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Abstract

Background—Given the prevalence of gait dysfunction following stroke, walking recovery is a 

primary goal of rehabilitation. However, current gait rehabilitation approaches fail to demonstrate 

consistent benefits. Gait asymmetry, prevalent among stroke survivors who regain the ability to 

walk, is associated with an increased energy cost of walking and is a significant predictor of falls 

post-stroke. Furthermore, differential patterns of gait asymmetry may respond differently to gait 

training parameters.

Research question—The purpose of this study was to determine whether differential responses 

to locomotor task condition occur on the basis of step length asymmetry pattern (Symmetrical, 

NPshort, Pshort) observed during overground walking.

Methods—Participants first walked overground at their self-selected walking speed. Overground 

data were compared against three task conditions all tested during treadmill walking: self-selected 

speed with 0% body weight support (TM); self-selected speed with 30% body weight support 

(BWS); and fastest comfortable speed with 30% body weight support and nonparetic leg guidance 

(GuidanceNP). Our primary metrics were: symmetry indices of step length, stride length, and 

single limb support duration.
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Results—We identified differences in the response to locomotor task conditions for each step 

length asymmetry subgroup. GuidanceNP induced an acute spatial symmetry only in the NPshort 

group and temporal symmetry in the Symmetrical and Pshort groups. Importantly, we found the 

TM and BWS conditions were insufficient to impact either spatial or temporal gait symmetry.

Significance—Task conditions consistent with locomotor training do not produce uniform 

effects across subpatterns of gait asymmetry. We identified differential responses to locomotor task 

conditions between groups with distinct asymmetry patterns, suggesting these subgroups may 

require unique intervention strategies. Despite group differences in asymmetry characteristics, 

improvements in symmetry noted in each group were driven by changes in both the paretic and 

nonparetic limbs.
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Introduction

Walking recovery is among the top rehabilitation goals of stroke survivors.1 Regrettably, 

only 50% of stroke survivors undergoing gait rehabilitation demonstrate walking 

improvements.2 While nearly 80% of stroke survivors regain walking ability3, roughly half 

experience persistent gait asymmetry4 which is associated with increased energy cost and is 

a significant predictor of post-stroke falls.5,6 Gait asymmetries can be quantified in 

numerous ways, generally falling into two broad categories: spatial and temporal.4,7-9 

Spatial asymmetries are commonly quantified by relating step length of the paretic leg to the 

nonparetic, whereas temporal asymmetries quantify the relationship of swing or single-limb-

support time (SLS) between legs.4,10

While gait asymmetry following stroke is broadly recognized, the best approach for its 

remediation remains unknown.8,11,12 Compounding this issue, different patterns of gait 

asymmetry exist among stroke survivors (e.g., shorter paretic step length/time, shorter 

nonparetic step length/time, symmetrical step lengths/time).4,7,10,13 Yet, the majority of 

work arguing for interventions to reduce gait asymmetry ignores the asymmetry pattern, 

reporting instead only asymmetry magnitude4,14 which limits the interpretative power of a 

finding of reduced asymmetry.

Task-specific interventions have become the favored means to facilitate neuromotor recovery 

following stroke.15,16 Locomotor training (LT) is one example of a task-specific intervention 

founded in the rationale that applying appropriate sensory inputs* drives motor recovery. 

These sensory inputs are arguably facilitated using a permissive environment† which 

typically includes: a treadmill, partial body weight support (BWS), and manual assistance.15 

However, speed-based study results regarding the benefits of LT are equivocal.2,14,17

*The sensory inputs considered requisite to locomotor training efficacy include: 1) afferent stimuli from limb loading, 2) proper trunk 
alignment and upright orientation relative to gravity, 3) hip extension, 4) appropriate walking speed, and 5) phasic timing of loading/
unloading cycles during walking.16
†Prior work revealed adequate body weight support can facilitate locomotor pattern expression in individuals with neurologic injuries, 
manifested as normalization of muscle activity timing, improved trunk and knee kinematics during loading, and improved 
spatiotemporal characteristics.
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Failure to demonstrate consistent effects of LT may result because the paradigm was not 

explicitly designed to remediate gait asymmetry. Indeed, recent work demonstrating 

meaningful improvements in gait symmetry has occurred through error-augmentation, that is 

by forcing participants to adjust to a split-belt treadmill environment that exacerbates 

asymmetry.18 However, error-augmentation was no better than error-minimizing techniques 

in restoring gait symmetry during overground walking.19 LT, arguably an error-minimizing 

technique, aims to normalize gait parameters throughout training. While the intent of the 

guidance provided during LT is to normalize the gait pattern, it is delivered through 

coordinated effort between patient and trainer(s) and consequently may fall short of the 

intended goal. Furthermore, the biomechanical effect during implementation of LT may not 

be straightforward. Without detailed measurements, the actual biomechanical effects of LT 

remain unknown.

Studies that categorize the pattern of gait asymmetry are often dominated by one asymmetry 

pattern, a shorter nonparetic step.12,18 However, shorter paretic, relative to nonparetic, step 

lengths are also noted, as are minimally detectable asymmetries. Grouped together these 

variations can complicate interpretation of data from a heterogenous sample.7 Importantly, 

individuals with different gait asymmetry patterns might respond differently to treatment, 

thus positive, or desired, effects can be obscured when combined with absent or negative 

responses. Therefore, there is a need to understand how people with different asymmetry 

patterns respond acutely to LT parameters.

Here we studied how the three key components of LT influence the biomechanics of gait 

post-stroke and whether these differ by spatial asymmetry pattern. We aimed to determine 

how task condition including: treadmill walking (TM), BWS, and manual guidance of the 

nonparetic limb (GuidanceNP) influences the spatiotemporal parameters of walking post-

stroke. To determine the effects of task condition on spatial and temporal asymmetry, we 

investigated these changes relative to three spatial asymmetry patterns: 1) symmetrical step 

lengths (Symmetrical), 2) shorter paretic step length than nonparetic (Pshort), and 3) shorter 

nonparetic step length than paretic (NPshort). We hypothesized: i) the TM and BWS 

conditions would be insufficient to influence spatial or temporal symmetry and ii) the 

GuidanceNP condition would induce spatial and temporal symmetry in the NPshort group, yet 

would be unable to induce symmetry improvements in the Pshort group.

Methods

Participants

We studied 39 individuals with chronic (>6mo), post-stroke hemiparesis, able to walk 

independently at least 10 meters with an ankle foot orthosis (AFO) or assistive device. We 

excluded participants who demonstrated: severe perceptual or cognitive deficits, significant 

lower extremity contractures or joint pain, cardiovascular impairments contraindicative of 

walking, body weight >300 pounds, pathological fracture, or profound sensory deficits. The 

University of Florida Institutional Review Board (IRB-01 #160-2008) approved all 

procedures described herein; all participants provided written informed consent prior to 

participation.
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Session 1

Clinical metrics—To quantify motor impairment, gait, and balance function we assessed 

the: synergy subscale of the Lower Extremity Fugl-Meyer (LE FM),20 Dynamic Gait Index 

(DGI),21 and Berg Balance Score (BBS),22 respectively.

Overground Walking—During overground walking (OG) all participants wore walking 

shoes and were permitted to use an assistive device if needed (n= 3), but not an AFO. If 

needed, an aircast (DJO, Vista, CA) was used for medial-lateral ankle stability (n=5). 

Participants were instructed to walk at their comfortable speed, “as if they were taking a 

walk through the park,” and walked twice over a GAITRite® Electronic Walkway (CIR 

Systems Inc., Sparta, NJ); data were averaged to obtain self-selected walking speed. The 

following measures were extracted: step length, stride length, SLS percent (SLS%), and gait 

speed.

Step Length Asymmetry Categorization—To determine the presence and pattern of 

step length asymmetry during overground walking, we calculated a paretic step ratio (PSR) 

which quantifies the proportional contribution of the paretic step to the stride length.13 We 

categorized our sample according to overground PSR values as follows: 1) symmetrical step 
lengths (Symmetrical; 0.475 ≤ PSR ≤ 0.525), 2) paretic step length shorter than nonparetic 
(Pshort; PSR < 0.475), and 3) nonparetic step length shorter than paretic (NPshort; PSR > 

0.525).7

Temporal Asymmetry Quantification—To investigate the effects of task condition on 

temporal asymmetry, we calculated a temporal symmetry index (TSI) similar to our PSR 

calculation used for spatial symmetry with the following equation: TSI =SLS%paretic / (SLS

%paretic + SLS%nonparetic), where SLS%paretic and SLS%nonparetic are the portions of the gait 

cycle spent in SLS on the paretic and nonparetic limbs, respectively. Consistent with our 

spatial asymmetry designation, we used a TSI range of 0.475-0.525 to represent temporal 

symmetry.7

Familiarization: Locomotor Task Conditions

To become familiar with the LT paradigm, each participant walked on the treadmill for three 

conditions: self-selected speed with 0% BWS (TM; Therastride, St. Louis MO); self-

selected speed with 30% BWS; and fastest comfortable speed with 30% BWS and 
nonparetic leg guidance (GuidanceNP). We provided nonparetic foot guidance‡ during swing 

to promote increased step length, normalize step timing, and mitigate the exaggerated 

influence of the nonparetic over the paretic leg during bilateral locomotor-related tasks.16,23 

Each participant performed up to three 5-minute bouts, resting between bouts. Blood 

pressure and heart rate were assessed prior to activity initiation and monitored throughout 

the session if the participant became symptomatic.

‡Hand placement was on the dorsum of the nonparetic foot. All trainers were taught the guidance procedure by a licensed physical 
therapist proficient in locomotor training prior to the initiation of the study. Manual assistance was provided by the same trainer for all 
trials of each participant.
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Session 2

Instrumented gait data including kinematics and kinetics were acquired using 12 infrared 

cameras (Vicon MX, Vicon Motion Systems Ltd., Oxford, UK; sf: 200Hz) and a modified 

Helen Hayes marker set (41 single markers, 11 rigid clusters) as participants walked on an 

instrumented split-belt treadmill (Bertec, Columbus, OH) while wearing a modified 

climbing harness (Robertson Mountaineering, Henderson, NV).

Experimental Testing—The three treadmill walking conditions, TM, BWS, and 

GuidanceNP, were tested in random order. Data were collected for as long as the participant 

could tolerate walking, up to a maximum of 40 seconds. To isolate effects of TM, BWS, and 

GuidanceNP, neither handrail hold nor AD/AFO’s were permitted during data collection. As 

with overground walking, an aircast was provided to control ankle instability if necessary.

Data Processing—Marker data were reduced using Vicon Nexus (Vicon Motion Systems 

Ltd., Version 1.6.1, Oxford, UK), modeled and filtered in Visual 3D (C-Motion, Version 

4.82.0, Germantown, MD), and processed with custom Matlab (The MathWorks, Version 

7.7.0 R2008b, Natick, MA) scripts to extract parameters for comparison with those obtained 

overground. We calculated spatial and temporal measures using marker and vertical ground 

reaction force data, respectively. Heel marker and ground reaction force data were filtered 

with a 4th order bi-directional Butterworth lowpass filter (6Hz and 10Hz cutoff, 

respectively).

Statistical Analysis—Participant characteristics are detailed in Table 1. Demographics 

were analyzed for differences between step length asymmetry groups (i.e., Symmetrical, 

Pshort, NPshort) using α= 0.05. We used the Chi-Square test to determine if differences in sex 

or side of paresis existed among groups. Since data were not normally-distributed, we used 

separate Kruskal-Wallis tests to assess for differences in age and stroke chronicity.

The spatial symmetry index, PSR, was the primary outcome. Secondary outcomes included: 

stride length and TSI. Each variable was tested for normality. Separate 1-way ANCOVAs 

were performed on PSR, stride length, and TSI to determine the effect of experimental 

condition (OG, TM, BWS, GuidanceNP) for each asymmetry category. Gait speed was used 

as a covariate and retained in the respective model when significant. In total we performed 9 

ANCOVAs. To correct for multiple comparisons, we utilized the Holm-Bonferroni method 

with a target α=0.05 to adjust α-levels for all variables.24 We used Tukey’s HSD to isolate 

differences when effects were detected. The α-level applied for each model was carried 

through and used for the respective post hoc analyses. All statistical tests were performed 

with JMP® Pro (SAS Institute Inc. Version 14.0.0, Cary, NC) software.

Results

Overview

All participants (age: 61.3±11.4 yrs; 29 male; chronicity: 68.4±61.7 mo) experienced a 

single, monohemispheric stroke (confirmed with neuroimaging). The three asymmetry 

groups did not differ in demographic characteristics or clinical assessment of functional 
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status (Table 1; all p’s>0.05). However, patterns of response to the experimental conditions 

differed for each asymmetry subgroup (Table 2).

For spatial symmetry, gait speed was not a significant covariate for any group (all 

p’s>0.006). For temporal symmetry, gait speed was a significant covariate for the 

Symmetrical (p=0.0002), but not the Pshort (p=0.28) or NPshort (p=0.0061) groups. Stride 

length co-varied with gait speed for all groups (all p’s<0.0001).

Symmetrical step lengths (Symmetrical)

The Symmetrical group (n=17) was characterized by equivalent paretic (0.50±0.09m) and 

nonparetic (0.50±0.08) step lengths (PSR: 0.50 ± 0.01) while walking overground. We 

identified significant effects of Experimental Condition for spatial (p=0.0019) and temporal 

symmetry (p=0.0012). Step lengths were similar for the OG, TM, and BWS conditions while 

the nonparetic step length was longer during the GuidanceNP condition (Figure 1a,b). During 

GuidanceNP relatively longer nonparetic step length (0.52±0.1m) was achieved 

simultaneously with a reduction of paretic (0.43±0.15m) step length (Figure 1b). Although 

the Symmetrical group participants exhibited spatial symmetry when walking overground, 

they revealed temporal asymmetry with a significantly reduced paretic (26±6%) relative to 

nonparetic (37±5%) SLS%. Temporal asymmetry was noted during walking in the TM and 

BWS conditions (Figure 1c); however, GuidanceNP induced temporal symmetry by 

increasing paretic (∆: 5%) and decreasing nonparetic (∆: 5%) SLS% concurrently (Figure 

1d). Stride lengths achieved OG were reduced in the BWS and TM conditions but restored 

with the GuidanceNP condition (p=0.003; Figure 2).

Paretic step length shorter than nonparetic (Pshort)

The Pshort group (n=11) was characterized by a shorter paretic (0.34±0.12m) than nonparetic 

(0.47±0.11m) step length (PSR: 0.41 ± 0.05) while walking OG. For spatial symmetry no 

significant effect of Experimental Condition (p=0.27) was revealed; the shorter paretic step 

was consistent across conditions (Figure 3a,b). We identified a significant Experimental 

Condition effect for stride length (p=0.005); BWS produced stride lengths similar to OG 

while the TM and GuidanceNP conditions produced shorter stride lengths than OG. 

Experimental Condition tended to affect temporal symmetry (p=0.012) though this effect 

failed to reach statistical significance. Of note, the median symmetry index for SLS% fell 

within the range of symmetry for the GuidanceNP condition (Figure 3c). During 

GuidanceNP, we observed a concurrent decrease in nonparetic (∆: 5%) and increase in 

paretic (∆: 5%) SLS% (Figure 3d).

Nonparetic step length shorter than paretic (NPshort)

The NPshort group (n=11) walked with shorter nonparetic (0.37±0.01m) than paretic step 

(0.49±0.08m) lengths (PSR: 0.58 ± 0.05) overground. Experimental Condition tended to 

affect spatial symmetry (p=0.024). Spatial asymmetry noted OG persisted in the TM and 

BWS conditions, but GuidanceNP produced symmetric step lengths in the NPshort group 

(Figure 4a) by increasing the nonparetic step length (∆: 0.11m; Figure 4b), though these 

changes failed to reach statistical significance given the adjusted α-level. We did not identify 

a significant effect of Experimental Condition on temporal symmetry (p=0.12); paretic SLS
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% was consistently less than nonparetic across all walking conditions (Figure 4 c,d). 

Importantly, paretic SLS% increased from 23% to 28% between OG and GuidanceNP 

conditions.

Discussion

Here we investigated whether groups with different spatial asymmetry patterns responded 

differently to task conditions representing components of LT. Across groups we found 

responses in spatial and temporal symmetry differed by task condition. As hypothesized, TM 

and BWS failed to influence spatial or temporal symmetry. Further, we expected the 

GuidanceNP condition would: 1) improve spatial and temporal symmetry in the NPshort 

group, and 2) have no effect on symmetry in the Pshort group. While the GuidanceNP 

condition induced a somewhat positive effect on spatial symmetry in the NPshort group, 

temporal asymmetry remained unchanged. In contrast, the Pshort group showed subtle 

improvements in temporal, but not spatial symmetry, in response to GuidanceNP. 

Furthermore, while GuidanceNP induced temporal symmetry for the Symmetrical group, it 

simultaneously induced spatial asymmetry.

Effects induced by LT parameters

Each seemingly simple decision regarding LT parameters can influence the gait pattern. 

Indeed, prior work reported improved SLS symmetry simply by walking on a treadmill or 

using BWS.11,25,26 Our results contrast with these findings. However, the improved 

symmetry previously noted during treadmill walking occurred with simultaneous use of 

handrails11,25 and may, therefore, be an artefact of increased postural support available 

through the upper extremity rather than a direct response to a treadmill-induced perturbation.
26 Generally, we found the treadmill or BWS alone were insufficient to induce either spatial 

or temporal symmetry; GuidanceNP was more successful in inducing symmetry, although 

responses differed by asymmetry subgroup.

Effects in the context of asymmetry subgroups

The underlying premise that a single task-specific training approach would positively benefit 

a group with heterogeneous gait deficits limits opportunity to better understand the 

interaction between subgroup characteristics and treatment effects. Interestingly, in relatively 

homogenous samples – intentionally selected for short nonparetic relative to paretic step 

length, improved spatial symmetry was noted in response to each of two different training 

paradigms (i.e., split-belt training, unilateral step training).12,18 Similarly, GuidanceNP 

induced spatial symmetry in the NPshort group, despite failing to reach statistical 

significance. However, spatial symmetry was not achieved in other subgroups during the 

GuidanceNP condition.

Notably, achieving improved temporal symmetry appears more elusive.12,18 For example, 

Lewek reported improved temporal symmetry in an individual with spatial symmetry but 

temporal asymmetry; however, in an individual with both spatial and temporal asymmetries 

(NPshort per our definition), temporal asymmetry remained unchanged despite improvements 

in spatial symmetry.27 Though we did not investigate treatment response (i.e., repeated 
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session exposure), our findings align with prior work.12,18,27 However, GuidanceNP was, 

able to induce temporal symmetry acutely in the Symmetrical group.

Consistent with prior work, our data reveal it is possible to increase symmetry in one domain 

while simultaneously decreasing it in another.8 At present, we are unable to determine 

whether targeting improvements in spatial or temporal symmetry would lead to greater 

benefit. However, our data support the recommendation that interventions should be 

designed to address individual patient needs. Additional work is needed to understand the 

interaction between spatial and temporal gait symmetry following stroke.

Proposed mechanism of nonparetic guidance effect

Paretic limb motor impairments can be exaggerated by a counter-productive influence 

induced through volitional movement of the nonparetic leg during bilateral locomotor-

related tasks.23 Additionally, passive movement of the nonparetic limb can elicit task-

appropriate rhythmic activation pattern in the paretic limb.28 We therefore expected external 

nonparetic limb guidance to provide a more appropriate sensorimotor state and facilitate 

positive expression of paretic limb function. Indeed, we noted acute increases in both 

relative and absolute durations of paretic SLS in each of the three asymmetry groups 

(Figures 1,3,4; Table 2) during GuidanceNP.

Is targeting improved symmetry sufficient?

Improved gait symmetry is reported as an acute effect11,25 or a treatment outcome of gait-

related interventions.12,17,18,27 While an improved symmetry ratio might be interpreted as a 

positive effect, our results illustrate that symmetry ratios can be misleading. A change in 

symmetry ratio alone cannot elucidate the source of change, specifically, whether 

improvements result from changes in the paretic, nonparetic, or both limbs.17,25,27 Improved 

symmetry ratios alone are therefore insufficient to conclude a beneficial outcome has 

occurred. Indeed, individual leg data illustrate improved symmetry ratios are often achieved 

through a non-physiologic reduction from the nonparetic limb with minimal or no 

improvement noted in the paretic limb.11,12 Consistent with prior work, we observed a 

decrease in nonparetic SLS% on the TM (not tested explicitly; Table 2) across all groups.11 

While it could be argued this change produced improved symmetry through reduction of the 

between-leg difference11, changes induced on the TM did not achieve our definition of 

symmetry, neither did they approach physiologic durations of SLS in the paretic limb. Of 

note, our externally-guided condition, GuidanceNP, was the only experimental condition that 

restored SLS symmetry between legs. Restored temporal symmetry was observed only in the 

spatially symmetrical group. Furthermore, the change in SLS% symmetry during 

GuidanceNP was driven by concurrent changes in both legs: increased paretic and reduced 

nonparetic SLS. Notably, these changes were consistent with the gait pattern used by healthy 

controls walking on a treadmill, characterized by SLS duration of ~31-32% of the gait cycle.
29 We emphasize these observations were made acutely, in response to an experimental 

condition. The possibility that repeated sessions could produce larger and sustained changes 

in gait and the differential response by asymmetry group are worthy of further investigation.
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Conclusions

Commonly used rehabilitation interventions for gait dysfunction following stroke do not 

produce uniform effects. We identified differential acute responses to LT conditions between 

groups with disparate asymmetry patterns, suggesting these subgroups may benefit from 

distinct intervention strategies. Improvements in temporal symmetry in the Symmetrical 

group were noted to result from both limbs. Similarly, improvements in spatial symmetry 

noted in the NPshort group were driven by bilateral improvements, namely increased 

nonparetic step length combined with increased paretic SLS. By investigating individual 

limb effects, we were able to determine these changes in spatial and temporal symmetry 

resulted from desirable effects rather than compensatory mechanisms.
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Figure 1. Symmetrical step lengths (Symmetrical)
The Symmetrical group (n=17) was characterized by equivalent paretic and nonparetic step 

lengths while walking overground. (a) Spatial and (c) temporal symmetry were calculated 

with a symmetry index (SI) with the general equation SI =Xp/(Xp+Xnp), where Xp and Xnp 

are the paretic and nonparetic values for the variable of interest, respectively. Step length and 

percent of the gait cycle spent in single limb support were used to assess spatial and 

temporal symmetry. The symmetry index calculated for step length results in the paretic step 

ratio (PSR) used to categorize asymmetry groups (see Methods). Individual data are 

illustrated; the vertical black line represents the group median. The vertical gray shaded 

areas denote the SI values that represent symmetry (0.475 ≤ SI ≤ 0.525).7 Box-and-whisker 

plots for (b) step length and (d) single limb support duration (SLS%) illustrate the 

distribution of the individual leg data. The whiskers illustrate the 5th and 95th percentiles. 

Group means are depicted with “+”. Paretic and nonparetic leg data are illustrated in grey 

and black, respectively. Of note, the temporal symmetry achieved in the Symmetrical group 

with GuidanceNP results from a concurrent nonparetic reduction and paretic increase in SLS

%. Abbreviations: OG: overground condition at self-selected walking speed; TM: treadmill 

condition at self-selected walking speed, with 0% BWS; BWS: body weight support 

condition at self-selected walking speed, with 30% BWS; GuidanceNP: fastest comfortable 

walking speed, with 30% BWS, and nonparetic limb guidance.
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Figure 2. Stride length
Stride length depicts the combined length of the paretic and nonparetic steps. The shaded 

gray regions represent reference values (± 1 standard error) for overground stride length 

calculated from a known regression equation relating stride length and gait speed.30 Data are 

mean ± SEM. Abbreviations: Symmetrical: paretic and nonparetic step lengths are 

equivalent; Pshort: paretic step length shorter than nonparetic; NPshort: nonparetic step length 

shorter than paretic; OG: overground condition at self-selected walking speed; TM: treadmill 

condition at self-selected walking speed, with 0% BWS; BWS: body weight support 

condition at self-selected walking speed, with 30% BWS; GuidanceNP: fastest comfortable 

walking speed, with 30% BWS and nonparetic limb guidance.
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Figure 3. Paretic step length shorter than nonparetic (Pshort)
The Pshort group (n=11) was characterized by a shorter paretic step length than nonparetic 

step length while walking overground. Spatial (top, left) and temporal (bottom, left) 

symmetry were calculated with a symmetry index (SI) with the general equation SI =Xp/(Xp

+Xnp), where Xp and Xnp are the paretic and nonparetic values for the variable of interest, 

respectively. Individual data are illustrated; the vertical black line represents the group 

median. The vertical gray shaded areas denote the SI values that represent symmetry (0.475 

≤ SI ≤ 0.525).7 Re-analysis of data without the extreme values noted in GuidanceNP 

condition of (a) do not influence symmetry findings or interpretation. Box-and-whisker plots 

for step length (top, right) and single limb support duration (SLS%; bottom, right) illustrate 

the distribution of the individual leg data. The whiskers illustrate the 5th and 95th percentiles. 

Group means are depicted with “+”. Paretic and nonparetic leg data are illustrated in grey 

and black, respectively. Note, a concurrent decrease in nonparetic SLS% (∆: 5%) and 

increase in paretic SLS% (∆: 5%) between the overground and GuidanceNP conditions (c). 

While these changes resulted in temporal symmetry, they failed to reach statistical 

significance. Abbreviations: OG: overground condition at self-selected walking speed; TM: 

treadmill condition at self-selected walking speed, with 0% BWS; BWS: body weight 

support condition at self-selected walking speed, with 30% BWS; GuidanceNP: fastest 
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comfortable walking speed, with 30% BWS, and nonparetic limb guidance; P: paretic; N: 

nonparetic.
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Figure 4. Nonparetic step length shorter than paretic (NPshort)
The NPshort group (n=11) walked with shorter nonparetic than paretic step lengths 

overground. Spatial (top, left) and temporal (bottom, left) symmetry were calculated with a 

symmetry index (SI) with the general equation SI =Xp/(Xp+Xnp), where Xp and Xnp are 

the paretic and nonparetic values for the variable of interest, respectively. Individual data are 

illustrated; the vertical black line represents the group median. The vertical gray shaded 

areas denote the SI values that represent symmetry (0.475 ≤ SI ≤ 0.525).7 Box-and-whisker 

plots for step length (top, right) and single limb support duration (SLS%; bottom, right) 

illustrate the distribution of the individual leg data. The whiskers illustrate the 5th and 95th 

percentiles. Group means are depicted with “+”. Paretic and nonparetic leg data are 

illustrated in grey and black, respectively. Note, the GuidanceNP condition produced 

symmetrical step lengths (a) by increasing the nonparetic step length (b; ∆: 0.11m). 

Importantly, P SLS% increased from 23% to 28% of the gait cycle between OG and 

GuidanceNP conditions (d), though this increase did not achieve statistical significance. 

Abbreviations: OG: overground condition at self-selected walking speed; TM: treadmill 

condition at self-selected walking speed, with 0% BWS; BWS: body weight support 

condition at self-selected walking speed, with 30% BWS; GuidanceNP: fastest comfortable 

walking speed, with 30% BWS, and nonparetic limb guidance; P: paretic; N: nonparetic.

Little et al. Page 16

Gait Posture. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Little et al. Page 17

Ta
b

le
 1

.
D

em
og

ra
ph

ic
s.

D
at

a 
fo

r 
ag

e,
 c

hr
on

ic
ity

, a
nd

 g
ai

t s
pe

ed
s 

ar
e 

M
ea

n 
±

 S
D

. D
at

a 
fo

r 
L

E
 F

ug
l-

M
ey

er
 S

yn
er

gy
, B

er
g 

B
al

an
ce

 S
co

re
, a

nd
 D

yn
am

ic
 G

ai
t I

nd
ex

 a
re

 M
ed

ia
n 

(M
in

, M
ax

).
 A

bb
re

vi
at

io
ns

: S
ym

m
et

ri
ca

l: 
pa

re
tic

 a
nd

 n
on

pa
re

tic
 s

te
p 

le
ng

th
s 

ar
e 

eq
ui

va
le

nt
; P

sh
or

t: 
pa

re
tic

 s
te

p 
le

ng
th

 s
ho

rt
er

 th
an

 n
on

pa
re

tic
; N

P s
ho

rt
: 

no
np

ar
et

ic
 s

te
p 

le
ng

th
 s

ho
rt

er
 th

an
 p

ar
et

ic
; y

r:
 y

ea
rs

; m
/f

: m
al

e/
fe

m
al

e;
 r

/l:
 r

ig
ht

/le
ft

; m
o:

 m
on

th
s;

 m
/s

: m
et

er
s 

pe
r 

se
co

nd
 G

ui
da

nc
e N

P:
 f

as
te

st
 

co
m

fo
rt

ab
le

 w
al

ki
ng

 s
pe

ed
, w

ith
 3

0%
 B

W
S,

 a
nd

 n
on

pa
re

tic
 li

m
b 

gu
id

an
ce

; L
E

: l
ow

er
 e

xt
re

m
ity

.

A
ll

Sy
m

m
et

ri
ca

l
P

sh
or

t
N

P
sh

or
t

p-
va

lu
e

n
39

17
11

11

ag
e 

(y
r)

61
.3

 ±
 1

1.
4

63
.4

 ±
 9

65
.5

 ±
 8

53
.9

 ±
 1

4.
6

0.
09

se
x 

(m
/f

)
29

/1
0

13
/4

8/
3

8/
3

0.
97

pa
re

tic
 s

id
e 

(r
/l)

21
/1

8
8/

9
5/

6
8/

3
0.

33

ch
ro

ni
ci

ty
 (

m
o)

68
.4

 ±
 6

1.
7

71
.8

 ±
 6

8.
5

48
.3

 ±
 4

3.
6

83
.5

 ±
 6

5.
9

0.
38

ga
it 

sp
ee

d 
(m

/s
)

 
 

 O
ve

rg
ro

un
d 

(O
G

)
0.

63
 ±

 0
.2

0.
69

 ±
 0

.2
0.

59
 ±

 0
.2

0.
55

 ±
 0

.1
6

 
 

 T
re

ad
m

ill
 (

T
M

)
0.

44
 ±

 0
.1

4
0.

48
 ±

 0
.1

6
0.

41
 ±

 0
.1

2
0.

4 
±

 0
.1

1

 
 

 B
od

y 
w

ei
gh

t s
up

po
rt

 (
B

W
S)

0.
52

 ±
 0

.2
0.

59
 ±

 0
.2

5
0.

47
 ±

 0
.1

4
0.

47
 ±

 0
.1

3

 
 

 G
ui

da
nc

e N
P

0.
72

 ±
 0

.2
5

0.
78

 ±
 0

.2
6

0.
64

 ±
 0

.1
8

0.
72

 ±
 0

.2
9

L
E

 F
ug

l-
M

ey
er

 S
yn

er
gy

 (
/2

2)
16

 (
5,

 2
2)

16
 (

8,
 2

2)
20

 (
5,

 2
2)

13
 (

8,
 2

0)
0.

1

B
er

g 
B

al
an

ce
 S

co
re

 (
/5

6)
46

 (
32

, 5
5)

47
 (

40
, 5

5)
48

 (
41

, 5
5)

45
 (

32
, 5

5)
0.

61

D
yn

am
ic

 G
ai

t I
nd

ex
 (

/2
4)

15
 (

7,
 2

2)
15

 (
9,

 2
2)

12
 (

7,
 2

1)
15

 (
10

, 1
9)

0.
81

Gait Posture. Author manuscript; available in PMC 2021 March 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Little et al. Page 18

Ta
b

le
 2

.
In

di
vi

du
al

 le
g 

da
ta

 fo
r 

ea
ch

 a
sy

m
m

et
ry

 g
ro

up
, a

cr
os

s 
ex

pe
ri

m
en

ta
l c

on
di

ti
on

s.

D
at

a 
ar

e 
m

ea
n 

±
 S

D
. R

ef
er

en
ce

 v
al

ue
s 

fo
r 

si
ng

le
 li

m
b 

su
pp

or
t d

ur
at

io
n 

(s
ec

) 
ar

e 
0.

33
±

0.
04

 s
ec

 f
or

 th
e 

ov
er

gr
ou

nd
 w

al
ki

ng
 s

pe
ed

s 
re

co
rd

ed
 f

or
 th

e 
Ps

ho
rt

 

an
d 

N
Ps

ho
rt

 g
ro

up
s,

 a
nd

 0
.3

±
0.

03
 s

ec
 f

or
 th

e 
Sy

m
m

et
ri

ca
l g

ro
up

 (
la

bo
ra

to
ry

 re
fe

re
nc

e 
da

ta
, u

np
ub

lis
he

d)
. S

ta
tis

tic
al

 a
na

ly
se

s 
in

ve
st

ig
at

ed
 s

pa
tia

l (
st

ep
 

le
ng

th
) 

an
d 

te
m

po
ra

l (
si

ng
le

 li
m

b 
su

pp
or

t, 
%

) 
sy

m
m

et
ry

 m
et

ri
cs

; h
er

e 
w

e 
pr

es
en

t i
nd

iv
id

ua
l l

eg
 d

at
a 

to
 a

id
 in

te
rp

re
ta

tio
n 

of
 c

ha
ng

es
 in

 s
ym

m
et

ry
. 

A
bb

re
vi

at
io

ns
: S

ym
m

et
ri

ca
l: 

pa
re

tic
 a

nd
 n

on
pa

re
tic

 s
te

p 
le

ng
th

s 
ar

e 
eq

ui
va

le
nt

; P
sh

or
t: 

pa
re

tic
 s

te
p 

le
ng

th
 s

ho
rt

er
 th

an
 n

on
pa

re
tic

; N
P s

ho
rt
: n

on
pa

re
tic

 s
te

p 

le
ng

th
 s

ho
rt

er
 th

an
 p

ar
et

ic
; O

G
: o

ve
rg

ro
un

d;
 T

M
: t

re
ad

m
ill

 c
on

di
tio

n 
at

 s
el

f-
se

le
ct

ed
 w

al
ki

ng
 s

pe
ed

, w
ith

 0
%

 B
W

S;
 B

W
S:

 b
od

y 
w

ei
gh

t s
up

po
rt

 c
on

di
tio

n 

at
 s

el
f-

se
le

ct
ed

 w
al

ki
ng

 s
pe

ed
, w

ith
 3

0%
 B

W
S;

 G
ui

da
nc

e N
P:

 f
as

te
st

 c
om

fo
rt

ab
le

 w
al

ki
ng

 s
pe

ed
, w

ith
 3

0%
 B

W
S,

 a
nd

 n
on

pa
re

tic
 li

m
b 

gu
id

an
ce

.

Sy
m

m
et

ri
ca

l
P

sh
or

t
N

P
sh

or
t

pa
re

tic
no

np
ar

et
ic

pa
re

tic
no

np
ar

et
ic

pa
re

tic
no

np
ar

et
ic

St
ep

 le
ng

th
 (m

)

 
 O

G
0.

5 
±

 0
.0

9
0.

5 
±

 0
.0

8
0.

34
 ±

 0
.1

2
0.

47
 ±

 0
.1

1
0.

49
 ±

 0
.0

8
0.

37
 ±

 0
.1

 
 T

M
0.

35
 ±

 0
.0

9
0.

34
 ±

 0
.0

9
0.

2 
±

 0
.0

8
0.

33
 ±

 0
.0

9
0.

35
 ±

 0
.0

8
0.

27
 ±

 0
.1

3

 
 B

W
S

0.
41

 ±
 0

.1
3

0.
38

 ±
 0

.1
2

0.
28

 ±
 0

.0
8

0.
38

 ±
 0

.0
9

0.
4 

±
 0

.0
9

0.
31

 ±
 0

.1
1

 
 G

ui
da

nc
e N

P
0.

43
 ±

 0
.1

5
0.

52
 ±

 0
.1

0.
28

 ±
 0

.1
3

0.
48

 ±
 0

.0
9

0.
47

 ±
 0

.1
3

0.
48

 ±
 0

.1
2

Si
ng

le
 li

m
b 

su
pp

or
t (

%
)

 
 O

G
0.

26
 ±

 0
.0

6
0.

37
 ±

 0
.0

5
0.

25
 ±

 0
.0

6
0.

32
 ±

 0
.0

5
0.

23
 ±

 0
.0

4
0.

38
 ±

 0
.0

6

 
 T

M
0.

23
 ±

 0
.0

6
0.

29
 ±

 0
.0

3
0.

22
 ±

 0
.0

5
0.

26
 ±

 0
.0

4
0.

19
 ±

 0
.0

6
0.

33
 ±

 0
.0

4

 
 B

W
S

0.
26

 ±
 0

.0
5

0.
3 

±
 0

.0
4

0.
25

 ±
 0

.0
4

0.
27

 ±
 0

.0
5

0.
22

 ±
 0

.0
5

0.
34

 ±
 0

.0
5

 
 G

ui
da

nc
e N

P
0.

31
 ±

 0
.0

4
0.

32
 ±

 0
.0

5
0.

3 
±

 0
.0

5
0.

27
 ±

 0
.0

5
0.

28
 ±

 0
.0

6
0.

36
 ±

 0
.0

3

Si
ng

le
 li

m
b 

su
pp

or
t (

se
c)

 
 O

G
0.

38
 ±

 0
.0

6
0.

55
 ±

 0
.1

2
0.

35
 ±

 0
.0

6
0.

44
 ±

 0
.0

7
0.

37
 ±

 0
.0

9
0.

61
 ±

 0
.0

9

 
 T

M
0.

33
 ±

 0
.1

0.
43

 ±
 0

.1
1

0.
29

 ±
 0

.0
9

0.
34

 ±
 0

.0
6

0.
29

 ±
 0

.1
1

0.
50

 ±
 0

.0
6

 
 B

W
S

0.
36

 ±
 0

.0
8

0.
43

 ±
 0

.1
0.

34
 ±

 0
.0

3
0.

37
 ±

 0
.0

9
0.

34
 ±

 0
.1

2
0.

52
 ±

 0
.0

9

 
 G

ui
da

nc
e N

P
0.

41
 ±

 0
.0

7
0.

43
 ±

 0
.0

8
0.

38
 ±

 0
.0

5
0.

35
 ±

 0
.0

8
0.

39
 ±

 0
.0

9
0.

51
 ±

 0
.0

9

St
ri

de
 le

ng
th

 (m
)

 
 O

G
0.

99
 ±

 0
.1

7
0.

81
 ±

 0
.2

2
0.

87
 ±

 0
.1

7

 
 T

M
0.

68
 ±

 0
.1

7
0.

54
 ±

 0
.1

5
0.

62
 ±

 0
.1

9

 
 B

W
S

0.
79

 ±
 0

.2
4

0.
66

 ±
 0

.1
3

0.
71

 ±
 0

.1
9

 
 G

ui
da

nc
e N

P
0.

96
 ±

 0
.2

3
0.

76
 ±

 0
.1

8
0.

95
 ±

 0
.2

5

Gait Posture. Author manuscript; available in PMC 2021 March 01.


	Abstract
	Introduction
	Methods
	Participants
	Session 1
	Clinical metrics
	Overground Walking
	Step Length Asymmetry Categorization
	Temporal Asymmetry Quantification

	Familiarization: Locomotor Task Conditions
	Session 2
	Experimental Testing
	Data Processing
	Statistical Analysis


	Results
	Overview
	Symmetrical step lengths (Symmetrical)
	Paretic step length shorter than nonparetic (Pshort)
	Nonparetic step length shorter than paretic (NPshort)

	Discussion
	Effects induced by LT parameters
	Effects in the context of asymmetry subgroups
	Proposed mechanism of nonparetic guidance effect
	Is targeting improved symmetry sufficient?

	Conclusions
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Table 1.
	Table 2.

