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ABSTRACT: Predicting the structures of metabolites formed in humans can provide advantageous insights for the development of
drugs and other compounds. Here we present GLORYx, which integrates machine learning-based site of metabolism (SoM)
prediction with reaction rule sets to predict and rank the structures of metabolites that could potentially be formed by phase 1 and/
or phase 2 metabolism. GLORYx extends the approach from our previously developed tool GLORY, which predicted metabolite
structures for cytochrome P450-mediated metabolism only. A robust approach to ranking the predicted metabolites is attained by
using the SoM probabilities predicted by the FAME 3 machine learning models to score the predicted metabolites. On a manually
curated test data set containing both phase 1 and phase 2 metabolites, GLORYx achieves a recall of 77% and an area under the
receiver operating characteristic curve (AUC) of 0.79. Separate analysis of performance on a large amount of freely available phase 1
and phase 2 metabolite data indicates that achieving a meaningful ranking of predicted metabolites is more difficult for phase 2 than
for phase 1 metabolites. GLORYx is freely available as a web server at https://nerdd.zbh.uni-hamburg.de/ and is also provided as a
software package upon request. The data sets as well as all the reaction rules from this work are also made freely available.

■ INTRODUCTION

Metabolism has a large impact on the safety and efficacy of the
xenobiotics that enter the human body, from drugs to
cosmetics and agrochemicals, because metabolic reactions
can change these compounds into metabolites with different
physicochemical and pharmacological properties.1 Computa-
tional approaches can be useful for predicting how drugs and
other xenobiotics will be metabolized in humans, allowing, for
example, the focusing of the drug development process on the
most promising compounds in order to save time and reduce
costs.
Human xenobiotic metabolism is generally separated into

two phases, phase 1 and phase 2, based on the type of reaction
(note that the nomenclature does not indicate that a phase 1
reaction must occur before a phase 2 reaction can take place).
Phase 1 metabolism consists of oxidation, reduction, and
hydrolysis reactions that generally result in increased polarity
of the metabolite compared to the parent molecule by creating
or unmasking polar functional groups. The main enzyme
family responsible for phase 1 metabolism is the cytochrome

P450 (CYP) enzyme family, which is responsible for the
formation of approximately 60% of first-generation metabolites
but only for approximately 40% of metabolites overall (all
percentages presented here are based on the current version2

of the MetaQSAR database,3 which contains over 4000 parent
molecules, including drugs and other xenobiotics, along with
their first-, second-, and third-generation metabolites produced
by mammalian metabolic enzymes in vitro and/or in vivo).
CYPs are also the cause of a large portion of toxic metabolites
and drug−drug interactions.4 Of the non-CYP phase 1
enzymes, the ones with the highest impact on metabolite
formation are hydrolases and flavin-containing monooxyge-
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nases (FMOs), which account for approximately 9% and
approximately 4% of all metabolites, respectively.
Phase 2 metabolism consists of conjugation reactions that,

like phase 1 metabolic reactions, tend to modify compounds to
more excretable forms. In all, phase 2 metabolism accounts for
approximately 30% percent of all metabolites.2 The enzymes
responsible for phase 2 drug metabolism belong primarily to
five enzyme families: UDP-glucuronosyltransferases (UGTs),
glutathione S-transferases (GSTs), sulfotransferases (SULTs),
N-acetyltransferases (NATs), and methyltransferases (MTs).5

These five enzyme families are responsible for nearly 90% of all
phase 2 metabolites.4

Computational prediction of xenobiotic metabolism encom-
passes several aspects, including the prediction of the
metabolically labile atom positions in molecules, which are
known as sites of metabolism (SoM), and prediction of
metabolite structures.1,6 Although SoM prediction can provide
valuable information and often allows the structure of the
resulting metabolite to be inferred by a chemist, it is also of
interest to directly predict the metabolites themselves. There
are many freely available and commercial methods for
metabolite structure prediction, though most focus exclusively
on CYP-mediated metabolism. Commercial tools that offer
comprehensive prediction of metabolites for both phase 1 and
phase 2 metabolism include Meteor Nexus (Lhasa Ltd.),7

TIMES (LMC),8 and MetabolExpert (CompuDrug Ltd.).9

In terms of freely available metabolite structure predictors, a
popular and relatively long-lived, open-source tool is SyGMa.10

SyGMa generates and ranks metabolites based on reaction
rules and their occurrence ratios derived from the Metabolite
database.11 The current version of SyGMa predicts phase 1
and phase 2 metabolites using a set of 145 knowledge-based
reaction rules (118 phase 1 rules and 27 phase 2 rules). Using
the combined set of reaction rules, SyGMa was able to predict
68% of the metabolites in a test set consisting of 175 parent
compounds and 385 reactions (taken from a later release of the
Metabolite database compared to the training data).10 The
predictor was able to rank 45% of the metabolites in the test
set within the top 10 predictions for their corresponding parent
molecules. Unfortunately, the Metabolite database, which was
used to develop the reaction rules and the occurrence ratios for
the scoring, has been discontinued.
Another freely available tool for metabolite prediction is

BioTransformer,12 an open-source, comprehensive program
that predicts metabolite structures for human CYP and phase 2
metabolism as well as gut microbial, environmental microbial,
and human “enzyme commission (EC)-based” metabolism.
BioTransformer has 163 CYP rules and 74 phase 2 rules as well
as additional constraints regarding molecule types that various
rules are allowed to be applied to. Using a combination of the
CYP, phase 2, and EC-based modules (408 rules), BioTrans-
former achieved a recall of 88% on its test set of 40
pharmaceuticals and pesticides, with a precision of 0.49 (188
true positive predictions and 198 putative false positive
predictions). BioTransformer does not currently rank its
predictions.
A further freely available tool, MetaTox,13,14 predicts

metabolites by separately predicting the probability that each
potential reaction class is relevant to the given molecule and
also predicting the probability of a reaction occurring at each
possible reaction center given each possible reaction class. The
probability that the resulting metabolite is formed is calculated
by combining both of these probabilities, which can then be

used to rank the predictions. The reaction types include both
phase 1 and phase 2 reaction types, though it is unclear how
many reaction rules there are in total. During leave-one-out
cross-validation, MetaTox obtained invariant accuracy pre-
diction (IAP, a metric related to area under the receiver
operating characteristic curve (AUC)) values between 0.79
and 0.95 for the prediction of the correct reaction class and
IAP values between 0.86 and 0.99 for the prediction of the
reacting atoms for each of the biotransformation classes.14

We recently reported on the development of a tool called
GLORY that predicts the structures of metabolites formed by
the CYP enzyme family.15 GLORY includes a new set of
reaction rules for CYP-mediated metabolism, whereby
common reaction types are distinguished from more unusual
reactions. Importantly, GLORY explored how SoM prediction
could be effectively employed within the context of metabolite
structure prediction. We were able to demonstrate that using
the predicted SoM probabilities for each atom in a molecule to
score the predicted metabolites, resulting from reactions taking
place at those atom positions, led to a meaningful ranking of
the predictions.
The software for SoM prediction that was used in GLORY

was FAME 2,16 a machine learning-based SoM prediction
program that uses extremely randomized trees classifiers
combined with two-dimensional (2D) circular descriptors to
predict SoMs for CYP-mediated metabolism. Since the
development of GLORY, a successor to FAME 2 has become
available. FAME 317 continues to use the concept of extra trees
classifiers and 2D circular descriptors developed in FAME 2
and applies this approach to generate comprehensive SoM
prediction models for both phase 1 and phase 2 metabolism.
There are several other metabolite prediction tools, both

commercial (e.g., ADMET Predictor18 from SimulationsPlus,
StarDrop19 from Optibrium, and MetaSite from Molecular
Discovery20) and freely available (e.g., MetaTox13,14), that
incorporate SoM prediction into their metabolite prediction
approaches. These tools either focus solely on CYP-mediated
metabolism, have not been published, or, as described above
for MetaTox, have been evaluated in such a way that makes it
difficult to determine how well the metabolite structures
themselves were predicted. Thus, although the concept of
combining SoM prediction with reaction rules for compre-
hensive metabolite prediction has been applied in various ways,
a systematic analysis of the performance for both phase 1 and
phase 2 metabolism has not yet been published.
We have extended the approach developed in GLORY to

create a new tool, called GLORYx, that combines SoM
prediction with a set of reaction rules to predict metabolites for
both phase 1 and phase 2 metabolism. GLORYx employs
FAME 3 for SoM prediction, the results of which are used to
score and rank the predicted metabolites. Compared to
GLORY, GLORYx requires more reaction rules in order to
cover non-CYP phase 1 metabolic reactions as well as phase 2
metabolic reactions. GLORYx is freely available via a web
server at https://nerdd.zbh.uni-hamburg.de/.

■ METHODS
Reference Data Set. A reference data set of compound-

metabolite pairs was compiled from the freely available metabolism
data in the DrugBank (drug group “All”)21,22 and MetXBioDB23

databases to serve as a basis for evaluation of the method during the
development of GLORYx. For each metabolic reaction in either
database, the reactant was considered to be the parent molecule, and

Chemical Research in Toxicology pubs.acs.org/crt Article

https://dx.doi.org/10.1021/acs.chemrestox.0c00224
Chem. Res. Toxicol. 2021, 34, 286−299

287

https://nerdd.zbh.uni-hamburg.de/
pubs.acs.org/crt?ref=pdf
https://dx.doi.org/10.1021/acs.chemrestox.0c00224?ref=pdf


the product was considered to be the metabolite. The reference data
set is therefore in the format of a map of each parent molecule to its
first-generation metabolites, regardless of whether the parent molecule
is itself the metabolite of another molecule.
The extraction of the data from DrugBank and MetXBioDB is

consistent with the method used in GLORY (see ref 15). The
differences in the preprocessing of the data (i.e., assigning a phase and
removing the minor component of salts; see below) arise from
considering both phase 1 and phase 2 metabolism rather than just
CYP metabolism.
The preprocessing procedure is as follows:

(1) Structural information for both the parent and the metabolite
was required in order for a reaction to be included. For
DrugBank, the structures are provided in SD file format. In
MetXBioDB, only InChIs and InChIKeys are provided, so the
InChI was used to generate the structure. Note that
stereochemistry information was ignored for parent molecules
as well as metabolites, so stereoisomers were thereby
condensed.

(2) The multicomponent parent molecules in the DrugBank
database had to be handled (no multicomponent parent
molecules were found in MetXBioDB). The minor component
of each salt was removed (e.g., K+, Ca2+). There was one
multicomponent compound (DrugBank ID: DB09327) in
which the main component could not be automatically
determined, so this compound was excluded from the
reference data set. Note that multicomponent metabolites,
on the other hand, are simply separated into their individual
components and each is considered a separate metabolite.

(3) Any metabolite that contained only one heavy atom (six cases
consisting of metal ions, SeH2, and a water molecule;
DrugBank only) or had the same InChI, ignoring stereo-
chemistry, as its parent molecule, was excluded.

(4) The metabolites were classified as either phase 1 or phase 2
metabolites, according to the enzyme or biotransformation
type annotation (see subsection below for details). If a
metabolite could not be assigned a phase, the metabolite was
ignored.

(5) Parent molecules with no remaining valid metabolites after
applying the above criteria were removed.

(6) The metabolism data corresponding to all parent molecules
that overlap with a manually curated test data set (described
below) were removed from the reference data set. The removal
of the overlap with the test data set affected 15 parent
molecules from DrugBank and 9 from MetXBioDB.

The DrugBank and MetXBioDB data were combined in a
straightforward manner using InChIs generated without stereo-
chemistry information to compare molecules. If the same parent
molecule was present in both DrugBank and MetXBioDB, then the
metabolites from both sources were combined, disregarding stereo-
chemistry, into one set.
Assigning a Metabolism Phase to Metabolites in the Data Set.

To enable separate evaluation for phase 1 and phase 2 metabolite
prediction, we assigned each metabolite in the reference data set to a
phase based on the relevant information in DrugBank and
MetXBioDB. This allowed the creation of two distinct subsets of
the reference data set. The phase 1 and phase 2 subsets of the
reference data set represent only phase 1 and phase 2
biotransformations, respectively. If a parent compound has no
relevant metabolites for the given phase, then it was excluded from
the corresponding subset of the data set.
For the DrugBank data, the metabolites were assigned to a

metabolism phase based on the enzyme annotation of the reaction.
Some enzymes were omitted completely because they are not
enzymes typically associated with human xenobiotic metabolism (e.g.,
hemoglobin, serum albumin, and lyases). See Table S1 in the
Supporting Information for a list of all enzymes that were excluded.
This criterion resulted in the exclusion of only 17 metabolites from 11
parent compounds.

For the MetXBioDB data, the appropriate phase for each
metabolite was determined based on the “Biotransformation type”
annotation in the database. The reactions annotated “Human Phase
1” or “Human Phase 2” were classified as phase 1 or phase 2,
respectively.

Manually Curated Test Data Set. The test data set was
manually assembled from the scientific literature. We wanted to
include all known metabolites of the parent compounds (i.e., all
metabolites which have been experimentally observed and reported in
the scientific literature), so we chose to structure the data as metabolic
trees, including all generations of metabolites that were found in the
literature.

The selection of parent molecules for the test data set was based on
the top 100 best-selling drugs from 2018.24,25 For all the small-
molecule drugs within these 100 drugs that are made up of only the
atoms H, C, N, S, O, F, Cl, Br, I, and P, we searched the scientific
literature for relevant metabolism information, specifically the
structures of human metabolites and preferably a scheme depicting
the metabolic tree (see below for more detail). For the listed
pharmaceutical products that are a combination of two or more
named drugs (e.g., Mavyret is composed of glecaprevir and
pibrentasvir), a separate literature search was undertaken for each
drug component. For sources of metabolite information, we
considered all scientific journal publications that could be found
online with Google.

The basic criteria for inclusion in the data set were as follows:

(1) The metabolites must be clearly indicated to be found in
humans (either in vivo or in vitro using human hepatocytes,
human liver microsomes, or human liver S9 fractions).

(2) Structures of metabolites must be provided. In cases in which a
metabolism scheme is not shown, it must be clear, based on
chemistry knowledge, that the depicted metabolites are not
metabolites of each other, that is, that the depicted metabolites
are all first-generation metabolites of the parent drug.

(3) Only fully defined metabolite structures (i.e., the exact position
of the added functional group is shown) are included in the
data set. The branches of the metabolic tree are followed, and
the metabolites included and annotated with the correspond-
ing generation, until a not-fully defined structure is reached.
Any further metabolites derived from such a not-fully defined
structure are ignored. The maximum metabolite generation
included in the data set was generation five, which occurred for
only two parent molecules.

(4) Intermediates designated as such in the scheme are not
included in the data set.

(5) Some metabolites could not be considered first-generation
(based on chemistry knowledge and additional information
from the text of the publication), even though the visual
scheme indicated that their precursors were only intermediates.
Such cases were also removed.

(6) Fatty acid conjugation was not considered.
(7) In the case of one prodrug (abiraterone acetate), we used the

drug itself (abiraterone) as the parent molecule in the data set
because it had more (first-generation) metabolites shown in
the scheme.

The data set was assembled by extracting the SMILES for the
parent compounds from the ChEMBL Database26,27 by looking up
each drug name. These structures were manually verified for
correctness before proceeding. The SMILES for the metabolites
were generated with MarvinSketch28 by modifying the parent
molecules to create the metabolites and saving them in SMILES
format. Metabolite stereoisomers were combined, resulting in a
structure with unspecified stereochemistry at the relevant stereo-
center.

Data Set Structure. The final data set contains 37 parent molecules
and is provided as a JSON file (see Notes). There are 136 first-
generation metabolites in total.

The JSON file is structured to represent the metabolic trees, which
include multiple generations of metabolites, whenever relevant,
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following the procedure explained above. For each parent compound,
the DOI or PMID of the reference paper(s) is provided, along with
the drug name, SMILES, and metabolites. For each metabolite, the
name it was given in the publication is provided for reference (this
name is often something like “M1”) along with the metabolism
generation number and the SMILES. Due to the JSON file format, it
is always clear for the second, third, and subsequent generations of
metabolites which first-generation metabolites were their precursor,
and so on.
No distinction between phase 1 and phase 2 metabolites is made,

and enzyme annotations are not included, as this information was
only rarely provided in the original literature used to assemble the
data set.
Analysis of the Metabolite Data from MetXBioDB and

DrugBank. The data from MetXBioDB and DrugBank were
considered separately. The data were extracted and preprocessed
from each source as described in the Reference Data Set subsection,
except that the parent molecules that overlap with the test data set
were not removed. For the analysis described here, only the properties
of the parent molecules were considered.
Calculations of molecular weight and log P in order to plot the

distributions were performed using RDKit.29 The molecular weight
calculated was the average molecular weight including hydrogens.
One molecule in MetXBioDB was not considered a valid molecule by
RDKit (explicit valence greater than permitted) and was therefore
excluded from all analysis described in this section.
Principal component analysis (PCA) was performed with scikit-

learn30,31 using 44 physicochemical descriptors calculated with the
Molecular Operating Environment (MOE).32 A full list of the
descriptors, as well as a brief description of each, can be found in
Table S2.
Reaction Rules. The metabolic reaction rules used in GLORYx

are encoded as SMIRKS.33 Three sets of reaction rules were used: (1)
all of SyGMa’s reaction rules, which include both phase 1 and phase 2
rules; (2) GLORY’s reaction rules, covering only CYP metabolism;
and (3) a newly developed set of GSH conjugation rules to augment
SyGMa’s phase 2 rules, which are missing reactions of this type. The
reaction rules from GLORY were used unchanged.
Implementation of SyGMa Reaction Rules. Because the so-called

SMIRKS provided in SyGMa’s open-source python package34 are
actually in the format of RDKit’s reaction SMARTS, it was necessary
to convert them to proper SMIRKS in order to implement them in
our software. This conversion was performed manually, with care
being taken to preserve the chemical meaning of the reaction.
In one case, namely that of oxidative deamination, additional

SMIRKS strings were necessary to achieve the same result with the
SMIRKS that SyGMa achieved with its reaction SMARTS. The
reason is that double bonds in an aromatic ring are not automatically
shifted during transformation in GLORYx. We therefore added two
additional SMIRKS in order to explicitly shift the double bonds for 6-
rings and 5-rings. Any invalid products generated by the SMIRKS for
this reaction are ignored because the molecule validity checker in
GLORYx discards transformation products with a carbon atom of
invalid atom type (in this case, a valence >4 due to incorrect bond
placement).
Development of Reaction Rules for Glutathione Conjugation.

The scientific literature indicates that glutathione (GSH) conjugation
by the GST enzyme family occurs mainly at the following functional
groups: epoxides, α,β-unsaturated carbonyls, quinones, nucleophilic
substitution (aliphatic and aromatic), isocyanates (and isothiocya-
nates), and nitriles.35−40 The SMIRKS for these cases were developed
based on the reaction descriptions and example reactions present in
the referenced literature.
Metabolite Prediction Program GLORYx. GLORYx applies the

reaction rules to all appropriate positions in the molecule, determined
by where each reaction rule SMIRKS matches, if it matches at all.
Within the program, SoMs are predicted with FAME 3,17 and the
predicted SoM probabilities are used to score and rank the predicted
metabolites. The software is written in Java and uses CDK version
2.0.41,42

GLORYx performs an initial preprocessing step for all input
molecules to check that the input molecule can be successfully parsed
by CDK, does not have multiple components, and contains no
element types other than C, N, S, O, H, F, Cl, Br, I, P, B, and Si
(FAME 3’s allowed element types; note that FAME 3 does not make
predictions for B and Si due to a lack of training data, and for this
reason the test set was chosen to not include any molecules with a B
or Si atom). If any of these checks fail, no predictions are made for the
input molecule. Further preprocessing steps that occur within the
context of SoM prediction and the application of the reaction rules are
described in the following subsections.

SoM Prediction. The SoM prediction in GLORYx is performed
using FAME 3.17 FAME 3 was trained on the SoM data from the
MetaQSAR database3,43 and offers three SoM prediction models: the
P1 model predicts SoMs corresponding to phase 1 metabolic
reactions, the P2 model predicts SoMs corresponding to phase 2
metabolic reactions, and the P1 + P2 model predicts SoMs
corresponding to both metabolism phases.

The FAME 3 code includes preprocessing of the input molecules,
involving the standardization of nitro groups, aromaticity detection,
and automatic addition of hydrogens if the hydrogens of the input
molecule are not explicitly specified. Because the SoM prediction step
comes before the application of the reaction rules within the GLORYx
program, the standardization of the molecules described here remains
in place for the subsequent transformation step described below.

FAME 3 uses circular descriptors that incorporate 15 basic 2D
CDK descriptors and circular atom-type fingerprints (see ref 17 for
details). During the development of FAME 3, the effect of the bond
depth of the circular descriptors was examined, and a bond depth of
five was chosen as the default bond depth for the descriptors.
GLORYx uses the default models with a descriptor depth of five.

In order to improve GLORYx’s ability to rank its predictions of
phase 2 metabolites (see Results for details), we used previously
unpublished reaction class-specific individual phase 2 SoM models
from FAME 3. These models were created using the identical
modeling procedure described in the FAME 3 paper (see ref 17), but
with each model trained on only a subset of the data. The SoM data
from the reaction classes in the MetaQSAR database43 corresponding
approximately to the five main enzyme families of phase 2 xenobiotic
metabolism (UGTs, GSTs, SULTs, MTs, and NATs) were selected,
and a separate model was created for each subset. The reaction class
types and the number of molecules used to train the models are
described in Table S3. Note that the data from two classes of
glucuronidation reactions in MetaQSAR were combined to create a
single glucuronidation model.

For the reaction class-specific phase 2 SoM models, GLORYx again
uses the models with a descriptor depth of five, for consistency.

Transformation of Molecules According to Reaction Rules. The
reaction rules were applied using Ambit-SMIRKS.44,45 As for GLORY,
any product containing fewer than three heavy atoms is not included
in the set of predicted metabolites.

In order to apply the reaction rules correctly, that is, to achieve the
same predicted metabolites as SyGMa while using the same rules, it
was necessary to use an aromaticity model that could recognize
aromaticity in rings with exocyclic heteroatoms. To achieve this, we
chose an aromat ic i ty model in CDK that uses the
ElectronDonation.daylight() electron donation model. In order to
allow for better ring recognition in molecules with more than three
rings, we set the cycles portion of the aromaticity model to
Cycles.or(Cycles.all(), Cycles.relevant()), indicating that all cycles
would be used whenever possible and the “relevant” cycles would
be used in cases in which the molecule contained too many cycles for
all of them to be considered. This new aromaticity model is applied
directly before reaction rule-based transformation using all reaction
rules, not just the rules sourced from SyGMa, and does not affect the
aromaticity recognition used for SoM prediction with FAME 3.

There is one noticeable remaining discrepancy related to
aromaticity, as determined by comparison on the reference data set,
between GLORYx’s predictions and SyGMa’s predictions for the
“same” reaction rules. Tetrazoles appear to be recognized as aromatic
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by GLORYx but not by SyGMa, as indicated by an aromatic
glucuronidation reaction being successfully applied by GLORYx but
not by SyGMa. This discrepancy affects only three parent molecules
in the phase 2 subset of the reference data set.
Scoring. Each predicted metabolite is assigned a priority score in

order to rank the predictions. The priority score has two components.
The first component is the predicted SoM probability from the
FAME 3 model used to make the prediction. The maximum SoM
probability among the atoms in the mapping of the reaction rule’s
SMIRKs onto the parent molecule is used.
The second component is a reaction rule weighting factor based on

a simple designation of either “common” or “uncommon” for each
reaction type. This designation, which we previously introduced for
CYP reactions in ref 15, was based primarily on a detailed review of
CYP-mediated reaction types that described both common and
uncommon types of reactions.46 In this work, we use the common−
uncommon designation more loosely, as a simple differentiation in
reaction type prioritization that allows a binary weighting of the
reaction rules. A weighting factor corresponding to the common−
uncommon classification is multiplied with the maximum SoM
probability mentioned above in order to calculate the priority score
for the predicted metabolite. In GLORYx, a weighting factor of 1 is
used for reaction rules designated “common”, and a weighting factor
of 0.2 is used for reaction rules designated “uncommon”. These
weighting factors thereby maintain the same ratio of 5:1 as described
previously in ref 15 but are scaled such that the final priority score
more reflects a probability-like concept, with values ranging from 0 to
1.
The final priority score of a predicted metabolite is thereby the

product of the maximum SoM probability and the weighting factor
corresponding to the priority level, common or uncommon, of the
reaction type.
The final assignment of a priority level to the reaction rules was

determined rationally. The priority levels of the CYP metabolism-
based rules from GLORY were not changed. All of the phase 1 rules
from SyGMa were designated uncommon, which does not affect the
higher priority given to common CYP-mediated reaction types in the
case of duplicate reaction types in the SyGMa and GLORY rule sets.
The phase 2 rules corresponding to the five main phase 2 enzyme
families were designated common, while the others (glycination,
phosphorylation, and dephosphorylation) were designated uncom-
mon.
Validation. Predicted metabolites were compared to the known

metabolites from either the reference data set or the test data set using
InChIs that were generated without stereochemistry information.
Special Consideration for CYP Reactions. Spontaneous oxidation

from an aldehyde to a carboxylic acid was considered during the
evaluation process, as in GLORY (see ref 15), but only for predicted
metabolites that were the product of a phase 1 reaction rule. It was
intended that this consideration only apply to CYP reactions, but
SyGMa’s phase 1 reaction rules do not distinguish between CYP and
non-CYP, so this step was applied to all phase 1 products. Note that
this applies only to the validation and does not affect the predicted
metabolites that are provided to the users of GLORYx.
Comparison to SyGMa. The comparison of GLORYx to SyGMa

was performed using SyGMa34 with RDKit.29 One change to the
standard usage of SyGMa was required, in the case where both phase
1 and phase 2 metabolite predictions were desired. When SyGMa is
run with a single metabolism Scenario object specifying both phase 1
and phase 2, the rule sets for the phases are applied sequentially, that
is, the first rule set listed (phase 1) is applied first, and then the
second rule set (phase 2) is applied to the parent compound as well as
the products of the first rule set. This behavior corresponds to a
different research question than the one posed in our evaluation, so
SyGMa was instead run twice for each molecule in the test set, once
using only the phase 1 rules and then separately using only the phase
2 rules. The predictions from both runs were combined.
In addition, any predicted metabolite with the same InChI as the

parent compound was ignored, and, for the sake of comparison, a
filter to remove all predicted metabolites with fewer than three heavy

atoms was added (SyGMa’s built-in percentage-based size filter was
turned off). Implicit hydrogens were also added to SyGMa’s output
SMILES before generating the InChIs for comparison with
GLORYx’s predictions.

■ RESULTS

The concept of GLORYx is that SoMs, or rather the
probability of each heavy atom being a SoM, are predicted
with FAME 3, and, building on these predictions, a set of
reaction rules is applied in order to generate the structures of
predicted metabolites for both phase 1 and phase 2
metabolism. We have previously determined, for our earlier
CYP-focused metabolite prediction tool GLORY, that using
the predicted SoM probabilities as a hard cutoff to determine
whether or not to apply a reaction rule at a given position is
not a particularly effective approach, except if the goal is to
simply reduce the number of predictions.15 Instead, we found
that using the predicted SoM probabilities to score and rank
the predicted metabolites enabled a reasonable ranking of the
predicted metabolites while retaining a high recall of known
metabolites. Therefore, we again use the predicted SoM
probabilities to rank the metabolites predicted by GLORYx.
For GLORYx, we also have the capability of using a different
FAME 3 SoM prediction model depending on which phase of
metabolism is being predicted.
GLORYx was developed and analyzed using a large

reference data set containing metabolism data from DrugBank
and MetXBioDB. This reference data set was used to examine
phase 1 and phase 2 metabolism separately to make sure each
phase could be handled satisfactorily on its own as well as to
determine how to best combine predictions for both phases.
The final validation of GLORYx was subsequently performed
on a manually curated test data set.

Analysis of the Approach Using a Large Reference
Data Set. A reference data set for the development of the
GLORYx method was created by combining the freely
available metabolism data from DrugBank and MetXBioDB
(see Methods for details). Considering both phase 1 and
phase 2 metabolism, and using the data preparation process
described in Methods, we collected metabolite data for 560
parent molecules from DrugBank and 1188 parent molecules
from MetXBioDB. Of these parent molecules, 310 are
identical, not considering stereochemistry, meaning there are
1438 parent molecules total from both sources combined. The
metabolites for the overlapping parent molecules were
consolidated when forming the reference data set. Within
this overlap, 555 of 868 metabolites were present in both data
sets. Of the rest, 135 were from DrugBank and 178 from
MetXBioDB.
It is relevant to mention here that DrugBank does not

contain species annotations for the metabolism data, while
MetXBioDB specifies “Human Phase 1” and “Human Phase 2”
metabolic reactions. Neither data source includes annotations
regarding whether any given metabolite data were collected in
an in vivo or an in vitro study.
Beyond noting the amount of overlap between the two data

sources, we wanted to examine the chemical space covered by
each, in terms of the parent molecules. To the best of our
knowledge, such an analysis has not yet been done for
MetXBioDB. For DrugBank, an analysis focused specifically on
the compounds for which there is metabolite data has also not
yet been undertaken. When performing this analysis, we
retained the overlapping parent molecules in both data sets.
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In terms of molecule size, we observe a narrower distribution
among the parent molecules of MetXBioDB than among those
of DrugBank, as seen in Figure 1A for molecular weight. In
addition, we noted a shift in the distributions, whereby
DrugBank has a median molecular weight of 322 while
MetXBioDB has a median of only 282. The mean values are
not compared due to the presence of an outlier with a
molecular weight of 4114 Da (semaglutide) in the DrugBank
data. For calculated log P (clog P) values as well, a narrower
distribution is observed for MetXBioDB (Figure 1B).
However, for clog P the median values of the two distributions
are very similar, at 3.04 for DrugBank and 3.05 for
MetXBioDB.
In the context of metabolite prediction, it is especially

interesting to compare the ratio of parent molecules and
metabolites recorded in a data set as this ratio can give an
indication of the comprehensiveness of the metabolism data
(metabolism data are generally incomplete; more metabolites
are typically known for compounds of high relevance, in
particular approved drugs). In the case of the DrugBank and
MetXBioDB data, the distributions of the number of
metabolites per parent molecule are quite similar (Figure
1C). In both cases, the majority of parent molecules have only
one known metabolite. At the same time, over 40% of the
parent molecules from each data source have multiple
metabolites.

Finally, to achieve a visual comparison that takes into
account multiple physicochemical properties of the parent
molecules, we performed principal component analysis (PCA)
on each set of parent molecules using 44 physicochemical
descriptors (Figure 1D; see Methods for details). From the
PCA we see that there is a large amount of overlap between the
two data sets, which is unsurprising given that most of the
molecules in the DrugBank data set are also included in the
MetXBioDB data set. However, we also see that there are
portions of the chemical space populated by parent molecules
from DrugBank but not from MetXBioDB, which is consistent
with the results from the comparison of the distributions of
molecular weight and clog P. Inspection of the PCA loading
plot (Figure S1) shows that molecule size and polarity seem to
play a large role in the variance in the PCA plot. In particular,
molecule size seems to influence the first principal component,
while polarity seems to influence the second principal
component. Interestingly, the five data points (two from
DrugBank, three from MetXBioDB) in the far right portion of
the PCA plot correspond to the five largest molecules included
in the calculation, all of which have a molecular weight
between 1000 and 1300 Da (the outlier with a molecular
weight of over 4000 Da was not included in the PCA). These
five molecules consist of five macrocyclic peptides (including
cyc lospor ine) and one nonmacrocyc l i c pept ide
(angiotensin II).

Figure 1. Comparison of the metabolite data from MetXBioDB and DrugBank, in terms of parent molecules. (A) Distribution of molecular weight.
(B) Distribution of clog P. (C) Histogram of the number of metabolites per parent molecule in terms of percentage of parent molecules. (D)
Comparison of the chemical space of the parent molecules from MetXBioDB and DrugBank using PCA calculated using 44 physicochemical
descriptors. The percentage of the total variance explained by each of the first two principal components is included in the axis labels.
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Whereas the above chemical space analysis included all valid
metabolite data from DrugBank and MetXBioDB, a further
data preprocessing step was performed for the formation of the
final reference data set used for the evaluation of the
metabolite structure prediction approach. All metabolism
data corresponding to parent molecules contained in the test
set were removed from the reference data set. This removal
resulted in a final reference data set containing 1420 parent
molecules and a total of 2453 metabolites.
The reference data set was further separated into two

subsets, corresponding to phase 1 and phase 2 metabolism.
The phase 1 subset contains 944 parent molecules and 1763
metabolites, and the phase 2 subset contains 582 parent
molecules and their 690 metabolites (Table 1). Most of the

phase 1 metabolites are CYP metabolites, and most of the
phase 2 metabolites are UGT metabolites (Table 1). Note that
some of the phase 2 metabolites do not correspond to any of
the listed enzyme families, just as some of the phase 1
metabolites are not formed by CYPs.
The two separate subsets of the reference data set were used

to analyze the performance of GLORYx for phase 1 and phase
2 individually, because there are slightly different consid-
erations for each metabolism phase. In addition, the entire
reference data set was used to analyze the combined prediction
of both phase 1 and phase 2 metabolites.
Note that GLORYx is unable to process two parent

molecules in the phase 1 subset of the reference data set and
one parent molecule in the phase 2 subset. Both of the phase 1
parent molecules contain a Se atom, which FAME 3 cannot
handle (partial charges cannot be calculated; see Methods for a
list of allowed element types). Because no SoM predictions can
be made, no metabolites are predicted. The parent molecule in
the phase 2 subset is unable to be processed because it
contains a nitrogen atom with a state that FAME 3 does not
recognize. This is the case regardless of which FAME 3 model
is used.
Phase 1 Metabolism. The fundamental concept of our

approach to predicting metabolites is to integrate machine
learning-based SoM prediction in order to score the predicted
metabolites. Therefore, the first thing we wanted to know is
how GLORYx’s SoM probability-based scoring approach
compares to the scoring approach used by the state-of-the-

art, open source, comprehensive metabolite prediction tool
SyGMa.
To compare the scoring approaches, GLORYx was initially

implemented using only the phase 1 reaction rules sourced
from SyGMa. The phase 1-specific FAME 3 SoM prediction
model (model P1) was used to predict SoMs. The predicted
metabolites were scored using the maximum SoM probability
predicted among all heavy atoms in the mapping onto the
parent molecule of the reaction rule that led to the particular
predicted metabolite. In this case, the score was therefore equal
to this SoM probability; no weighting based on reaction type
was used. SyGMa, on the other hand, ranks its predictions
based on probability scores that are calculated using the
occurrence ratios of each reaction rule in the Metabolite
database. Each of SyGMa’s predicted metabolites is assigned a
probability score corresponding to the reaction rule that
formed the predicted metabolite.
Given the same reaction rules, SyGMa with its reaction

probability score-based ranking performed slightly better than
our SoM probability-based ranking, with an AUC of 0.76
compared to 0.73, respectively, as shown in Figure 2A. This
result is reasonable if we suppose that the Metabolite database,
which was used to calculate the occurrence ratios for SyGMa’s
reaction types, was so exhaustive even in its 2001 version (the
version used to develop SyGMa) that it contained most of the
contents of the current versions of DrugBank and MetXBioDB.
This supposition is consistent with the observation in 2013 by
Kirchmair et al. that nearly all of the Approved Drugs in
DrugBank at the time (1341 out of 1391) were found in the
2011 version of the Metabolite database as top-level
substrates.47 Unfortunately, without access to the Metabolite
database, which is currently unavailable, we are unable to
perform a comparison ourselves. Nevertheless, it appears that
GLORYx achieves a comparable ranking performance to
SyGMa.

Phase 1 Metabolism: Combination of Reaction Rules
from SyGMa and GLORY. For GLORY, we had developed a
set of reaction rules specific to CYP-mediated metabolism.15

These reaction rules were manually created based on the
scientific literature on CYP-mediated reaction types and
mechanisms, and each reaction rule received a designation of
either common or uncommon reaction type, also according to
the literature. SyGMa’s phase 1 reaction rules are not separated
into CYP and non-CYP rules, so it was of interest to determine
whether adding these CYP-specific rules to the phase 1 rules
sourced from SyGMa would result in any gains in performance
for GLORYx.
When combining the rule sets, the overlap of the rules from

the two different sources is handled in a straightforward
manner. Duplicate metabolite predictions are combined by
retaining the highest priority score. The addition of the CYP
reaction rules from GLORY resulted in a substantial jump in
recall (portion of known metabolites that were successfully
predicted, also known as sensitivity) from 0.72 to 0.84 (Table
2). The precision (portion of predictions that match known
metabolites), on the other hand, was halved, as the number of
total predicted metabolites more than doubled, from over
10,000 to nearly 25,000. Note that only a fraction of the
metabolites generated by organisms is experimentally observed
and reported in the scientific literature and databases, for a
number of reasons (e.g., lack of chemical stability, low
concentrations of metabolites, limitations of the in vitro
system, research interest focused on a specific metabolic

Table 1. Composition of the Reference Data Seta in Terms
of Metabolism Phase and Enzyme Family

number of metabolitesb number of parent molecules

phase 1, all 1763 944
CYP 1640 −
phase 2, all 690 582
UGT 480 −
SULT 92 −
GST 46 −
NAT 34 −
MT 17 −
phase 1 + phase 2 2453 1420
aThe reference data set was created by combining the DrugBank and
MetXBioDB metabolism data and removing the data for all parent
molecules contained in the test set. bNote that the total numbers of
phase 1 and phase 2 metabolites do not equal the sum of the
metabolites from the listed enzyme families, because not all
metabolites in the data set correspond to these main enzyme families.
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enzyme or reaction or metabolite). Therefore, any predicted
metabolites that are not “known” should more correctly be
considered as putative false positive predictions. Nevertheless,
the number of predicted metabolites is enormous, so it is
crucial that metabolite prediction methods are able to rank
their predictions in a meaningful way.

To examine the ranking performance of GLORYx using the
combined rule set, we first used only the SoM probability to
score and rank the predicted metabolites, as described above.
This nonweighted scoring approach resulted in an AUC of
0.75 (Figure 2A), which was close to SyGMa’s AUC of 0.76.
Note that even though the sets of predicted metabolites are
different in this case, the ranking ability of each approach can
still be compared using the ROC curves and AUC. We then
applied the concept of weighting reaction rules that we first
developed for GLORY, namely applying a simple common vs
uncommon distinction between reaction types and generating
the priority score for a predicted metabolite by multiplying the
SoM probability by a factor corresponding to whether or not
the reaction that led to that particular predicted metabolite was
designated common (see ref 15 for details). The common−
uncommon designations of the reaction rules from GLORY
were used unchanged. Then we simply designated all of
SyGMa’s phase 1 reaction rules as uncommon, based on the
following logic: The CYP enzyme family is the most prevalent
enzyme family involved in phase 1 metabolism,4 SyGMa’s

Figure 2. Rank-based ROC curves for the evaluation of metabolite prediction performance on the reference data set. The ranks are calculated based
on the priority scores of the predicted metabolites for each parent molecule. (A) Comparison of GLORYx, which scores its predicted metabolites
based on predicted SoM probabilities, to SyGMa, which uses reaction probability scores, for phase 1 metabolite prediction. Weighted rules refer to
the weighting of the SoM probability-based score based on whether the reaction type is designated common or uncommon. (B) Comparison of the
ranking performance of GLORYx with different scoring approaches and rule sets as well as direct comparison to SyGMa’s performance, for phase 2
metabolite prediction. The scoring approach that is based on both SoM probability and reaction probability is achieved by a simple multiplication
of the two components. (C) Comparison of the ranking performance of GLORYx for combined prediction of metabolites for phases 1 and 2
metabolism, using different SoM prediction approaches to score the predicted metabolites. In both cases, the score is based on predicted SoM
probability with weighting according to reaction type, and the rule set is made up of the final phase 1 rule set (SyGMa and GLORY rules) and final
phase 2 rule set (SyGMa and GSH conjugation rules).

Table 2. Performance of GLORYx on Predicting Phase 1
Metabolites

GLORYx using reaction rules
from both SyGMa and

GLORY

GLORYx using
reaction rules from

SyGMa only

recall 0.84 0.72
precision 0.060 0.12
total number of
predictions

24,906 10,550

number of true
positive
predictions

1487 1262

AUC (rank-
based)

0.80 0.73
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phase 1 reaction rules contain rules for both CYP- and non-
CYP-mediated reactions, and our process of combining
duplicate predictions by keeping the highest score ensures
that any CYP rules from SyGMa that are also “common” rules
from GLORY will be in effect scored appropriately as being
“common”. The result of this weighting of the rule sets was a
jump in AUC to 0.80 (Figure 2A).
A similar trend in AUCs for GLORYx in terms of the

weighting approach is observed when the ROC curves are
calculated based on score rather than rank (Figure S2A). This
means that predicted metabolites are compared across different
parent molecules in the reference data set in terms of their
priority scores. Here, it is important to note that the original
publication of SyGMa implied that its score was only intended
to be used to compare likelihoods of predicted metabolites of
the same parent molecule, and the evaluation in that
publication only considered the ranking per parent molecule.10

This consideration should be kept in mind when viewing all
score-based ROC curves for SyGMa throughout this manu-
script, which are included for the sake of completeness,
especially since the score-based ROC curves for GLORYx tend
to yield a higher AUC than the rank-based curves, yet the
opposite is true for SyGMa (Figure S2 and Figure 2).
It is also relevant to note that the phase 1 subset of our

reference data set is heavily biased toward CYP-mediated
metabolism, with over 90% of the metabolites in the data set
being CYP metabolites (Table 1). Although CYPs are widely
considered the most relevant enzyme family for phase 1 human
xenobiotic metabolism, the available data are perhaps even
more skewed toward CYP data than would be realistic in
humans. Due to the composition of this phase 1 reference data
set, it is reasonable that the addition of the CYP-specific rules
from GLORY leads to improved performance.
Phase 2 Metabolism. For phase 2 metabolite structure

prediction, we again examined the question of how scoring the
predicted metabolites based on the SoM probability predicted
by FAME 3 compares to SyGMa’s scoring approach. Similarly
to the phase 1 protocol, the initial comparison was carried out
using only the phase 2 reaction rules from SyGMa, along with
the general phase 2 SoM prediction model from FAME 3
(model P2), and scoring the predicted metabolites using only
the SoM probability predicted by the SoM model. This
comparison showed a large difference in ranking performance
between SyGMa and our approach (Figure 2B). SyGMa
achieved an AUC of 0.85, while our approach, which used the
SoM probabilities predicted by the FAME 3 P2 model to rank
the predicted metabolites, achieved an AUC of only 0.67.
It therefore appears that SoM probabilities are a surprisingly

poor indication of the likelihood of phase 2 metabolism
occurring. We know, however, that FAME 3 predicts SoMs
corresponding to phase 2 metabolic reactions very well (AUC
of 0.97 on a holdout data set consisting of 157 randomly
selected compounds with a total of 3476 annotated atoms).17

The reason for this discrepancy is that multiple predicted
metabolites, corresponding to different reaction types, receive
the same score because they correspond to the same predicted
SoM. Phase 2 metabolic reactions are more specific in terms of
functional groups at which they can occur than, for example,
CYP-mediated reactions, which makes it easier to predict
SoMs but more difficult to predict which reaction type would
be more likely to actually occur at a given location. To
illustrate this point, consider the case of a hydroxyl group. A
hydroxyl group that is a phase 2 SoM could be glucuronidated,

sulfated, methylated, or phosphorylated. Another difficult case
would be an amine group, which, if it is a phase 2 SoM, could
be glucuronidated or N-acetylated. These observations
combined with the poor ranking performance indicate that,
so far, GLORYx struggles to discriminate between phase 2
reaction types.
In light of this observation and to further investigate the

relationship between the predictive capabilities of SoM
probabilities and reaction probabilities, we attempted to
combine the two scores, since in theory both the SoM and
the likelihood of a particular reaction rule compared to other
reaction rules that could be applied at a given location are both
relevant to the likelihood of the predicted metabolite. We tried
two combination approaches: multiplying the reaction
probability with the SoM probability and calculating a
weighted average. Despite trying various weights (Table S4),
a combination score was unable to do better than SyGMa’s
reaction probability-based scoring approach alone at ranking
the predictions. In addition, by varying the weights, it became
clear that the more highly the predicted SoM probability was
weighted compared to the reaction probability, the worse the
ranking performance was (Table S4). The weighted average
score combination, using weights up to 10:1, achieved a
maximum rank-based AUC of 0.83 (Table S4), whereas
multiplying the SoM probability by the reaction probability
resulted in a rank-based AUC of 0.85 (Table S4, Figure 2B),
which is the same as for SyGMa’s reaction probability score
alone (however, the shape of the ROC curve is slightly
different). These results indicated that the SoM probabilities
predicted in this way could not compete with SyGMa’s
reaction probability scores when it comes to ranking
performance.
SyGMa’s good ranking performance was to be expected, for

the same reasons discussed in the above section on phase 1
metabolism regarding the use of the Metabolite database to
develop SyGMa’s reaction probability scores. Meanwhile, the
poor showing by the SoM probability scoring approach
indicates that reactivity is not sufficient to discriminate
between the different types of phase 2 reactions, especially
not when compared to the data-derived likelihoods of each
reaction type. We therefore examined how we could use SoM
prediction to achieve a distinction between different reaction
types without resorting to precomputed occurrence ratios for
the reaction rules.

Phase 2 Metabolism: Reaction Type-Specific SoM
Prediction Models. In order to attempt to better predict
which reaction type would be more likely at a given SoM,
without using SyGMa’s reaction probabilities, we developed
FAME 3 reaction type-specific SoM prediction models that
roughly correspond to the five main phase 2 enzyme families:
UGTs, GSTs, SULTs, MTs, and NATs. These models were
created using the same training protocol as for the previously
published FAME 3 models. Each model was trained on only a
subset of the FAME 3 data set, whereby the subsets were
selected based on the reaction class annotation in the
MetaQSAR database. The reaction classes and the number
of molecules used to train each model are provided in Table
S3. The 10-fold cross-validation performance of these models
was high across the board, with average AUCs all above 0.95
and the average percentage of molecules in which a correct
SoM was predicted among the top two atom positions with the
highest SoM probabilities (top 2 metric) all above 0.87 (Table
3), despite the relatively small number of molecules used for
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training in each case. Note, however, that these models are
trained on atoms, not molecules, so the number of training
instances (although not entirely independent from each other)
is much larger than the number of molecules.
Because these reaction type-specific SoM models were each

trained on only a subset of the molecules that were used to
train the general phase 2 SoM model, not all atom types (i.e.,
Sybyl atom types) were represented in the training data for
each individual model, which can then not make predictions
for molecules containing these unrepresented atom types.
Therefore, these individual reaction type-specific SoM models
were used to overrule the predicted SoM probabilities from the
general P2 model for the molecules to which they apply rather
than as a complete substitute for the general model.
There are a few phase 2 reaction rules in SyGMa that do not

correspond to any of the five main phase 2 enzyme families.
These rules are simply designated “uncommon”, while all other
phase 2 reaction rules are designated “common”, and the
general P2 SoM prediction model is always used to score the
products of these uncommon reaction rules.
The general P2 model is also used to score the predicted

metabolites corresponding to the individual reaction type-
specific SoM models that can not make predictions for a given
input molecule. For example, if the SoM model for sulfonation

reactions could not make predictions, the predicted metabo-
lites resulting from sulfonation reaction rules are scored using
the predicted SoM probabilities from the general P2 model. An
illustration of the workflow for predicting phase 2 metabolites
using the reaction type-specific SoM models for scoring is
shown in Figure 3.
In this way, the same metabolites are predicted as if only the

general P2 model was used, but the reaction type-specific
scoring approach results in different ranks of the metabolites
and, perhaps most importantly, a drastic reduction in the
number of tied ranks for predicted metabolites of a single
parent molecule.
Using the individual reaction type-specific phase 2 SoM

models to score the predicted metabolites resulted in a large
improvement in the ranking, with an AUC of 0.77 compared to
an AUC of 0.67 using the general P2 model (Figure 2B) and
only the reaction rules sourced from SyGMa for comparison.
Similarly, the score-based AUC increased from 0.66 to 0.79
upon implementation of the reaction type-specific SoM models
(Figure S2). Unfortunately, even using the reaction type-
specific SoM prediction models resulted in a ranking
performance that was worse than SyGMa’s (AUC of 0.77
compared to 0.85, respectively). However, as discussed for
phase 1 metabolism above, SyGMa’s approach has the
advantage of having derived its scoring approach directly
based on, in effect, all available metabolism data from a
comprehensive but not freely available database. Meanwhile,
the difficulty of using SoM prediction for phase 2 metabolism
appears to be that there are relatively few potential SoMs, but
that the atom environments may not be specific enough to
differentiate between different types of reactions.
Based on these results, we therefore use the individual

reaction type-specific phase 2 SoM models to score the phase 2
metabolites predicted in all subsequent sections of this
manuscript.

Table 3. Average SoM Prediction Performance of the
FAME 3 Reaction Class-Specific Models During Cross-
Validation

reaction class average top 2 average AUC

glucuronidations and glycosylations 0.957 0.988
GSH and RSHa conjugations 0.874 0.950
sulfonations 0.966 0.992
methylations 0.877 0.968
acetylations and acylations 0.956 0.992

aRSH = protein thiol.

Figure 3. Workflow of phase 2 metabolite prediction using reaction type-specific SoM models to score and rank the predicted metabolites. The
reaction type-specific SoM models (“UGT”, “GST”, “SULT”, “NAT”, “MT”) are used instead of the general phase 2 SoM model (P2) to score the
products of the relevant reactions for all molecules in which all of the reaction type-specific models are able to make a prediction. The green arrows
indicate the molecules that were predicted successfully by the relevant reaction type-specific SoM model. If one or more of the reaction type-
specific models cannot make predictions for a given molecule, then that molecule additionally follows the path of the black arrows, followed by a
deduplication of predictions. The “UGT” model covers glucuronidation and glycosylation reactions, the “GST” model covers GSH and RSH
conjugations, the “SULT” model covers sulfonations, the “NAT” model covers acetylations and acylations, and the “MT” model covers methylation
reactions. The “other phase 2 rules” refer to the rules that are neither glucuronidation, GSH conjugation, sulfonation, acetylation, or methylation
rules.
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Phase 2 Metabolism: Addition of GSH Conjugation
Reaction Rules. We found that the reaction rules sourced
from SyGMa do not contain any GSH conjugation reactions,
which correspond to the GST enzyme family, one of the five
main enzyme families for phase 2 xenobiotic metabolism. We
therefore developed a set of GSH conjugation reaction rules
based on descriptions of GSH conjugation metabolic reactions
in the scientific literature. This resulted in nine new reaction
rules.
When only the reaction rules sourced from SyGMa were

implemented, GLORYx achieved a recall of 0.78 and a
precision of 0.21 (Table 4). When the new GSH conjugation

reaction rules were added, GLORYx achieved a recall of 0.80
with the same precision, because only 141 more metabolites
were predicted in total (Table 4). Though we do not see a very
large improvement in performance on the reference data set
after adding these GSH conjugation reaction rules to GLORYx,
we believe that this addition is actually meaningful for the
purpose of metabolite structure prediction in the real world,
because GSTs are actually the second most relevant phase 2
enzyme family for xenobiotic metabolism in terms of number
of metabolites formed.4

As was expected based on the relatively low number of GST-
mediated metabolites in the reference data set (Table 1), the
ranking performance remained similar upon the addition of
GSH conjugation reaction rules (AUC of 0.77 and 0.78,
respectively; Figure 2B). This comparable performance seems
to suggest that the products of the new GSH conjugation
reaction rules are scored in a meaningful way based on the
corresponding reaction type-specific SoM prediction model.
Combined Phase 1 and Phase 2. A general use case of

predicting “all” possible metabolites at once was also
considered. FAME 3 provides one model, “P1 + P2”, that
predicts all SoMs from both phases of metabolism. For this use
case, we therefore examined whether it makes sense to use the
P1 + P2 FAME 3 model’s predictions to score the predicted
metabolites or to use the separate models, as determined
separately for phase 1 and phase 2 (see sections Phase 1
Metabolism and Phase 2 Metabolism), and combine the
predictions. The predicted metabolite structures are the same
in both cases; what changes is their scores, since those are
based on the predicted SoM probabilities.
Using separate SoM prediction models for the two phases

did provide a slight advantage in terms of the ranking
performance, with an improvement in AUC from 0.78 to 0.80
compared to using the P1 + P2 SoM model, as shown in
Figure 2C. An improvement of the same amount is seen in the
AUCs of the score-based ROC curves (AUC increased from
0.79 to 0.81; Figure S2C). Although this advantage appears

small at first glance, it is important to recall the composition of
the reference data set. This data set contains more than twice
as much phase 1 data as phase 2 data, in terms of number of
known metabolites, which may cause the benefit of using
separate SoM prediction models for the two phases to be
underrepresented by this analysis. Based on these consid-
erations along with the ROC curves, we conclude that the
multimodel approach should be used for optimal performance,
and we use this approach in the validation on the test data set
(see section Performance on a Manually Curated Test Data
Set).

Performance on a Manually Curated Test Data Set.
The performance of the final version of GLORYx was
evaluated on a manually curated test data set consisting of
37 parent molecules that were among the top 100 best-selling
drugs in 2018. For these parent molecules, the data set
contains a total of 136 first-generation metabolites, which
equates to an average of 3.7 known metabolites per parent
molecule. This test data set does not contain enzyme or
metabolism phase annotations, so the evaluation was carried
out from the perspective of predicting all possible metabolites,
from both phase 1 and phase 2 metabolism.
GLORYx was able to predict 77% of the known metabolites

in the test data set, which is higher than SyGMa’s recall of 68%
(Table 5). In conjunction with this higher recall, GLORYx had

a lower precision than SyGMa (0.061 compared to 0.12,
respectively), which is unsurprising given that GLORYx
contains many more reaction rules than SyGMa due to the
addition of the CYP metabolism rules from GLORY and the
new GSH conjugation rules. The total number of metabolites
predicted by GLORYx was nearly double the number
predicted by SyGMa. However, SyGMa’s precision of 0.12
was also very low, due to a relatively large number of
predictions (800 total). Another potential contribution to the
low precision of both tools is that experimentally determined
metabolites whose structures have not been fully defined were
not included in the test data set. It is possible that this aspect of
the data set has an effect on the number of false positive
predictions, which would have an effect on the precision as
well.
The relatively large number of predictions made by both

SyGMa and GLORYx is a general problem that is shared by all
available metabolite structure prediction approaches.48 This
phenomenon clearly underlines the need to have a meaningful
way to rank the predicted metabolites. In our case in particular,
neither SyGMa nor GLORYx has sufficiently high precision to
be used without ranking the predicted metabolites.
In terms of the ability to rank the predicted metabolites,

GLORYx showed better performance than SyGMa, as
indicated by the ROC curves shown in Figure 4. The AUC
of the rank-based ROC curve was 0.79, compared to 0.74 for

Table 4. Performance of GLORYx on Predicting Phase 2
Metabolites

GLORYx using
SyGMa rules only

GLORYx using SyGMa rules
plus GSH conjugation rules

recall 0.78 0.80
precision 0.21 0.21
total number of
predictions

2509 2650

number of true
positive
predictions

539 555

AUC (rank-based) 0.77 0.78

Table 5. Performance of GLORYx and SyGMa on the Test
Data Set of 37 Parent Compounds and Their 136
Metabolites

GLORYx SyGMa

recall 0.77 0.68
precision 0.061 0.12
total number of predictions 1724 800
number of true positives (out of 136) 105 93
AUC (rank-based) 0.79 0.74
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SyGMa. In addition, GLORYx’s priority score seems to be a
meaningful score in and of itself, not just for ranking the
predictions for individual parent molecules separately, because
the ROC curve and AUC were actually slightly better using the
score than they were using the rank (0.81 compared to 0.79,
respectively; Figure 4). For SyGMa, the AUC of the score-
based approach was also higher than that of the rank-based
approach (0.77 compared to 0.74); however, it is important to
note that SyGMa’s score was most likely not intended to be
used to compare predicted metabolites from different parent
compounds (see section Phase 1 Metabolism: Combination of
Reaction Rules from SyGMa and GLORY).
To get an idea of the variability in the ranking performance

on the test data set, we calculated the AUCs while
systematically removing one parent molecule at a time from
the data set. This resulted in 37 different AUCs for each tool
and AUC type (rank-based or score-based), which are plotted
in Figure S3. From this analysis, we observed a similar amount
of variability in the AUCs between the two tools with the
different metrics (score based and rank based). In all cases, the
median AUCs from this analysis were within 0.01 of the AUCs
reported in Figure 4. From the outliers observed in Figure S3,
we learn that two to three molecules are particularly
challenging for each tool. In the case of GLORYx, the two
outliers correspond to having excluded everolimus (the
furthest outlier) and budesonide for both the score-based
and rank-based AUCs. For SyGMa, the furthest outlier is also
caused by the exclusion of everolimus, while the second-
furthest outlier corresponds to having excluded darunavir.
Everolimus is a macrocycle with 12 known metabolites in the
test data set, while budesonide and darunavir each have 6
known metabolites.
Overall, a clear difference in performance is observed

between the two tools, with GLORYx outperforming SyGMa
in both cases. The improvement in ranking performance seems
to indicate that combining predicted SoM probabilities with
reaction rules to score the predicted metabolites, whereby the
SoM model and the reaction rules correspond to the same
type(s) of reactions, provides very valuable information. This
approach also has the benefit of not relying on reaction rule
occurrence ratios based on existing metabolism data to score

and rank the predictions. Our reference data set was used to
measure performance during development but was not used to
develop reaction rules or calculate occurrence ratios. This
difference could potentially make GLORYx more flexible with
regard to never-before-seen input molecules.

■ CONCLUSION

GLORYx is a new tool for predicting the structures of
metabolites formed by both phase 1 and phase 2 metabolic
reactions in humans. The tool utilizes FAME 3 to predict, for
all atom positions in a molecule, the likelihood of a
biotransformation to take place at this position and, based
on these predictions, applies a set of reaction rules to generate
and rank likely metabolites.
In conjunction with a high recall of known metabolites (77%

on the test data set), GLORYx ranked the predicted
metabolites with an AUC of 0.79 on the manually curated
test data set. This recall and ranking performance is better than
we observed for the established, freely available tool SyGMa on
the same data set. However, when considering only phase 2
metabolite prediction, SyGMa’s ranking performance was
better than that of GLORYx.
We have observed that it is difficult to predict phase 2

metabolites, that is, difficult to rank the predicted metabolites
in a meaningful way, based on predicted SoM probabilities
despite high performance of the SoM prediction models
themselves. We have concluded that the cause of this difficulty
is that reactivity is an insufficient metric for determining which
type of conjugation reaction would be more likely to occur at a
particular atom position. We were able to mitigate this
problem substantially by using individual reaction type-specific
SoM prediction models corresponding roughly to the five main
phase 2 enzyme families.
During each run of GLORYx, the algorithm generates and

ranks one generation of metabolites based on the parent
compound(s) provided. Users may of course provide
(predicted) metabolites as input to GLORYx, hence enabling
multigeneration metabolite prediction.
Given the scarcity of the available high-quality data on small-

molecule metabolism, it is difficult to provide a robust
definition of the applicability domain of GLORYx. However,

Figure 4. ROC curves for GLORYx and SyGMa representing ranking performance on the test set based on the (A) ranks and (B) scores of the
predicted metabolites.
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we know from thorough analyses of FAME 3 that the
metabolic properties of the atoms in a molecule are first and
foremost determined by the proximate atom environment, and
these environments are much more redundant across the
chemical space than the overall (global) structure of molecules.
Considering also that the reaction rules implemented in
GLORYx are based on only a few connected atoms, GLORYx
is expected to provide reliable results for a wide range of
synthetic compounds and natural products alike.
GLORYx is freely available as a web server at https://nerdd.

zbh.uni-hamburg.de/ and is also provided as a software
package upon request. Note that GLORYx should be
considered an extension of GLORY rather than a replacement.
Hence both tools are available on the Web site, to enable users
to choose between CYP-specific metabolite structure pre-
diction with GLORY and comprehensive phase 1 and phase 2
metabolite structure prediction with GLORYx.
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Sciences, Universitaẗ Hamburg, 20146 Hamburg, Germany;
orcid.org/0000-0003-2667-5877; Phone: +43 1-4277-

55104; Email: johannes.kirchmair@univie.ac.at

Authors
Christina de Bruyn Kops − Center for Bioinformatics (ZBH),
Department of Informatics, Faculty of Mathematics, Informatics
and Natural Sciences, Universitaẗ Hamburg, 20146 Hamburg,
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