Skip to main content
. 2021 Jan 5;4(1):179–192. doi: 10.1021/acsptsci.0c00166

Table 3. Validation of Oleocanthal-Derived Compounds at 37 °C for 2 h.

A. Mean (±SD) Linear Regression Equations of the Two Formed Compounds
biological matrix calibration range (μg/mL) compound equation R2
Culture medium 5–200 Oleoglycine y = 672 (±3)x + 278 (±67) 0.9992
  5–200 Tyrosol acetate y = 739.21 (±8)x – 1771 (±200) 0.9955
Mouse plasma 1.25–100 Oleoglycine y = 1333 (±62)x – 894 (±13) 0.9951
  1.25–100 Tyrosol acetate y = 1004 (±109)x – 863 (±332) 0.9942
Mouse brain 1.25–50 Oleoglycine y = 716 (±15)x – 868 (±119) 0.9984
Homogenate 1.25–50 Tyrosol acetate y = 3781 (±32)x + 72 (±87) 0.9948
B. Intra- and Interday Precision Presented as Coefficient of Variation (CV%, n = 5/concentration)
  intraday precision (CV %)
interday precision (CV%)
oleocanthal concentration (μg/mL) oleoglycine tyrosol acetate oleoglycine tyrosol acetate
Culture medium
2.5 7.0 4.4 10.4 12.7
5 8.0 6.7 5.2 1.4
100 2.1 3.6 4.4 0.3
Mouse plasma
5 9.4 3.1 0.1 4.0
25 9.9 3.2 7.7 4.7
50 3.9 6.5 8.8 3.4
C. Freeze and Thaw Stability of Oleocanthal (n = 4/Concentration) Presented as % Difference to Freshly Prepared Samples
  culture medium (%)
mouse plasma (%)
oleocanthal concentration (μg/mL) oleoglycine tyrosol acetate oleoglycine tyrosol acetate
2.5 84.5 87.9 113.0 103.0
25 107.9 94.4 97.1 90.5
50 98.5 104.7 111.4 97.7