Skip to main content
. 2021 Jan 4;8(4):2003334. doi: 10.1002/advs.202003334

Table 3.

Optical properties and synthesis methods of lead‐free halide perovskites (AVC, anti‐solvent vapor‐assisted crystallization; TLM, temperature lowering method; VHE, vapor halide exchange; VSA, vapor saturation of antisolvent;ASRP, antisolvent reprecipitation method LARP, ligand‐assisted reprecipitation method; SEM, slow evaporation method; NCs, nanocrystals; SCs, single crystals; BCs, bulk crystals; TF, thin films; p‐FPEA, 4‐fluorophenyl‐ethylamine; HMD, hexamethylene diamine; TTA, tetraethylammonium; TEBA: benzyltriethylammonium)

Perovskite Abs [nm] PL [nm] PLQY [%] FWHM [nm] Method Refs.
3D CsSnCl3 NCs 588 625 N/A 32 Solvothermal [ 119 ]
3D CsSnBr3 NCs 622 N/A N/A 32 Solvothermal [ 119 ]
3D CsSnI3 NCs 668 709 N/A 32 Solvothermal [ 119 ]
3D CsSnCl3 NCs 420 490 ≤0.14 N/A Hot injection [ 33b ]
3D CsSnBr3 NCs 610 660 ≤0.14 N/A Hot injection [ 33b ]
3D CsSnI3 NCs 750 945 ≤0.14 N/A Hot injection [ 33b ]
3D Cs2SnI6 NCs N/A 620 ≤0.48 49 Hot injection [ 66a ]
3D Cs2SnCl6:Bi3+ BCs N/A 455 78.9 66 Hydrothermal [ 16e ]
3D Cs2SnCl6:Sb3+ BCs N/A 602 37 101 Hydrothermal [ 187 ]
2D PEA2SnI4 NCs N/A 640 6.40 ± 0.14 36 ASRP [ 128 ]
2D TEA2SnI4 NCs 624 645 18.85 ± 2.17 32.4 ASRP [ 44 ]
2D p‐FPEA2SnI4 NCs 621.2 640 9.94 ± 1.23 30.8 ASRP [ 44 ]
2D (OCTAm)2SnX4 BCs 350 600 95 ± 5 136 Solution process [ 56 ]
2D (OAm)2SnBr4 BCs N/A 620 88 140 Hot injection [ 86 ]
2D (PEAI)3.5(CsI)5(SnI2)4.5 TFs N/A 920 18 N/A Spin‐coating [ 188 ]
2D (C8H17NH3)2SnBr4 BCs N/A 596 98 N/A Solution process [ 189 ]
1D (DAO)Sn2I6 SCs N/A 634 20.3 142 Solution process [ 135 ]
1D (DAO)Sn2I6 TFs N/A 36 145 Solution process [ 135 ]
0D (C4N2H14Br)4SnBr6 SCs 355 570 95 ± 5 105 Solution process [ 132 ]
0D (C4N2H14I4)SnI6 SCs 410 620 75 ± 4 118 Solution process [ 132 ]
0D Cs4SnBr6 powder N/A 540 15 ± 5 N/A Solid‐state process [ 133 ]
0D Cs4SnBr6 BCs 320 524 20 100 ASRP [ 190 ]
0D Cs3KSnBr6 BCs 320 500 35 100 ASRP [ 190 ]
0D Cs4SnBr6 NCs N/A 530 0.8 45 Hot injection [ 191 ]
0D Bmpip2SnBr4 SCs N/A 666 75 N/A TLM [ 134 ]
0D Bmpip2SnI4 SCs N/A 730 35 N/A TLM [ 134 ]
0D HMD3SnBr8 BCs N/A 601 86 ± 2 128 Antisolvent method [ 192 ]
2D (C4H9NH3)2GeI4 SCs N/A 690 N/A 180 Solution process [ 137 ]
2D (PEA)2GeI4 BCs N/A 613 N/A 98.4 Solution process [ 138 ]
0D Bmpip2GeBr4 SCs N/A 670 ≤1 N/A Solution process [ 134 ]
2D MA3Bi2Br9 SCs N/A 550 N/A 100 SEM [ 143 ]
1D MA3Bi2Cl9 NCs N/A 360 15 50 Co‐LARP [ 143 ]
2D MA3Bi2Br9 NCs 376 423 12 62 Co‐LARP [ 143 ]
2D MA3Bi2I9 NCs N/A 540 0.03 91 Co‐LARP [ 143 ]
2D MA3Bi2Br9‐Cl NCs 388 422 54.1 N/A Co‐LARP [ 59 ]
2D Cs3Bi2Br9 NCs N/A 460 4.5 45 Co‐LARP [ 144 ]
2D Cs3Bi2Cl9 NCs N/A 393 26.4 59 Co‐LARP [ 58 ]
2D Cs3Bi2Br9 NCs N/A 410 19.4 48 Co‐LARP [ 58 ]
2D Cs3Bi2I9 NCs N/A 545 0.018 70 Co‐LARP [ 58 ]
2D FA3Bi2Br9 NCs 404 437 52 65 Co‐LARP [ 193 ]
0D Rb7Bi3Cl16 NCs N/A 437 28.43 93 LARP [ 79 ]
0D (C8NH12)4BiBr7•H2O SCs 400 450 0.7 N/A TLM [ 78 ]
0D (C8NH12)4Bi0.57Sb0.43Br7•H2O SCs N/A 400–850 4.5 N/A TLM [ 78 ]
0D (C9NH20)2SbCl5 SCs N/A 590 98 ± 2 119 Solution process [ 132 ]
0D (Ph4P)2SbCl5 SCs N/A 648 87 ± 2 136 AVC [ 82 ]
0D (TTA)2SbCl5 powder N/A 625 86 140 ASRP [ 194 ]
0D (TEBA)2SbCl5 powder N/A 590 98 135 ASRP [ 194 ]
2D Cs3Sb2Cl9 NCs N/A 370 11 52 LARP [ 80 ]
2D Cs3Sb2Br9 NCs N/A 410 46 41 LARP [ 80 ]
2D Cs3Sb2I9 NCs N/A 560 23 56 LARP [ 80 ]
2D Cs3Sb2I9 TFs N/A 750 N/A 120 VHE [ 156 ]
2D Cs3Sb2Br9 NCs 368 409 51.2 N/A ASRP [ 66b ]
2D (NH4)3Sb2I9 TFs 645 639 N/A N/A AVC [ 155 ]
3D Cs2AgBiCl6 NCs N/A 395 6.7 68 ASRP [ 62 ]
3D Cs2AgBiBr6 NCs N/A 465 0.7 82 ASRP [ 62 ]
3D Cs2AgBiI6 NCs N/A 575 <0.1 69 ASRP [ 62 ]
3D Cs2AgBiCl6: Mn2+ NCs N/A 600 <1 N/A Hot injection [ 196 ]
3D Cs2Ag0.17Na0.83In0.88Bi0.12Cl6 NCs N/A 557 64 153 ASRP [ 168 ]
3D Cs2AgIn0.9Bi0.1Cl6 NCs 372 395/570 36.6 N/A ASRP [ 24 ]
3D Cs2NaInCl6: Ag+ NCs 269 535 31.1 N/A Hot injection [ 85 ]
3D Cs2AgInCl6 NCs 350 560 ≈1.6 ± 1 N/A Hot injection [ 66c ]
3D Cs2AgInCl6:Mn2+ NCs 350 620 ≈16 ± 4 N/A Hot injection [ 66c ]
3D Cs2AgInCl6:Bi3+ NCs 368 580 11.4 N/A Hot injection [ 84b ]
3D Cs2AgInCl6:Yb3+/Er3+ NCs N/A 996/1537 N/A N/A Hot injection [ 167 ]
3D Cs2Ag1− xNaxInCl6:Bi3+ NCs N/A N/A 22 N/A Hot injection [ 197 ]
3D Cs2Ag0.6Na0.4InCl6: 0.04Bi3+ BCs N/A 565 86 ± 5 N/A Hydrothermal [ 60 ]
3D Cs2AgInCl6: 0.9% Mn2+ BCs N/A 630 3–5 N/A Solution process [ 163 ]
Cs2CuBr4 NCs 360 393 37.5 74 LARP [ 175 ]
Cs2CuCl4 NCs N/A 388 51.82 68 LARP [ 175 ]
CsCuBr2 MCs N/A 495 N/A 70 Solution process [ 198 ]
1D CsCu2I3 NRs 330 553 5 N/A Hot injection [ 177 ]
0D Cs3Cu2I5 NCs 285 441 67 N/A Hot injection [ 177 ]
0D Cs3Cu2Br5 NCs 277 454 18.3 82 Hot injection [ 177 ]
1D CsCu2Cl3 powder N/A 527 48 102 Solid‐state reaction [ 200 ]
1D CsCu2Br3 powder N/A 533 18.3 106 Solid‐state reaction [ 200 ]
1D CsCu2I3 powder N/A 576 3.23 126 Solid‐state reaction [ 200 ]
0D Cs3Cu2Br5 powder N/A 455 50.1 75 Solid‐state reaction [ 176 ]
0D Cs3Cu2I5 powder N/A 443 98.7 99 Solid‐state reaction [ 176 ]
0D Cs3Cu2I5 SCs N/A 445 91.2 N/A VSA [ 61 ]
0D Cs3Cu2I5 TFs N/A 445 62.1 N/A Spin‐coating [ 61 ]
0D Cs3Cu2I5 NCs 285 445 29.2 N/A Hot injection [ 201 ]
0D Cs3Cu2Br5 NCs 269 461 16.9 N/A Hot injection [ 201 ]
0D Cs3Cu2Cl5 NCs 259 527 48.7 N/A Hot injection [ 201 ]
1D CsCu2I3 TFs N/A 550 20.6 100 Antisolvent method [ 211 ]
1D CsCu2I3 SCs N/A 568 15.7 75 Antisolvent method [ 202 ]
0D Cs2InBr5 ·H2O SCs N/A 695 33 N/A TLM [ 72 ]
0D Rb2InCl5(H2O): Sb3+ SCs 324 600 90 N/A Hydrothermal [ 182 ]
0D Rb2InCl6: Sb3+ SCs N/A 497 95 N/A Solvent thermal [ 182 ]
0D (C4H14N2)2In2Br10 SCs 335 670 3 N/A Solution process [ 183 ]
3D CsYbI3 NCs N/A 671 58 47 Hot injection [ 180 ]
3D Cs2TiBr6 TFs N/A 704 N/A N/A Vapor deposition [ 97 ]
3D Cs2PdBr6 SCs 784 772 N/A N/A Solution process [ 179 ]
1D (Pyrrolidinium)MnCl3 SCs N/A 637 56 N/A SEM [ 185 ]