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Abstract

In the United States the number of health systems that own practices or hospitals have increased in 

number and complexity leading to interest in assessing the relationship between health 

organization factors and health outcomes. However, the existence of multiple types of 

organizations combined with the nesting of some hospitals and practices within health systems and 

the nesting of some health systems within larger health systems generates numerous analytic 

objectives and complicates the construction of optimal survey designs. An objective function that 

explicitly weighs all objectives is theoretically appealing but becomes unwieldy and increasingly 

ad hoc as the number of objectives increases. To overcome this problem, we develop an alternative 

approach based on constraining the sampling design to satisfy desired statistical properties. For 

example, to support evaluations of the comparative importance of factors measured in different 

surveys on health system performance, a constraint that requires at least one organization of each 

type (corporate owner, hospital, practice) to be sampled whenever any component of a system is 

sampled may be enforced. Multiple such constraints define a nonlinear system of equations that 

“couples” the survey sampling designs whose solution yields the sample inclusion probabilities for 

each organization in each survey. A Monte Carlo algorithm is developed to solve the simultaneous 

system of equations to determine the sampling probabilities and extract the samples for each 

survey. We illustrate the new sampling methodology by developing the constraints and solving the 

ensuing systems of equations to obtain the sampling design for the National Surveys of United 

States Health Care Systems, Hospitals and Practices. We illustrate the virtues of “coupled 

sampling” by comparing the proportion of eligible systems for whom the corporate owner and 

both a hospital and a practice that are expected to be sampled to that expected under alternative 

sampling designs. Comparative and descriptive analyses that illustrate features of the sampling 

design are also presented.
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1 Introduction

This paper describes novel methodology developed for a suite of surveys used to help 

characterize the structure, ownership, leadership, and care delivery procedures of United 

States health systems, hospitals and (physician) practices as part of an Agency for 

Healthcare Research and Quality (AHRQ) funded initiative (AHRQ 2019). The structure of 

US health care is complex as hospitals and practices may be nested within health systems 

and some health systems may be nested within larger health systems, leading to a mix of 

single, double and triple-tiered ownership structures (Figure 1). Systems may contain 

clusters of hospitals and practices of varying number and structure (“simple” or single-tiered 

systems; “complex” or double-tiered systems) while independent hospitals and practices are 

standalone entities. Simple systems are corporate entities including multiple hospitals or 

practices while complex systems are corporate entities that also include other systems. 

Hospitals and practices can be viewed as being in system (corporate owned) versus 

independent strata with the system stratum containing multiple substrata. The corporate 

owner is the corporate entity in the part of a system directly above a hospital or practice; 

they are known as a corporate parent if they head the entire system and as an owner 

subsidiary otherwise. Because they contain distinct features, different surveys must be used 

for corporate owners than for hospitals and practices.

A simplistic sampling scheme would draw distinct stratified-cluster samples of systems, 

hospitals and practices. Organizations (e.g., a hospital) sampled in one survey would not 

affect the sampling of any organization (e.g., a corporate owner or a practice) in the other 

surveys. However, the joint inclusion (or selection) probability of the owner, a hospital, and 

a practice within a system in their respective surveys is the product of the three sample 

inclusion probabilities and hence could be very small. Regression analyses that estimate the 

simultaneous effect of system, hospital and practice characteristics measured in the surveys 

would then encounter an abundance of observations with missing values for some predictors. 

To overcome this concern, we seek a sampling design that requires each of the types of 

organizations in a system (the owner, some of the hospital(s) and some of the practice(s)) to 

be sampled if any part of the system is sampled. That is, the sampling designs are “coupled”.

Statistical design challenges arise due to the tremendous heterogeneity in the numbers of 

owner subsidiaries (in triple-tiered systems), hospitals and practices within a system. 

Although differences between organizations can be accounted for in statistical analyses once 

the data are collected, it is important to design a survey so that sufficient sample is expected 

for each type of organization. Otherwise, estimators of population totals and regression 

coefficients of key predictors may have large standard errors. Therefore, we sought a design 

that strategically allocated sample size across the organizations of different types and sizes. 

The level of correlation between the parts of a system may be depend on its size. Therefore, 
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a sampling scheme under which the number of units sampled increases sub-linearly with the 

total number of units of that type in the system is warranted. However, if different numbers 

of surveys of each type (owner, hospital and practice) will be expended on different systems, 

the total number of units of each type cannot be determined in advance and so the sampling 

probabilities also cannot be determined. Furthermore, the sampling of units from one survey 

clearly impacts the sampling of units in the other surveys. Thus, unlike traditional survey 

designs, an optimal coupled sampling design and its associated sampling probabilities are 

unable to be solved in closed form or by numerical solution of an explicit equation.

Because Figure 1 presents configurations that have the form of a graph, one might think of 

applying methods for sampling networks. However, the structure of a health system 

involving a corporate owner, owner subsidiaries and hospitals and practices is perfectly 

hierarchical. A health system with a hierarchical structure is much less amenable to 

sampling methods for networks such as snowball sampling (Goodman 1961) and 

respondent-driven sampling (Heckathorn 1997). These chain referral sampling methods are 

better utilized for web-based sampling or searching (Cohen, Havlin et al. 2003, Boldi, 

Santini et al. 2004, Stutzbach, Rejaie et al. 2009, Maiya and Berger-Wolf 2011) and for 

sampling hard-to-reach populations (Handcock and Gile 2011).

We have not come across any existing methodologies for sampling multipart, connected 

organizations such as those depicted in Figure 1 in a feasible manner. However, 

hierarchically structured survey populations are commonly encountered in sociology, 

economics, public health, education and epidemiology. For example, social scientists are 

often interested in the impact of a community to life opportunities of its residents (Faber and 

Sharkey 2015) and public health researchers are interested in the relationship of geography 

to specific health outcomes (Diez Roux 2001). In educational studies, some big educational 

programs may have centers nested within them and the centers may have students 

classrooms in turn nested within them (Currie 2001). Neighborhood effects may be defined 

as latent variables that impact observed measurements (Garner and Raudenbush 1991, 

Durlauf 2004). However, what is unique in our study is the interest in sampling units at each 

level of these hierarchies and the fact that there are multiple units at each level. We sought to 

develop a coupled sampling methodology to distribute sample-size across that a diverse 

range of organizations to support a wide-range of inferences.

One approach to determining an optimal coupled sampling design is to specify a function 

that quantifies the extent to which each objective of interest is satisfied along with relative 

importance weights. The sampling design and sampling probabilities that optimize the 

function is a multiple-objective optimal design. While appealing, there are several 

challenges with this approach, including deciding which objectives to include and their 

importance weights. The number of objectives may be reduced by replacing some objectives 

with constraints ensuring a desired level of attainment and optimizing a function of the 

remaining objectives subject to these constraints (Cohen 1998, Moerbeek and Wong 2002). 

In some cases the constrained problem may be easier to solve and the two approaches 

(optimization over all objectives and constrained optimization over some) may be equivalent 

(Cook and Wong 1994).
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Building on the idea of using constraints, we propose specifying heuristics that characterize 

desired properties of the coupled sample as constraints. An example heuristic is the 

constraint that at least one of each type of organization (corporate owner, hospital, practice) 

in a system is sampled if any sampling is performed on that system. Clearly, such an 

heuristic couples their sampling designs. Because an objective function isn’t being 

optimized when the goal is to satisfy heuristics, “sampling scheme” might be used 

interchangeably with “sampling design”.

Coupling the sampling designs via heuristics addresses challenges involving multiple 

populations and targets of inference beyond those in traditional survey sampling designs. 

The involvement of heuristics resembles a form of stratified sampling in which an heuristic 

function is used for the purpose of predicting the performance of tree searching algorithms 

in computer science, referred to as Heuristic Sampling (Chen 1992). It also shares traits with 

purposive and criterion sampling – widely used in qualitative research (Palinkas, Horwitz et 

al. 2015) – in that the objective function is difficult to define and the sampling scheme seeks 

to obtain a sample with pre-specified properties. Purposive sampling is often performed in 

studies seeking to learn what to focus on in a subsequent study. Hence, it is premature to 

specify an objective function due to a lack of population information and one prioritizes 

obtaining a diverse sample to ensure a wide spectrum of subjects are represented (Patton 

2002, Etikan, Musa et al. 2016). Although coupled (heuristic) sampling yields probability 

samples while purposive sampling is nonprobabilistic, neither has an objective function and 

constraints or other criteria define the sampling design implicitly.

Another key contribution of this paper is the development of a computational algorithm for 

finding the sampling probabilities that simultaneously solve the nonlinear system of 

heuristic constraint equations to find the sampling probabilities and draw the sample. We 

derive an iterative (Monte Carlo) algorithm that mimics the sampling procedure and captures 

the characteristics of the population represented by the sampling frame. Previously, Monte 

Carlo methods have been adapted to sampling techniques to reduce statistical error, e.g. 

Importance Sampling (Harbitz 1983), Adaptive Sampling (Bucher 1988), Adaptive-

Rejection Sampling (Gilks 1992, Gilks and Wild 1992). Several of these techniques are used 

for computation of Bayesian inferences. In contrast, our Monte Carlo algorithm solves a 

study design problem, not an estimation problem.

Our Monte Carlo algorithm for sample allocation in coupled surveys seeks to satisfy 

multiple objectives for learning about possibly inter-connected study units as opposed to 

maximizing the precision in relation to a single objective as in Neyman allocation (Neyman 

1934), the traditional determinant of an optimal stratified sampling design. Neyman 

allocation yields the sampling design with the smallest variance given a fixed sample size 

assuming equal costs per unit for all strata. In related work, optimal allocation has been 

achieved in balanced sampling (Tille and Favre 2005) while alternative allocation criteria 

have been obtained under adaptive sampling with multiple objectives over which to optimize 

the sample allocation (Kaminska and Lynn 2017).

In the remainder of this paper, the CoE study is described in detail including using 

mathematical notation to formerly define the survey design problem, the specification of 
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heuristics, and the representation of heuristics as constraints (Section 2). We then develop 

the sampling design problem in general terms using the CoE study for illustration and derive 

and implement an algorithm for computing the sampling design. The properties of the 

resulting sampling design are studied in Section 3. This includes the methodology for 

drawing the samples of organizations to be surveyed and determining the sampling 

probabilities under coupled sampling. Section 4 applies the computational procedure to the 

sampling frame and evaluates its statistical properties. The paper concludes in Section 5 

while the relationship of our coupled sampling approach to a multiple-objectives optimal 

design is analyzed in the Appendix. The Appendix also shows how the complex sampling 

design is specified in the statistical software package Stata (StataCorp 2017) and then taken 

account of in subsequent analyses to enable population representative inferences.

2 National Survey of Health Systems and Organizations (NSHOS)

The NSHOS sampling frame was based on the IQVIA OneKey database. OneKey contains a 

vast array of information about health systems, hospitals, practices and physicians in the 

United States (AHRQ 2019, IQVIA 2019). The 2015 version contained information on 

239,881 healthcare businesses (including 1,216,957 healthcare professionals) and 

relationships between businesses.

Eligible hospitals for the sampling frame contained at least 3 primary care physicians (PCPs) 

and were defined as critical access and general acute care. They were required to not have a 

reference to a specialty (e.g. cancer) in their business name. There were 6,030 hospitals in 

OneKey of which 4388 (73%) met this definition. Likewise, practices in the sampling frame 

consisted of those labelled as family, internal or geriatric medicine, or general and 

multispeciality group practices again with at least 3 PCPs. There were a total of 153,916 

practices in OneKey and about 15,510 (10%) met this definition.

Systems include a corporate owner and a total of at least two qualifying hospitals or 

practices. Like hospitals and practices they could not reference a specialty in their business 

name. Systems with only a single hospital or practice were considered to be independent 

organizations. After first applying the qualifying rules to hospitals and practices and then 

applying the qualifying rules for systems, a total of 1,511 systems consisting of 164 complex 

systems, 390 owner subsidiaries (owned by the complex systems) and 957 simple systems 

remained.

2.1 Analytic Targets and Statistical Models Motivating Design

The types of analytic targets of the surveys include:

(i) Descriptive analyses estimating population counts and proportions for each type 

of health organization.

(ii) System-level regression analyses with predictors including summary measures 

of hospitals, practices and other owner-subsidiaries within the system (e.g., how 

many of each) and the system’s own characteristics.
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(iii) Hospital, practice, and combined hospital-practice regression analyses with 

predictors reflecting ownership structure (whether they are independent vs 

corporate owned vs multitiered corporate owned), summary measures of their 

sibling organizations, and characteristics of their owners.

Optimal designs for the analyses in (i) typically minimize the variance of an estimator of the 

population target of interest subject to cost or other resource constraints with the solution a 

form of Neyman allocation. In contrast, the comparative analyses in (ii) and (iii) 

simultaneously involve variables/information collected from each type of survey. These 

analyses benefit from sampling designs that aid the estimation of hierarchical regression 

models including predictors evaluated on the focal unit and predictors evaluated on the other 

units within the system (e.g., for the corporate parent, owner subsidiaries, and other hospitals 

and practices within the same system).

To illustrate how data from across the surveys may be combined in a statistical model and 

the breadth of inferences possible, consider the relationship of a hospital quality measure (an 

individual variable or a scale variable) to its own characteristics, those of its corporate owner 

(if applicable), those of other hospitals and practices within the immediate system (if 

applicable) and those of the greater system (if applicable). Each group of predictors is 

measured from the corresponding owner, hospital or practice surveys. Let yijk denote the 

quality measure outcome for the kth hospital in the jth owner subsidiary of corporate parent i 
while vectors of predictors for the highest-level corporate parent, mid-level corporate parent 

(the owner-subsidiary) and the hospital are denoted by the vectors xi, xij, and xijk, 

respectively. The vector of predictors xi may include summary measures of (xi1, xi2, …, xini)

and include an indicator of whether the system is complex or simple while xijk may include 

an indicator of whether the hospital is an independent hospital. In addition, the vectors 

ℎij or pij denote summary measures of hospital and practice characteristics for the ij’th 

system while vectors ℎij(k) and pij(k) are analogous except they exclude the k’th hospital or 

practice. A general hierarchical linear model for this analysis has the form

yijk = β0 + β1xijk + β2ℎij(k) + β3pij(k) + β4xij + β4xi + θi + λij + εijk (1)

where θi~normal(0, τ2), λij~normal(0, τ2) and εijk~normal(0, σ2). The generalized linear 

mixed model counterpart is analogous except for the possible absence of εijk and addition of 

a nonlinear link function.

The model in (1) contains four vectors of predictors (xi, xij, ℎij(k) and pij(k)) but these are not 

applicable if the hospital is independent while xi is redundant for simple systems. All 

organizations may be analyzed under a single model by defining indicator variables so that 

predictors fall out of the model if they are not applicable. For example, let the subscripts 

take values i ∈ {0, …, ns}; j ∈ {0, …, niS} for corporate parent i; and k ∈ {1, …, nijt } for hospital 

(t = h) or practice (t = p) k in system ij. The subscript 0 denotes the absence of an element of 

the three-level data structure. Observations on systems with no owner-subsidiaries have (i > 

0, j = 0) and include a dummy variable for simple system in place of xij. Hospitals and 

practices directly under a complex system also have (i > 0, j = 0) and include a dummy 
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variable indicating such status in place of xij. Independent hospitals and practices have i = j 
= 0 and include indicator variables in place of predictors evaluated on corporate-parents and 

peer organizations.

Although simple systems have a two-level hierarchy, they can be extended to a three-level 

hierarchy and are represented in (1) by introducing a pseudo owner subsidiary that is 

sampled with probability 1 if the system is sampled. Likewise, independent hospitals and 

practices can be given pseudo corporate parents and owner subsidiaries that are both 

sampled with probability 1. These pseudo organizations allow statistical software to account 

for the sampling probabilities when comparing organizations across structures (e.g., 

comparing independent hospitals to those in complex and simple systems).

System-level counterparts to (1) would include ℎij or pij as predictors as opposed to 

ℎij(k) or pij(k) . This motivates use of a sampling design that attains data under which (1) and 

other models of interest are estimable and sufficiently precise estimates are obtained. We 

next develop the heuristics representing desired features of the NSHOS sampling design.

2.2. Sampling Design Constraints and Implicit Sampling Design

In Section 1 the heuristic that at least one of each type of organization (corporate owner, 

hospital, practice) in a system is sampled if any sampling is performed on that system was 

given as an example of a constraint. There are several other heuristics that appeal as 

logically beneficial to impose as constraints. To support analyses that seek to distinguish the 

impact of top-level (“corporate parent”) versus mid-level (“owner subsidiary”) ownership, it 

is advantageous to ensure sampling of the corporate parent if any of its owner subsidiaries 

are sampled and viceversa. Another appealing heuristic is that multiple hospitals and 

multiple practices within a system should be sampled whenever possible to aid the 

attainment of multiple responses within a system and thus support statistical analyses that 

seek to partition variation between the components of a system. We now formalize these 

heuristics as constraints along with traditional constraints such as ensuring that the allowable 

cost of the survey is not exceeded.

Suppose that the budget for the survey was fixed at N surveys (sampling costs of all types of 

organizations considered equal). Let sij denote the sample inclusion indicator (1 = included, 

0 = not included) of the ij’th system (jth owner subsidiary of the ith corporate parent), and 

hijk and pijk the sample inclusion status of the kth hospital and practice, respectively, in 

system ij. The total sample size constraint is then:

∑i = 0
ns ∑j = 0

nis sij + ∑k = 1
nijℎ ℎijk + ∑k = 1

nij
p

pijk = N

A strongly desired feature of the sampling design is that it strongly supports estimation of 

hierarchical regression models like those in Section 2.1 seeking to determine which 

organization types and features thereof associate the most with an outcome. Therefore, if 

any surveys are expended on a system every type of organization (corporate parent, owner 

subsidiary, hospital, practice) within the system should be sampled. For example, if the 
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corporate parent is sampled at least one owner subsidiary must be sampled (if any). 

Conversely, if an owner subsidiary is sampled its corporate parent must also be sampled. The 

constraints are represented as:

si0 ∑j = 1
nis sij > 0 if si0 > 0 or ∑j = 1

nis sij > 0 for i ∈ {0, …, ns}

Analogous constraints ensure that hospitals and practices are sampled if their corporate 

owner is sampled and vice-versa:

sij ∑k = 1
nijℎ ℎijk > 0 if sij > 0 or ∑j = 1

nijℎ ℎijk > 0 for i ∈ {0, …, ns} and j ∈ {0, …, nis}

sij ∑k = 1
nij

p
pijk > 0 if sij > 0 or ∑j = 1

nij
p

pijk > 0 for i ∈ {0, …, ns} and j ∈ {0, …, nis}

∑k = 1
nijℎ ℎijk ∑k = 1

nij
p

pijk > 0 if ∑j = 1
nijℎ ℎijk > 0 or ∑j = 1

nij
p

pijk > 0 for i ∈ {0, …, ns} and j ∈

{0, …, nis}

If within-system clustering was invariant to the size of the system, the optimal sampling 

design would sample the fewest number of sub-units within each system up to a common 

bound. In the absence of clustering, the expected sub-unit sample-size increases in 

proportion to the number of sub-units. In the NSHOS, it was believed that the correlation 

between the hospitals or practices within systems would lie between these extremes so that 

the optimal number of hospitals and practices to survey increases but only at a sub-linear 

rate. Because the distribution of the number of hospitals and practices directly under a 

corporate owner is left-skewed (Figure 2), this led to the specification that the number of 

surveys to expend on a system follow a logarithmic function beyond the threshold at which 

all hospitals or practices are sampled. Therefore, the survey allocation quantity constraints 

are:

f nijℎ = ∑j = 1
nijℎ ℎijk

where f nijℎ = min L, nijℎ + logB nijℎ /L I nijℎ > L and

f nijm = ∑j = 1
nij

p
mijk

where f nij
p = min L, nij

p + logB nij
p /L I nij

p > L  and [x] denotes the floor of x, the largest 

integer not greater than x. The values of L = 4 and B = 1.9 were decided upon for NSHOS 

according to the following twofold rationale. In the case of corporate parents (organizations 

with i > 0 and j = 0), ni0
ℎ and ni0

p  represent the numbers of hospitals and practices directly 

under the corporate parent (no owner subsidiary as an intermediate owner). To aid estimation 

of the amount of explained and unexplained variation at each level of a system, it is helpful 

to sample multiple sub-units of each type whenever possible. In the motivating study we 
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anticipated a response rate of 50%; hence, L = 4 corresponds to an expected yield of 2 

returned surveys. The log function with base 1.9 was used because it led to 10 hospitals or 

10 practices being included in the sample for the largest system – 10 was an upper limit 

imposed by health care organization experts on our team – and interpolates 4 if there are 

only 4 hospitals or 4 practices.

Although a number of constraints are deterministic, it is important to realize that the 

deterministic part only applies if a condition is met. Because the constraints are conditional, 

all marginal sampling probabilities lie strictly between 0 and 1. A marginal sampling 

probability of 1 can only occur if the entire sampling frame is to be sampled.

3 Estimation Algorithm

The nonlinearity of the above constraints makes extraction of a compliant three-way coupled 

sample and determination of the corresponding sampling probabilities a nonlinear, 

discretevalued system of equations requiring a computational solution. The following 

pseudo-codes describe the Monte-Carlo algorithms we developed to estimate the sampling 

probabilities (Algorithm 1) and draw the survey sample (Algorithm 2).

#Algorithm 1:

Generate sampling probabilities

Input: nijℎ  = Number of hospitals

nij
p

 = Number of practices

ni0
OS = Number of owner subsidiaries

C = Total number of surveys (4800 after independent organizations)

Output: Sampling Frame Augmented with sampling probabilities (jcps-joss-2017-02-26prob1.csv)

Preliminary steps; for all (i = 1, …, ns; j = 0, …, niS)

1) Compute the expenditure functions f nijℎ and f nij
p

 for corporate parent or owner subsidiary ij

2) Evaluate the complexity score CSij = 1 + f nijℎ + f nij
p ; the total number of surveys to be expended 

on that system if sampled.

3) Compute the desirability of sampling each organization

DSij = 1
D

1 + nijℎ + nij
p

1 + I ni0
OS > 0

where D = ∑i, j
1 + nijℎ + nij

p

1 + I ni0
OS > 0

and ni0
OS is the number of owner-subsidiaries in the ith system.

4) Set Sij = 0.

Iterative (Monte-Carlo) phase; for i = 1: nsim:

1) Randomize order of organizations by sampling them without replacement

2) Apply order constraints to complex systems. If the first owner subsidiary occurs before its corporate parent

   a. Move corporate parent immediately in front of owner subsidiary
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   b. Otherwise, move a randomly selected owner subsidiary immediately after corporate parent

3) Use a bisection search algorithm to find the position, Nsamp, in the ordered list of organizations at which the 
number of surveys used first exceeds C.

4) Compute Sampij = I(Posij ≤ Nsamp), where Posij denotes ordered position of organization ij

5) Update Sij = Sij + Sampij

End

Closing

1) Compute PrSampij = Sij/nsim, the estimated sample inclusion probability for organization ij

2) Return sampling frame data including estimated sampling probabilities. Output: jcps-
joss-2017-02-26prob1.csv

#Algorithm 2:

Extract sample

Input: jcps-joss-2017-02-26prob1.csv

nijℎ  = Number of hospitals

nij
p

 = Number of practices

ni0
OS = Number of owner subsidiaries

Csys = Total number of surveys (= 4800 after independent organizations)

C00
ℎ

 = Total number of independent hospitals to sample (= 100)

C00
p

 = Total number of independent practices to sample (= 800)

Ctot = Csys + C00
ℎ + C00

p
 is the total number of surveys afforded (= 5,700)

Generate sample indicators for each system

1) Begin at the end of the preliminary steps of Algorithm 1

2) Perform one iteration of the Iterative phase

3) Output Sij for all (i = 1, ..., ns; j = 0,..., nis)

Generate hospital and practice sample indicators

1) For (i = 1, ..., ns; j = 0,..., nis):

   a. Randomly order the hospitals within system ij; the first f nijℎ  are sampled

   Randomly order the practices within system ij; the first f nij
p

 are sampled

2) For the independent hospitals and practices (i = j = 0):

   a. Randomly order the independent hospitals; the first C00
ℎ

 are sampled

   b. Randomly order the independent practices; the first C00
p

 are sampled

Closing: Output the sample indicator for each system, hospital and practice
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3.1 Illustration of Re-Ordering of Sampling Order of Organizations to Satisfy Constraints

The following list is an example of what might result after step (1) of the Iterative phase of 

Algorithm 1. We use the nomenclature ssss_oo to denote a 4-digit corporate owner ID 

supplemented with a two digit owner subsidiary ID, where the case oo = 00 denotes a 

corporate parent. Suppose the ordering of the first 10 owner organizations after the initial 

randomization is: 0123_00, 273_02, 056_02, 375_00, 0123_04, 0123_01, 945_00, 056_01, 

945_03, 004_00. In addition, let and 375_02 be the first owner subsidiaries of corporate 

parent 375_00 to appear in the initial ordering. After applying the constraints in the Iterative 

phase, the new first 10 ordered organizations is: 0123_00, 0123_04, 273_00, 0273_02, 

056_00, 056_02, 375_00, 375_02, 0123_01, 945_00. The new order reflects the shuffling 

needed to have every system in which either a corporate parent or an owner subsidiary is 

sampled have both the corporate parent and at least one owner subsidiary included in the 

sample.

The remaining elements of the Algorithm 1 and the entirety of Algorithm 2 involved 

standard operations. Deterministic functions are evaluated to determine the original 

likelihood of sampling a given organization or the number of hospitals or practices within a 

system to sample. For example, unconstrained randomization is used to order the hospitals 

and practices within a system and repeated iterations of the Iteration phase are used to 

compute a Monte-Carlo estimate of the probability of sampling each organization.

3.2 Theoretical Properties of the Sampling Design and the Use of Weights

Because the corporate parent is always sampled if an owner subsidiary is sampled, the 

inclusion probability of a corporate parent must exceed that of each of its owner 

subsidiaries. Hence, the inclusion probabilities for the owner subsidiaries can be divided by 

the inclusion probability of their corporate parent to yield conditional inclusion probabilities 

at the owner subsidiary level. Therefore, for complex systems the sampling scheme 

presented above contains three levels: first sample corporate parents, then sample owner 

subsidiaries within corporate parents, then sample hospitals and practices within owner 

subsidiaries.

The random ordering in step 1) of the iterative phase is based on probabilities given by the 

desirability of sampling each organization. A unit with a higher desirability score is expected 

to appear earlier in the ordered list. The subsequent shuffling of some corporate parents and 

owner subsidiaries ensures that whenever a complex system is sampled both its corporate 

parent and at least one of its owner subsidiaries are also sampled.

Marginal inclusion probabilities for the hospitals and practices within each system may be 

determined by multiplying their corporate-parent’s inclusion probability by the conditional 

inclusion probability of their owner subsidiary (if any) and their own conditional inclusion 

probability. The inverses of these marginal inclusion probabilities of sampling a given unit 

may be used to obtain unbiased estimates of totals and means of variables for the finite 

populations of owners, hospitals, and practices defined by the sampling frame (Kish 1990, 

Little 1991, Pfeffermann 1993, Pfeffermann 1996, Biemer and Christ 2008, Lohr 2009).
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A plethora of possibilities exist for using the weights in comparative (e.g., regression) 

analyses. In standard regression analyses (those not involving random effects), the marginal 

weights for the units at a given level can be used (Sarndal, Swensson et al. 1992). In 

hierarchical or mixed-effect regression models the inverses of the marginal inclusion 

probabilities for corporate owners and the conditional sampling probabilities for hospitals 

and practices may be used as weights at the respective levels of the model with pseudo-

likelihood methods used for estimation (Pfeffermann, Skinner et al. 1998). However, the use 

of weights for regression analyses, especially hierarchical regression analyses, is 

controversial due to debates on the use of design-based versus model-based inference (Little 

2004, Gelman 2007, Rao, Verret et al. 2013, Yi, Rao et al. 2016). Furthermore, there has 

been some consideration of an empirical test to determine when the use of survey weights is 

justified (Bollen, Biemer et al. 2016). In the context of regression models, if the relationship 

between a predictor and an outcome is homogeneous then the use of weights in a regression 

analysis appears less important. However, if the effect is heterogeneous and inferences are to 

apply to the population defined by the sampling frame, using weights has the potential to 

yield unbiased estimates of the average effect of the predictor on the outcome even if the 

interacting variable is not available.

The joint inclusion probability of two units of the same type may be positively or negatively 

correlated depending on whether they are under the same or a different owner. However, the 

inclusion of hospitals (or practices) directly under a corporate parent will be positive 

correlated, particularly for a small organization, due to the fact that all hospitals (or 

practices) are sampled if there are fewer than 4. However, hospitals (or practices) under 

different corporate parents will have negative inclusion probabilities due to the finiteness of 

the sampling frame (the usual situation in design-based inference).

4 Empirical Results and Properties of the NSHOS Complex Survey Design

The study investigators stipulated that approximately 10% of the independent hospitals and 

practices in the sampling frame should be sampled leading to the decision to sample 100 of 

1,034 hospitals and 800 of 7,710 practices. A total of 4,800 surveys remained to be allocated 

to corporate owners and the hospitals and practices under them. We apply the above 

algorithms to the sampling frames of the 1,121 systems including 164 complex and 957 

simple systems, and comprising a total of 11,068 hospitals and practices, and examine the 

properties of the resulting sampling design.

4.1 Expected Features of Sample at the Whole System Level

The system characteristics segment of Table 1 summarizes the average number of units 

(hospitals, practices and owner subsidiaries) sampled in a system while the corporate 

parents, owner subsidiary and hospitals and practices segments summarize the total 

utilization of surveys of that type. The independent hospitals and practices are the entirety of 

their organization and so if sampled each consume a single survey. The sampling of the 957 

simple systems leads to surveys being expended on themselves (the owner), hospitals and 

practices but no owner subsidiaries (hence the 0s in the owner subsidiary segment of the 

table). The 164 complex systems each have at least one owner subsidiary.
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The expected sampling rate of complex systems (67.4%) is greater than that of simple 

systems (45.7%) and owner subsidiaries (45.2%). The inclusion probability of complex 

systems is bolstered by the requirement that they must be sampled whenever any of their 

owner subsidiaries are sampled (Objective 3), which results in many of them (and especially 

those with multiple owner subsidiaries) being moved up the sampling order (see Section 

3.1). An owner subsidiary receives an increased inclusion probability if their corporate 

parent is sampled. However, the benefit to a given owner subsidiary of this constraint is less 

because they compete against other owner subsidiaries under the same corporate parent. In 

the absence of adjusting the randomized order to satisfy constraints, simple systems would 

have a higher inclusion probability than owner subsidiaries as their desirability score is 

greater (mean 6.67 versus 4.72). The lower desirability score for owner subsidiaries is 

overcome due to movements up the sampling order in complex systems, whose higher mean 

complexity score of 7.69 meant that movements were quite common, making their average 

marginal inclusion probabilities similar.

The proportions of hospitals and practices sampled across the different types of systems is 

revealing. Because the number of hospitals and practices per system is relatively small (1.3 

and 4.3, respectively, for simple systems and 12.6 and 21.8, respectively, for complex 

systems) and the sampling constraints mandate 100% sampling of hospitals and practices in 

systems having up to 4 if the system is sampled, the proportion sampled within systems 

exceeds that for independents. In particular, the proportion sampled within simple systems is 

highest (40.8% overall; 49.3% of hospitals and 38.2% of practices) reflecting that they are 

smaller on average than complex systems (32.9% overall; 34.2% of hospitals and 32.2% of 

practices).

To study the sampling design from the perspective of corporate parents in more detail, 

complex systems are partitioned into deciles based on their complexity score (1 = least 

complex, 10 = most complex) and described in terms of numbers of hospitals, practices and 

owner subsidiaries (Table 2). Due to ties in the complexity score, the number of systems in 

each decile varies (see N for corporate parent). The probability of being selected for a 

corporate parent increases with the number of owner subsidiaries, hospitals and practices. 

The first two deciles are comprised of systems with a single owner subsidiary. The average 

inclusion probability for the owner subsidiaries are almost the same as for corporate parents 

with the slight discrepancy for decile 1 due to the rare occasion when the owner-subsidiary 

is the first organization not sampled at Step 4 of Algorithm 1. More complex systems tend to 

have more owner subsidiaries but the relationship is non-monotone as one system may have 

more hospitals and practices but fewer owner subsidiaries than another. The most complex 

systems have a large number of owner subsidiaries (171 owner subsidiaries across 18 

corporate parents in decile 10, average 9.5). The trends for the percentages of owner 

subsidiaries and the percentages of hospitals and practices sampled are quadratic. The trend 

is initially increasing because the desirability of sampling the system increases and the 

constraints ensure that the owner subsidiaries and hospitals/practices in the system are 

highly likely to be sampled if the system is sampled. However, as the system’s complexity 

increases, the conditional inclusion probability of a given owner subsidiary, hospital or 

practice declines to the point that its marginal inclusion probability also declines.
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4.2 Expected Features of Sample at the Owner (Corporate Parent – Owner Subsidiary) 
Level

Rather than considering systems in their entirety, we may also evaluate the sampling design 

considering all corporate owners (the direct part of the system under a corporate parent, 

simple systems and owner subsidiaries) as units. The results are partitioned based on the 

component of the complexity score for hospitals and practices in Tables 3A and 3B, 

respectively. Complexity scores ranged from 0 to 10, as described in Section 3. In Table 3A 

the number of hospitals increases by design with the desirability score but the number of 

practices and owner subsidiaries does not necessarily increase and likewise for practices in 

Table 3B. Because the combined sum of hospitals and practices had to be at least two for an 

organization to be a system, the least complex systems from the perspective of a hospital 

(those with 0 hospitals) and a practice (those with 0 practices) had to have at least two 

practices and two hospitals, respectively. This led to organizations with 0 hospitals having a 

larger average number of practices than organizations with 1 hospital and likewise for 

organizations with 0 and 1 practices. As the number of hospitals increased, the positive 

correlation with the number of practices is seen by the increasing numbers of practices until 

the sample sizes get very large at high values of hospital desirability. Systems comprising 

only practices have been referred to as Practice Groups (Fisher, Shortell et al. 2019). The 

probability that a given hospital or practice is sampled falls substantially in very large 

systems and may eventually fall below that for sampling independent hospitals and 

practices. The lone system in stratum 9 with respect to the number of hospitals does not have 

any owner subsidiaries; it is an outlier as it contains 81 hospitals as well as 4 practices but no 

owner subsidiaries.

4.3 Whole system sampling properties

The nadir of the NSHOS study is the attainment of a completed survey from a corporate 

owner and at least one hospital and one practice directly under it – a “complete sample” in 

the sense that each aspect of the system is sampled. As such, the proportion of systems for 

which the three types of surveys are returned is a key metric for quantifying the extent to 

which the design supports statistical analyses involving measures from each survey. We 

compute the complete sample proportion for the coupled design, a design without coupling 

(i.e., no constraints between types of surveys) but the same overall survey allocation to each 

type of organization, and a design with the same overall sampling rate but complete 

independence in the selection of units. The ratio of the complete sample proportion for the 

coupled design to the other designs quantifies the extent to which coupling the surveys offers 

better support for these kinds of analyses. The individual probabilities and ratios of them can 

be expressed as a function of an assumed non-response probability. In the case of the 

NSHOS sampling frame, the proportions of complete samples expected for corporate parents 

and owner subsidiaries are similar to each other with both far surpassing those for the 

comparator sampling schemes (Figure 3).

Analyses comparing corporate parents and owner subsidiaries are best supported by 

complex systems with complete samples from both the component directly under the 

corporate parent and at least one owner subsidiary. The relative likelihood of this event 

occurring is relatively much greater for coupled sampling than the comparator sampling 
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schemes on the NSHOS sampling frame (Figure 4). At a 50% response rate, the probability 

under coupled sampling is 0.058, which is 115 and 10 times greater than for uncooperative 

but otherwise identical sampling and for completely random sampling, respectively. This 

example illustrates how coupled sampling simultaneously increases the expected sample-

size (and thus reduces the estimation variance) for a wide range of analyses that might be 

performed given the data.

The probability of obtaining a complete sample from any part of the system has the least 

difference in performance between the sampling designs. At a 100% response rate, coupled 

sampling yields a complete response probability of nearly 0.5 whereas the complete 

response probability for other designs are between 0.1 and 0.2.

These results suggest that analyses involving measures from across the different surveys are 

substantially more viable under coupled sampling. At the same (returned survey) response 

rate, coupled sampling can bolster the fraction of completed surveys from all types of sub-

organizations within the system from between 1–2% to between 10–30% depending on the 

response rate. This elevates the feasibility of such analyses from virtually impossible to able 

to provide useful information.

4.4 Owner subsidiary-corporate parent sampling properties

The proportion of complex systems for which a completed survey is obtained from both the 

corporate parent and at least one owner subsidiaries is a key metric of the ability of the 

sampling scheme to support ownership-level comparative analyses of corporate parents and 

their owner subsidiaries. The upper segment of Figure 5 reveals that the coupled sampling 

design yields a higher expected proportion of systems with these surveys returned. At our 

anticipated non-response fraction of 0.5, if the proportion of corporate parents to owner 

subsidiaries sampled is fixed at the same fraction as for the coupled sampling design, the 

inter-design returned survey ratio is 1.04 for coupled sampling compared to uncooperative 

sampling and 1.24 compared to completely random sampling. The ratios increase as the 

survey response rate increases to 1.09 and 1.27, respectively, at 100% response. Insight into 

the reason for the monotone increase of the ratio as the sampling fraction increases is given 

by the probability of obtaining at least one returned survey from n owner subsidiaries under 

equal probability sampling, which equals 1 − (1 − psamppresp)n where psamp is the probability 

of being sampled and presp is the probability of response conditional on being sampled. The 

probability rapidly approaches 1 as n → ∞. Therefore, coupled sampling is protective 

against sampling corporate parents without also sampling an owner subsidiary under them, 

and vice-versa, in complex systems.

The lower segment of Figure 5 shows the proportion of owner subsidiaries expected to be 

sampled. Despite sampling a substantially greater number of corporate parent – owner 

subsidiary dyads, the coupled sampling design does not have the highest overall proportion 

of sampled owner subsidiaries. This occurs because under coupled sampling, the probability 

of including additional owner subsidiaries conditional on sampling at least one is lower than 

the inclusion probability for owner subsidiaries under uncooperative sampling.
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5 Conclusion

In this paper we described the development of a novel coupled sampling design for the 

NSHOS surveys. The number of surveys expended on a system was determined by a system 

complexity score. Heterogeneity in the relative merit of sampling systems of various size 

and composition led to a second score known as a desirability score that was a major 

contributor to the sampling probabilities. However, the actual sampling probabilities of the 

coupled sampling design are not able to be expressed explicitly. Computation of the 

sampling weights and extraction of the sample was enabled using a sophisticated Monte 

Carlo algorithm. We developed the algorithm and used it to evaluate key features of the 

sampling design for the motivating NSHOS study. A key finding was that the sample-size of 

complete observations for the estimation of regression models involving measures from 

across the different surveys is substantially (e.g., 10-fold) greater under coupled sampling 

compared to the under independent sampling designs. Therefore, the coupled sampling 

design facilitates a wider range of statistical analyses than is feasible under traditional 

survey designs.

The above gain in statistical feasibility and efficiency of subsequent analyses was achieved 

by avoiding the scenario in which a system does not have any surveys from its hospitals or 

its practices and conversely of a hospital or practice being surveyed when their corporate 

owner is not surveyed. This led to the adoption of heuristics expressed as constraints that 

mandated that each aspect of a system would be sampled if any component of it was 

sampled and 100% sampling of up to 4 hospitals and practices for each owner. Thus, 

hospitals and practices at the largest systems were under-sampled while those at the smallest 

systems were over-sampled. By coupling the sampling designs through constraints such as 

these that aid obtaining surveys from all organization-types within a system, enabling all 

predictors in a statistical regression model to be measured, we enhance statistical efficiency.

Our survey design has the potential to support various types of analyses not directly 

discussed in the paper. Because systems may span areas (e.g., states, health referral regions), 

we did not directly incorporate geographic area-based cluster sampling or stratified 

sampling. However, due to the randomness of sampling, our sample has a wide coverage of 

systems, hospitals and practices in different geographies. Therefore, our sampling design 

would naturally support the estimation of hierarchical models that perform small area 

estimation with respect to geography. The coupled sampling methodology may also be 

applied to any situation in which a population of organizations that contains sub-

organizations of multiple types and/or may contain forms of themselves (i.e., owner 

subsidiaries) as sub-units is tailor-made for coupled sampling. Such a study would benefit 

from the ability of the coupled sampling design to support multiple objectives including, as 

noted above, those involving analyses that simultaneously incorporate variables measured 

using the survey for the over-arching organization (the system survey) and those for each 

sub-organization (hospitals and practices).

In future work, more elements of the design could be incorporated in the procedure 

developed herein including hybrid designs that maximize precision subject to the 

constraints. For example, the fraction of independent organizations sampled could be a 
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parameter that is optimized over to find the design that minimizes the variance of a 

comparison between independent and system-based hospitals. Likewise, a decay function 

that depends on an unknown parameter or parameters could be optimized over to find the 

optimal form for the complexity function for hospitals and/or practices.
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Appendix

A.1 Multiple-Objectives Optimal Designs

Classical survey designs often involve some form of Neyman allocation. For example, the 

objective is often minimization of the variance of an unbiased estimator of the quantity 

being estimated subject to a budgetary or sample-size constraint. With multiple targets of 

inference within a single regression model the situation is more complicated, let alone the 

case when multiple regression models will be estimated. When one is interested in 

evaluating the effects of multiple factors in one or more regression models, a multiple 

objectives design problem obtains. If the success of meeting K objectives is quantified by 

statistical efficiency measures denoted Effk(Y, X, n), a multiple objectives optimizing 

function that combines them additively is:

Eff(Y , X, n) = ∑
k = 1

K
wkEffk(Y , X, n)

where wk ≥ 0 and ∑k = 1
K wk = 1.

The design-efficiency of a standard cluster randomized design with equal sample-sizes per 

cluster is 1 + (m − 1)ρ, where m is the number of within unit samples, ρ = σb
2/ σb

2 + σw2  is the 

intraclass correlation coefficient, σb
2 and σw2  are the between-unit and within-unit variance 

components. Let n be the number of clusters. If the cost of sampling a cluster is Cu and the 

cost of sampling a unit within the cluster is Ck, the total cost is C = n(Cu + mCk). The 

optimal design for estimating the coefficient of a within-cluster predictor (e.g., β4 in the first 

regression model) maximizes the total number of observations, which for Cu > 0 occurs 

when n = 1 and m = (C − Cu)/Ck. Note the indifference of the solution to ρ. However, the 
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optimal design for estimating a cluster-level predictor (e.g., β1 in the first regression model) 

is given by

m = max 1,
Cu(1 − ρ)

Ckρ
0.5

and

n = C
Cu + mCk

If ρ ≈ 0 the optimal designs are essentially equivalent. Yet if ρ ≈ 1 they are polar opposites. 

Furthermore, if ρ and Cu are large there is a great loss of statistical efficiency from using the 

β4 optimal design to estimate β1 while in general using the β1 optimal design fails to 

identify let alone estimate β4 efficiently. Therefore, even in this simple case, different 

objectives lead to drastically different optimal designs. If the above two objectives were 

combined, the relative weight of each would have a substantial impact. However, the 

specification of such weights might be arbitrary.

To avoid the above predicament, we favor the specification of the design by directly 

specifying the type of solution that is known to be amenable to the analytic scenarios of 

interest, such as the estimability of complex hierarchical models. The paper develops a novel 

computational procedure that solves a system of equations to yield a numerical solution for 

the optimal sampling design (i.e., determining the sampling probabilities) that satisfy the 

constraints for the design. This approach essentially specifies the weights wk for each 

objective implicitly (i.e., in the sense of being inversely-defined from the specified optimal-

solution constraints) as opposed to being specified upfront and held fixed while the optimal-

design (and thus its form) is determined. However, making a formal connection between the 

two approaches (i.e., establishing a primal problem – dual problem) was not an objective of 

this paper.

A.2 GitHub site and Code

The code used to perform the calculations in this paper is an R script available at the GitHub 

site maintained by the first author: https://github.com/kiwijomalley/Novel-Sampling-

DesignAlgorithm. The script takes as an input data that contains summary information about 

health systems and owner subsidiaries and their underlying hospitals and physician 

practices. The data set provided on the GitHub site is made up because the Data Use 

Agreement for the project prohibits sharing the actual data. However, it allows the 

computations performed in the paper to be fully illustrated.

A.3. Accounting for Sampling Design in Statistical Analyses in Stata

Statistical analyses that use the survey weights can be operationalized with relative ease. The 

sampling design may be accounted for in advance by using the svyset command in Stata. 

The presence of hospitals and practices nested within a corporate owner and of owner 
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subsidiaries nested within corporate parents, leads to a three-level hierarchical data structure. 

The appropriate svyset command has the form:

svyset CP_ID, weight(CP_weight) || OS_ID, weight(OS_weight) || HP_ID, 

weight(HP_weight) where CP_ID, OS_ID and HP_ID denote the identification codes for the 

corporate parent, owner subsidiary and the hospital or practice and CP_weight, OS_weight 

and HP_weight denote the inverses of the inclusion probability of the corporate parent and 

the conditional inclusion probabilities of the owner subsidiary, hospital and practices. As 

noted in Section 3.2, the conditional inclusion probabilities for owner subsidiaries equal the 

inclusion probability determined by Algorithm 1 divided by the inclusion probability of their 

corporate parent. The conditional inclusion probability for hospitals and practices are 

determined from the sampling design used within systems and owner subsidiaries to select 

hospital and practices. For example, under simple random sampling (SRS) these sampling 

probabilities equal the number of surveys allocated to hospitals (practices) divided by the 

number of hospitals (practices) within the organization. Expanding on Section 2.1, to allow 

for the fact that survey designs with three different structures (CP – OS – HP, CP – HP and 

independent HP) may be combined in a single analysis, we set OS_ID = HP_ID if OS_ID is 

not defined and CP_ID = HP_ID if HP_ID is not defined (e.g., as for an independent 

hospital or practice). This ensures that the IDs are defined for all hospitals and practices 

allowing statistical models and procedures to be applied to the combined data.

The meglm command in Stata allows for the estimation of mixed effects models with survey 

weights. For a binary valued outcome, the code

svy: melogit {model} || CP_ID: || OS_ID:

or

meglm {model} [pweight=HP_weight] || CP_ID:, pweight(CP_weight) || OS_ID:, 

pweight(OS_weight), family(binomial) link(logit)

could be used. The difference between the two specifications is that the latter does not rely 

on the sampling design having been specified via svyset. In general, it is best to set the 

design in advance as some procedures do not allow sampling design weights.
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Figure 1: 
Layout of example health systems in the United States showing complex systems (black), a 

simple system (green), a simple system comprising only of hospitals also known as a 

medical group (blue), and an independent practice and independent hospital (red). Hospitals 

and practices are related to their owner (corporate parent or owner subsidiary) via directed 

edges while owner subsidiaries are related to their corporate parent also via directed edges. 

The complex system on the far left illustrates that a corporate parent can directly own 

hospitals and practices as well as owning owner subsidiaries that in turn own hospitals 

and/or practices. The other complex system illustrates that a corporate parent need not 

directly own any health units. Systems can also consist entirely of hospitals or practices 

while the later can be independent.
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Figure 2: 
Histograms of the number of hospitals (top) and practices (bottom) per corporate owner. The 

number of corporate owners with 30 or more hospitals equals 13 (0.86%) while the number 

with 30 or more practices equals 36 (2.38%).
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Figure 3: 
The probability of survey responses from each of the corporate owner [corporate parent 

(top), owner subsidiary (bottom)] and at least one hospital and one practice directly under it 

as a function of the response rate. The sampling schemes are the coupled sampling strategy 

and two comparator schemes: non-coupled sampling with the same overall organization-type 

allocation as for coupled sampling and equal probability completely random sampling of all 

units.
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Figure 4: 
The probability of survey responses from each of the corporate owner and at least one of its 

hospitals and at least one of its (top) and the same but from both the corporate parent and at 

least one of its owner subsidiaries (bottom) as a function of the response rate. The sampling 

schemes are the coupled sampling strategy and two comparator schemes: non-coupled 

sampling with the same overall organization-type allocation as for coupled sampling and 

equal probability completely random sampling of all units.
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Figure 5: 
The probability of a survey response from at least one OS (top) of a CP and the overall 

proportion of OS surveys returned (bottom) as a function of the response rate for three 

different sampling schemes. The sampling schemes are coupled sampling and two null or 

control schemes: non-coupled sampling with the same overall organization-type allocation 

as for coupled sampling and equal probability completely random sampling of all units.
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Table 1:

Characteristics of Sampling Design Across the Four Major Types of Organizations

Organization
Type

System Characteristics

Surveys 
to

Expend

Corporate Parent Owner 
Subsidiary

Hospital & 
Practice

N 
Hospitals

N 
Practices

N 
Own 
Sub

N % 
Sampled

N % 
Sampled

N % 
Sampled

Indep Hospital 1 0 0 1 1034 9.7 0 0 1034 9.7

Ind. Practice 0 1 0 1 7710 10.4 0 0 7710 10.4

Simple System 1.3 4.3 0 5.2 957 45.7 0 0 5422 40.7

Complex System 12.6 21.8 2.4 21.7 164 68 390 45.4 5646 33
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Table 2:

Characteristics of Sampling Design for Complex Systems Across Deciles of Their Complexity Score

System
Decile

System Characteristics Surveys to
Expend

Corporate Parent Owner Subsidiary Hospital & Practice

N Hospitals N Practices N Own Sub N % Sampled N % Sampled N % Sampled

1 1.3 3.1 1 6.3 14 29.1 14 29.1 62 28.7

2 1.6 5.8 1 8 12 38.6 12 38.5 88 31.5

3 2.7 6.1 1.1 9.3 19 44.8 21 41 166 35.7

4 3.5 10 1.1 11.7 21 54.4 23 50.1 282 38.1

5 6.6 12.3 1.2 13.8 14 66 17 55.4 264 39

6 9.4 16.4 1.2 15.5 12 77.9 15 64.1 310 38.8

7 8.3 19.8 1.3 17.7 19 80.3 24 67.9 534 42.2

8 10.9 23.3 2.1 21.8 19 85.6 40 50.7 650 39.7

9 13.4 43.1 3.3 30.3 16 93.8 53 45.4 903 32

10 62.3 70.3 9.5 74.4 18 98.5 171 40.2 2387 27.5
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Table 3A:

Characteristics of Sampling Design by Complexity Score Contribution from Hospitals

Number of
Hospitals

System Characteristics Surveys to
Expend

Corporate Parent Hospital & Practice

N Hospitals N Practices N Own Sub N % Sampled N % Sampled

0 0 6.1 0 4.8 602 45.3 3681 32.1

1 1 2.8 0.1 4.2 377 37.8 1421 37

2 2 3.2 0.2 5.2 196 44.3 1019 42.4

3 3 4.8 0.2 6.7 92 51.9 717 42.2

4 4.4 5.7 0.5 8.2 100 63.4 1006 48.4

5 7.4 8.5 1.2 10.1 90 73.4 1431 43.8

6 13.7 9.7 1.3 11.2 39 81.9 914 36.2

7 27.6 13.1 4.9 13.2 11 96.5 448 29

8 54.5 12.5 6.5 14.5 2 99 134 20

9 81 4 0 14 1 100 85 15.3

10 179 33 13 18 1 100 212 8

Note: The component of the complexity score for hospitals is a monotone function of the number of hospitals
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Table 3B:

Characteristics of Sampling Design by Component Score Contribution from Practices

Number of
Practices

System Characteristics Surveys to
Expend

Corporate Parent Hospital & Practice

N Hospitals N Practices N Own Sub N % Sampled N % Sampled

0 3 0 0.4 3.7 125 37.5 372 49.3

1 2 1 0.1 3.7 246 33.3 740 45.1

2 0.8 2 0.2 3.8 284 33.7 806 48

3 1.5 3 0.1 5 177 41.3 788 49.6

4 2 4.4 0.2 6.1 251 49.2 1597 50.1

5 2.4 7.5 0.3 7.6 232 62.5 2302 49.7

6 3.7 13.9 0.6 9.1 139 78.3 2440 41.6

7 7.3 25.2 0.8 10.4 52 89 1695 28.7

8 9.3 42.7 0 11.7 3 95 156 21.5

9 7.5 78.5 1.5 13 2 99 172 15

10 0

Note: The component of the complexity score for practices is a monotone function of the number of practices
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