ROI center to the distance error of
nulls across all patients. We also used paired t-test for statistical comparisons
between the kurtosis values calculated from Jj; interaction weight distributions and

those of correlation distributions. We used Bonferroni and false discovery rate
(FDR) to correct for multiple comparisons throughout the manuscript.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

All inter-ictal iEEG data are available from the International Epilepsy Electrophysiology
Portal (IEEG-Portal, http://www.ieeg.org). Information about datasets used in this
manuscript are listed in Supplementary Data 1.

Code availability
The custom scripts for generating geometric structural null models are available at
https://github.com/aashourv/iEEG_MEM.

Received: 2 August 2019; Accepted: 6 January 2021;
Published online: 16 February 2021

References

1. Bassett, D. S., Zurn, P. & Gold, J. I. On the nature and use of models in
network neuroscience. Nat. Rev. Neurosci. 19, 566 (2018).

2. Bassett, D. S. & Sporns, O. Network neuroscience. Nat. Neurosci. 20, 353
(2017).

3. Honey, C. J., Thivierge, J.-P. & Sporns, O. Can structure predict function in
the human brain? Neuroimage 52, 766-776 (2010).

4. Stephan, K. & Friston, K. Functional connectivity. In Encyclopedia of
neuroscience, 391-397 (Elsevier, 2009).

5. Skudlarski, P. et al. Measuring brain connectivity: diffusion tensor
imaging validates resting state temporal correlations. Neuroimage 43, 554-561
(2008).

6. Honey, C. et al. Predicting human resting-state functional connectivity from
structural connectivity. Proc. Natl. Acad. Sci. USA 106, 2035-2040 (2009).

7. Hermundstad, A. M. et al. Structural foundations of resting-state and task-
based functional connectivity in the human brain. Proc. Natl. Acad. Sci. USA
110, 6169-6174 (2013).

8. Van den Heuvel, M. P. & Sporns, O. An anatomical substrate for integration
among functional networks in human cortex. J. Neurosci. 33, 14489-14500
(2013).

9. Wang, Z,, Dai, Z., Gong, G., Zhou, C. & He, Y. Understanding structural-
functional relationships in the human brain: a large-scale network perspective.
Neuroscientist 21, 290-305 (2015).

10. Meunier, D., Lambiotte, R., Fornito, A., Ersche, K. & Bullmore, E. T.
Hierarchical modularity in human brain functional networks. Front.
Neuroinformat. 3, 37 (2009).

11. Bassett, D. S. et al. Hierarchical organization of human cortical networks in
health and schizophrenia. J. Neurosci. 28, 9239-9248 (2008).

12. Bassett, D. S. & Bullmore, E. Small-world brain networks. Neuroscientist 12,
512-523 (2006).

13. Hagmann, P. et al. White matter maturation reshapes structural connectivity
in the late developing human brain. Proc. Natl Acad. Sci. USA 107,
19067-19072 (2010).

14. Skudlarski, P. et al. Brain connectivity is not only lower but different in
schizophrenia: a combined anatomical and functional approach. Biol.
Psychiatry 68, 61-69 (2010).

15. Zhang, Z. et al. Altered functional-structural coupling of large-scale brain
networks in idiopathic generalized epilepsy. Brain 134, 2912-2928 (2011).

16. Bassett, D. S. et al. Dynamic reconfiguration of human brain networks during
learning. Proc. Natl Acad. Sci. 108, 7641-7646 (2011).

17. Kramer, M. A. et al. Emergence of persistent networks in long-term
intracranial eeg recordings. J. Neurosci. 31, 15757-15767 (2011).

18. Kramer, M. A. et al. Coalescence and fragmentation of cortical networks
during focal seizures. J. Neurosci. 30, 10076-10085 (2010).

19. Adachi, Y. et al. Functional connectivity between anatomically unconnected
areas is shaped by collective network-level effects in the macaque cortex.
Cerebral Cortex 22, 1586-1592 (2011).

20. Lu, J. et al. Focal pontine lesions provide evidence that intrinsic functional
connectivity reflects polysynaptic anatomical pathways. J. Neurosci. 31,
15065-15071 (2011).

21. Goni, J. et al. Resting-brain functional connectivity predicted by analytic
measures of network communication. Proc. Natl Acad. Sci. USA 111, 833-838
(2014).

22. Becker, C. O. et al. Spectral mapping of brain functional connectivity from
diffusion imaging. Sci. Rep. 8, 1411 (2018).

COMMUNICATIONS BIOLOGY | (2021)4:210 | https://doi.org/10.1038/s42003-021-01700-6 | www.nature.com/commsbio 13


http://www.ieeg.org
https://github.com/aashourv/iEEG_MEM
www.nature.com/commsbio
www.nature.com/commsbio

ARTICLE

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-01700-6

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

Moran, R., Pinotsis, D. & Friston, K. Neural masses and fields in dynamic
causal modeling. Front. Comput. Neurosci. 7, 57 (2013).

Pinotsis, D. A., Moran, R. J. & Friston, K. J. Dynamic causal modeling with
neural fields. Neuroimage 59, 1261-1274 (2012).

Jaynes, E. T. Information theory and statistical mechanics. Phys. Rev. 106, 620
(1957).

Schneidman, E., Berry, M. J., Segev, R. & Bialek, W. Weak pairwise
correlations imply strongly correlated network states in a neural population.
Nature 440, 1007-1012 (2006).

Shlens, J. et al. The structure of multi-neuron firing patterns in primate retina.
J. Neurosci. 26, 8254-8266 (2006).

Yeh, F.-C. et al. Maximum entropy approaches to living neural networks.
Entropy 12, 89-106 (2010).

Watanabe, T. et al. A pairwise maximum entropy model accurately describes
resting-state human brain networks. Nat. Commun. 4, 1370 (2013).
Watanabe, T., Masuda, N., Megumi, F., Kanai, R. & Rees, G. Energy landscape
and dynamics of brain activity during human bistable perception. Nat.
Commun. 5 4765 (2014).

Ashourvan, A., Gu, S., Mattar, M. G., Vettel, J. M. & Bassett, D. S. The energy
landscape underpinning module dynamics in the human brain connectome.
Neuroimage 157, 364-380 (2017).

Ezaki, T., Watanabe, T., Ohzeki, M. & Masuda, N. Energy landscape analysis
of neuroimaging data. Philos. Trans. R. Soc. A 375, 20160287 (2017).
Tkacik, G. et al. Searching for collective behavior in a large network of sensory
neurons. PLoS Comput. Biol. 10, €1003408 (2014).

Tenke, C. E. & Kayser, J. Generator localization by current source density
(csd): implications of volume conduction and field closure at intracranial and
scalp resolutions. Clin. Neurophysiol. 123, 2328-2345 (2012).

Betzel, R. F. & Bassett, D. S. Specificity and robustness of long-distance
connections in weighted, interareal connectomes. Proc. Natl Acad. Sci. USA
115, E4880-E4889 (2018).

Donahue, C. J. et al. Using diffusion tractography to predict cortical
connection strength and distance: a quantitative comparison with tracers in
the monkey. J. Neurosci. 36, 6758-6770 (2016).

Lewis, J. D., Theilmann, R. J., Sereno, M. I. & Townsend, J. The relation
between connection length and degree of connectivity in young adults: a dti
analysis. Cerebral Cortex 19, 554-562 (2008).

Rubinov, M., Ypma, R. J., Watson, C. & Bullmore, E. T. Wiring cost and
topological participation of the mouse brain connectome. Proc. Natl Acad. Sci.
USA 112, 10032-10037 (2015).

Ganmor, E., Segev, R. & Schneidman, E. Sparse low-order interaction network
underlies a highly correlated and learnable neural population code. Proc. Natl
Acad. Sci. USA 108, 9679-9684 (2011).

Laumann, T. O. et al. On the stability of bold fmri correlations. Cerebral
Cortex 27, 4719-4732 (2016).

Liegeois, R., Laumann, T. O., Snyder, A. Z., Zhou, ]. & Yeo, B. T. Interpreting
temporal fluctuations in resting-state functional connectivity mri. Neuroimage
163:437-455 (2017).

Friston, K. J., Harrison, L. & Penny, W. Dynamic causal modelling.
Neuroimage 19, 1273-1302 (2003).

Deco, G. et al. Resting-state functional connectivity emerges from structurally
and dynamically shaped slow linear fluctuations. J. Neurosci. 33, 11239-11252
(2013).

Chu, C. J. et al. Emergence of stable functional networks in long-term human
electroencephalography. J. Neurosci. 32, 2703-2713 (2012).

Canolty, R. T. et al. High gamma power is phase-locked to theta oscillations in
human neocortex. Science 313, 1626-1628 (2006).

Hyafil, A., Giraud, A.-L., Fontolan, L. & Gutkin, B. Neural cross-frequency
coupling: connecting architectures, mechanisms, and functions. Trends
Neurosci. 38, 725-740 (2015).

Lisman, J. E. & Jensen, O. The theta-gamma neural code. Neuron 77,
1002-1016 (2013).

Raghavachari, S. et al. Theta oscillations in human cortex during a working-
memory task: evidence for local generators. J. Neurophysiol. 95, 1630-1638
(2006).

Canolty, R. T. et al. Spatiotemporal dynamics of word processing in the
human brain. Front. Neurosci. 1, 14 (2007).

Von Stein, A. & Sarnthein, J. Different frequencies for different scales of
cortical integration: from local gamma to long range alpha/theta
synchronization. Int. J. Psychophysiol. 38, 301-313 (2000).

Manning, J. R,, Jacobs, J., Fried, I. & Kahana, M. J. Broadband shifts in local
field potential power spectra are correlated with single-neuron spiking in
humans. J. Neurosci. 29, 13613-13620 (2009).

Betzel, R. F. et al. Structural, geometric and genetic factors predict
interregional brain connectivity patterns probed by electrocorticography. Nat.
Biomed. Eng. 3:902-916 (2019).

Shah, P. et al. Characterizing the role of the structural connectome in seizure
dynamics. Brain 142, 1955-1972 (2019).

54.

55.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

Lachaux, J.-P., Rodriguez, E., Martinerie, J. & Varela, F. ]. Measuring phase
synchrony in brain signals. Human Brain Mapp. 8, 194-208 (1999).

Huang, X. et al. Spiral wave dynamics in neocortex. Neuron 68, 978-990 (2010).
Roberts, J. A. et al. Metastable brain waves. Nature Commun. 10, 1-17 (2019).
Besson, P. et al. Structural connectivity differences in left and right temporal
lobe epilepsy. Neuroimage 100, 135-144 (2014).

Bonilha, L. et al. Medial temporal lobe epilepsy is associated with neuronal
fibre loss and paradoxical increase in structural connectivity of limbic
structures. J Neurol Neurosurg Psychiatry. 83:903-909 (2012).

Reddy, P. G. et al. Genetic and neuroanatomical support for functional brain
network dynamics in epilepsy. Preprint at http://arxiv.org/abs/1809.03934 (2018).
Shah, P. et al. Characterizing the role of the structural connectome in seizure
dynamics. Brain 142, 1955-1972 (2019).

Gu, S. et al. Controllability of structural brain networks. Nat. Commun. 6,
8414 (2015).

Khambhati, A. N,, Davis, K. A, Lucas, T. H., Litt, B. & Bassett, D. S. Virtual
cortical resection reveals push-pull network control preceding seizure
evolution. Neuron 91, 1170-1182 (2016).

Wagenaar, J. B,, Brinkmann, B. H., Ives, Z., Worrell, G. A. & Litt, B. A
multimodal platform for cloud-based collaborative research. In 2013 6th
International IEEE/EMBS Conference on Neural Engineering (NER),
1386-1389 (IEEE, 2013).

Menzel, R. R. & Barth, D. S. Multisensory and secondary somatosensory
cortex in the rat. Cerebral Cortex 15, 1690-1696 (2005).

Lubenov, E. V. & Siapas, A. G. Hippocampal theta oscillations are travelling
waves. Nature 459, 534-539 (2009).

Anderson, N. R, Blakely, T., Schalk, G., Leuthardt, E. C. & Moran, D. W.
Electrocorticographic (ecog) correlates of human arm movements. Exp. Brain
Res. 223, 1-10 (2012).

Acharya, S, Fifer, M. S, Benz, H. L., Crone, N. E. & Thakor, N. V.
Electrocorticographic amplitude predicts finger positions during slow grasping
motions of the hand. J. Neural Eng. 7, 046002 (2010).

Lemos, M. S. & Fisch, B. The weighted average reference montage.
Electroencephalogr. Clin. Neurophysiol. 79, 361-370 (1991).

Li, G. et al. Optimal referencing for stereo-electroencephalographic (seeg)
recordings. NeuroImage 183, 327-335 (2018).

Avants, B. B., Epstein, C. L., Grossman, M. & Gee, ]. C. Symmetric
diffeomorphic image registration with cross-correlation: evaluating automated
labeling of elderly and neurodegenerative brain. Med. Image Anal. 12, 26-41
(2008).

Cook, P. et al. Camino: open-source diffusion-mri reconstruction and
processing. In 14th scientific meeting of the international society for magnetic
resonance in medicine, vol. 2759, 2759 (Seattle WA, USA, 2006).

Zhan, L. et al. Comparison of nine tractography algorithms for detecting
abnormal structural brain networks in alzheimers disease. Front. Aging
Neurosci. 7, 48 (2015).

Parker, G. J., Haroon, H. A. & Wheeler-Kingshott, C. A. A framework for a
streamline-based probabilistic index of connectivity (pico) using a structural
interpretation of mri diffusion measurements. J. Magn. Reson. Imaging 18,
242-254 (2003).

Logothetis, N. K., Pauls, J., Augath, M., Trinath, T. & Oeltermann, A.
Neurophysiological investigation of the basis of the fmri signal. Nature 412,
150 (2001).

Winder, A. T., Echagarruga, C., Zhang, Q. & Drew, P. ]. Weak correlations
between hemodynamic signals and ongoing neural activity during the resting
state. Nat. Neurosci. 20, 1761 (2017).

Lachaux, J.-P. et al. Relationship between task-related gamma oscillations and
bold signal: New insights from combined fmri and intracranial eeg. Human
Brain Mapp. 28, 1368-1375 (2007).

Ojemann, G. A., Ramsey, N. F. & Ojemann, J. Relation between functional
magnetic resonance imaging (fmri) and single neuron, local field potential
(Ifp) and electrocorticography (ecog) activity in human cortex. Front. Human
Neurosci. 7, 34 (2013).

Wang, X.-J. Neurophysiological and computational principles of cortical
rhythms in cognition. Physiol. Rev. 90, 1195-1268 (2010).

Uhlhaas, P. J. & Singer, W. Neural synchrony in brain disorders: relevance
for cognitive dysfunctions and pathophysiology. Neuron 52, 155-168 (2006).
Krzeminski, D. et al. Energy landscape of resting magnetoencephalography
reveals fronto-parietal network impairments in epilepsy. Netw. Neurosci. 4,
374-396 (2020).

Grinsted, A., Moore, J. C. & Jevrejeva, S. Application of the cross wavelet
transform and wavelet coherence to geophysical time series. Nonlinear
Processes Geophys. 11, 561-566 (2004).

Gu, S. et al. The energy landscape of neurophysiological activity implicit in
brain network structure. Sci. Rep. 8, 2507 (2018).

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller,
E. Equation of state calculations by fast computing machines. J. Chem. Phys.
21, 1087-1092 (1953).

COMMUNICATIONS BIOLOGY | (2021)4:210 | https://doi.org/10.1038/s42003-021-01700-6 | www.nature.com/commsbio


http://arxiv.org/abs/1809.03934
www.nature.com/commsbio

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-01700-6

ARTICLE

84. Besag, J. Statistical analysis of non-lattice data. J. R. Stat. Soc. Ser. D 24,
179-195 (1975).

85. Stam, C. J., Nolte, G. & Daffertshofer, A. Phase lag index: assessment of
functional connectivity from multi channel eeg and meg with diminished bias
from common sources. Human Brain Mapp. 28, 1178-1193 (2007).

86. Vinck, M., Oostenveld, R., Van Wingerden, M., Battaglia, F. & Pennartz, C. M.
An improved index of phase-synchronization for electrophysiological data in
the presence of volume-conduction, noise and sample-size bias. Neuroimage
55, 1548-1565 (2011).

87. Cohen, M. X. Effects of time lag and frequency matching on phase-based
connectivity. J. Neurosci. Methods 250, 137-146 (2015).

88. Hacker, C. D., Snyder, A. Z., Pahwa, M., Corbetta, M. & Leuthardt, E. C.
Frequency-specific electrophysiologic correlates of resting state fmri networks.
Neuroimage 149, 446-457 (2017).

89. Roberts, J. A. et al. The contribution of geometry to the human connectome.
Neuroimage 124, 379-393 (2016).

Acknowledgements

This work was supported by an NINDS 1R01NS099348 to Litt and Bassett (MPI). BL also
acknowledges support from the Mirowski Foundation and from Neil Barbara Smit. BL
also acknowledges support from Pennsylvania Department of Health (Pennsylvania
Health Research Formula Fund). DSB also acknowledges support from the John D. and
Catherine T. MacArthur Foundation, the Alfred P. Sloan Foundation, the Army Research
Office through contract number W911NF-14-1-0679, the Army Research Laboratory
through contract number W911NF-10-2-0022, the National Institute of Health (2-R01-
DC-009209-11, 1R0O1HD086888-01, R0O1-MH107235, R01-MH107703, ROIMH109520,
1R01NS099348 and R21-M MH-106799), the Office of Naval Research, and the National
Science Foundation (BCS-1441502, CAREER PHY-1554488, BCS-1631550, and CNS-
1626008). The content is solely the responsibility of the authors and does not necessarily
represent the official views of any of the funding agencies.

Author contributions
A.A. performed all data analysis, developed geometric structural null models, provided
custom code, and wrote the manuscript. A.A., CW.L, D.S.B. and B.L. designed and

planned all analyses. P.S. and A.P. preprocessed iEEG and structural connectivity data.
PS, AP, S.G, CWL, DSB, KD, and B.L. read and provided comments on the
manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s42003-021-01700-6.

Correspondence and requests for materials should be addressed to A.A.
Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
BY

Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

COMMUNICATIONS BIOLOGY | (2021)4:210 | https://doi.org/10.1038/s42003-021-01700-6 | www.nature.com/commsbio 15


https://doi.org/10.1038/s42003-021-01700-6
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsbio
www.nature.com/commsbio

	Pairwise maximum entropy model explains the role of white matter structure in shaping emergent co-activation states
	Results
	Pairwise correlations stabilize over several hours of iEEG recordings
	Pairwise MEM reveals high cross-frequency similarity in functional connectivity
	Pairwise MEM’s interaction weights reflect the white matter connectivity
	Pairwise MEM accurately predicts co-activation states’ probabilities

	Discussion
	Materials and methods
	Patient information
	Intracranial EEG acquisition
	Recording configurations
	Image acquisition
	Structural connectivity
	Pairwise maximum entropy model
	Empirical and estimated probabilities divergence measure
	Phase-base functional connectivity methods
	Partial correlation
	Geometric structural connectivity null
	Predicting anatomical connectivity from functional connectivity
	Statistics and reproducibility

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




