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Summary.

We consider modeling and Bayesian analysis for panel-count data when the termination time for 

each subject may depend on its history of the recurrent events. We propose a fully specified 

semiparametric model for the joint distribution of the recurrent events and the termination time. 

For this model, we provide a natural motivation, derive several novel properties, and develop a 

Bayesian analysis based on a Markov chain Monte Carlo algorithm. Comparisons are made to 

other existing models and methods for panel-count data. We demonstrate the usefulness of our 

new models and methodologies through the reanalysis of a data set from a clinical trial.

Résumé
Nous considérons la modélisation et l’analyse bayésienne pour des données de dénombrements 

groupés quand le temps de terminaison de chaque sujet peut dépendre de l’historique des 

événements récurrents. Nous proposons un modèle semi-paramétrique complètement spécifié pour 

la distribution jointe des événements récurrents et le temps de terminaison. Pour ce modèle, nous 

fournissons une motivation naturelle, dérivons plusieurs propriétés nouvelles et développons une 

analyse bayésienne basée sur un algorithme de Monte-Carlo par chaînes de Markov. Des 

comparaisons sont effectuées avec d’autres modèles et méthodes pour des dénombrements 

d’événements groupés. Nous montrons l’utilité de nos nouveaux modèles et méthodologies par la 

ré-analyse des données d’un essai clinique.
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1. Introduction

Grouped recurrent event times data, popularly called panel-count data, occur when a subject, 

inspected over time only at scheduled time points 0 = a0 < a1 < ⋯ < aJ, may experience 

repeated occurrences of an important but possibly nonfatal event. Suppose Ni(t) denotes the 
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number of nonfatal events experienced by subject i up to time t. The number of new 

recurrent events Nij = Ni(aj) – Ni(aj−1) to subject i occuring in the inspection interval Ij = 

(aj−1, aj] is recorded until the termination time Ti, when the subject is removed from 

observation either due to an adverse response such as detection of a relapse to malignancy or 

due to a positive response such as cure. We are assuming that the inspection times are the 

same for all subjects and Ti is discrete and take values only a1, … , aJ. Let xi be the 

explanatory variable for subject i. We use the notation D = {Nij : j = 1, … , Ti; xi; Ti : i = 1, 

… , n} to denote the observed panel-count data.

See Gail, Santner, and Brown (1980), Oakes (1982), Sinha (1993), Scheike and Zhang 

(1998), Sun and Wei (2000), and the references therein for different examples of panel-count 

data from various clinical trials and animal experiments. Earlier works on modeling panel-

count data often assumed that given the covariate x of the subject, the risk of termination at 

any time point t does not depend on the past history of nonfatal events N t . But, this 

assumption will not be valid when, say, the termination is caused by either a significant 

positive response (say, cure or discharge from the treatment) or a negative response (such as 

relapse to malignancy). This risk of termination is often associated with the history of 

nonfatal events. For the bladder cancer data example (Sun and Wei, 2000) from the Veterans 

Administration Cooperative Urological Research Group (VACURG), the time-independent 

covariates available for each patient are a binary variable indicating treatment (1 for 

treatment thiotepa and 0 for placebo), number of tumors at entry, and the size of the largest 

tumor at entry. After the surgery to remove his/her primary tumor, each patient was 

monitored every month during scheduled clinic visit for number of new (since the previous 

clinic visit) superficial bladder tumors. A patient was terminated from further observation 

during a particular clinic visit probably due to clinically significant improvement of his/her 

disease symptoms. As the treatment (thiotepa and placebo) had to be instilled in the bladder, 

we can expect that a patient who is very prone to superficial bladder tumors is also expected 

to take longer than usual time to termination. A previous analysis of this data ignored the 

possible association between the risk of termination and the history of superficial tumors. 

Unlike the previous analysis, we treat both the event of termination (cure) and the recurrent 

events of superficial tumors as important responses.

Various methods of panel-count data and recurrent event times data, published so far, have 

put high emphasis on partially specified models. In such work, the model and associated 

inferential procedure depend on the particular underlying inferential objective, which can be 

of the following four types: (1) inference about N(t) (e.g., Sun and Wei, 2000), under the 

assumption that given x, the process N(t) is independent of T; (2) marginal inference about 

N(t) unconditional on the past history of events (e.g., Wang, Qin, and Chang, 2001); (3) 

inference about T given the history of N(·); and (4) inference about the termination 

modulated process N(t)l[T≤t] (e.g., Ghosh and Lin, 2000), where 1A is the indicator function.

In many applications, it may be desirable to have a fully specified model which can be used 

for addressing all four objectives together within a unified statistical analysis and also 

perform prediction, model diagnostic, simultaneous inferences on multiple parameters, etc. 

Especially when both the nonfatal events and the termination are deemed as important 

responses, and the termination depends on the history of nonfatal events, addressing each 

Sinha and Maiti Page 2

Biometrics. Author manuscript; available in PMC 2021 February 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



objective through separate analysis may be misleading. The results of the analysis of 

different partially specified models focusing on different objectives may conflict with each 

other and may be difficult to unify. Our aim is to develop and analyze a fully specified 

stochastic model of the joint distribution of the nonfatal events and the termination time. 

This new model also allows us to understand the prognostic values of the history of nonfatal 

events for evaluating the risk of termination.

A fully parametric model by Lancaster and Intrator (1998), here onward referred to as the LI 

model, allows only positive dependence between a subject’s history of nonfatal events and 

risk of termination. Our model represents a much broader class than the LI model and we 

can incorporate a negative association between N(t) and T. The data example discussed in 

this article may require a negative association between N(t) and T. The details of the 

comparison between our model and the LI model are given later. Recently introduced class 

of models for panel-count data in animal carcinogenicity experiments (e.g., Dunson, 2000) 

also do not incorporate the association between T and N(t).

In Section 2, we present a fully specified stochastic model for panel-count data with a 

dependent termination process. We present novel properties of our model and relationship of 

our model to other existing models for recurrent events data. Existing Bayesian literature on 

panel-count data is very limited. See Ibrahim, Chen, and Sinha (2001) for a current literature 

survey on Bayesian survival analysis. One of our goals is to demonstrate the use and 

advantages of the Bayesian paradigm for such problems. In Section 3, we present the 

likelihood of our model and associated Bayesian methods for analyzing such data. In 

Section 4, our methodology is illustrated with the analysis of panel-count data from the 

bladder cancer study from Sun and Wei (2000). In Section 5, we conclude our article with 

some closing remarks.

2. Model for Panel-Count Data

We assume that each Ni(t) is a realization of a compound nonhomogeneous Poisson process 

(Karlin and Taylor, 1981). Given the subject-specific unobservable frailty wi, the cumulative 

number of nonfatal events to the subject i, under observation at time t (that is, Ti ≥ t) is given 

by

Ni t ∣ xi, wi Poi μ0 t exp β1xi wi , (1)

where μ0(t) is the baseline cumulative intensity and β1 is the regression parameter of the 

covariate effect on the conditional intensity in (1). Here w1, … , wn are assumed to be 

independent Ga(η, η) with common density g(w | η) = ηηwη−1e−ηw/Γ(η). The mean of wi is 

taken to be unity to assure the identifiability of the model parameters and the variance of wi 

is κ = η−1. We assume that κ > 0 to exclude the oversimplified situation when, within the 

same subject, the increments of N(t) in disjoint intervals are independent. A finite mean 

frailty distribution is warranted here to assure a finite expected number of events within any 

finite time interval.
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The model further assumes that the hazard of Ti at time t depends on the history of point 

process Ni t = Ni s :s < t  via the unobservable frailty wi. We use a discretized version of 

the Cox model (Cox, 1972),

P T i = aj ∣ xi, wi, Ni aj , T i > aj − 1 = 1 − πj
exp β2xi wiα, (2)

where β2 is the regression parameter and πj = P T = aj ∣ x = 0, w = 1, N t , T > aj − 1  is the 

discretized baseline conditional hazard rate.

Here, −∞ < α < + ∞ quantifies the nature of dependence between Ni t  and the hazard of 

Ti. When α = 0, we have P Ti = aj ∣ xi, Ti > aj − 1, Ni t  free of Ni t  and we get the model 

of Sinha (1993), where the hazard of Ti at time t is assumed independent of Ni t . When α > 

0, there is positive association between Ni and Ti, that is, given the same value of xi, a 

subject with a higher rate of nonfatal events has a higher risk of termination than another 

with a lower rate of nonfatal events. Similarly, α < 0 indicates a negative relationship 

between Ti and Ni. When α > 1, the variability of termination times are more than the 

heterogeneity of subjects in terms of their rates of nonfatal events and 0 < α < 1 implies the 

opposite. Again, α = 1 implies that the heterogeneity among subjects in terms of rates of 

nonfatal events is the same as the heterogeneity in terms of their termination times. When α 
= 1 and πj = exp[−ρ{μ0(aj) – μ0(aj−1)}], we get the LI model (Lancaster and Intrator, 1998). 

This shows that the LI model allows only positive association and has a restrictive 

assumption of a very precise algebraic relationship between πj and μ0. We investigate some 

further useful and desirable properties of our model.

Theorem 1.

The conditional risk of termination, P Ti = aj ∣ Ni aj , xi, Ti > aj − 1 , depends on the events 

history Ni aj  only through the cumulative number of events Ni(aj). For the special case α = 

1,

P T i = aj ∣ Ni aj , xi, T i > aj − 1

= 1 − 1 −
πj

exp β2xi

exp β1xi μ0 aj − exp β2xi log Sj

η + N aj
,

(3)

where Sj = ∏k = 1
j πk.

The proof of Theorem 1 is given in the Appendix. Please note that Theorem 1 is very 

different from Implications 1–3 in Lancaster and Intrator (1998). When α ≠ 1, we can 

numerically evaluate the quantities P Ti = aj ∣ Ni aj , xi, Ti > aj − 1  and P[Ti = aj | xi, Ti > 

aj−1], but no closed form expressions of these quantities are available. Unlike the model of 

Wang et al. (2001), P(Ti = aj | xi, Ti, > aj−1) in our model does not follow a discretized Cox 

structure. We present the following theorem about the conditional distribution of nonfatal 

events in any interval given past history of events.
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Theorem 2.

The conditional distribution of Nij | xi, Ni aj − 1 , Ti > aj−1 depends on Ni aj − 1  only 

through the Ni(aj−1). For the case α = 1, this distribution is a generalized negative binomial 

with conditional expectation

E Nij ∣ Ni aj − 1 , xi, T i > aj − 1

= η + Ni aj − 1
exp β1xi μ0 aj − μ0 aj − 1

η + exp β1xi μ0 aj
. (4)

The proof is given in the Appendix. The result in (4) is similar to the property of the model 

proposed by Oakes (1982). These two theorems also demonstrate that our model is very 

different from the modulated renewal process of Oakes and Cui (1994). For α ≠ 1, no such 

simple expression exists for E Nij ∣ Ni aj − 1 , xi, Ti > aj − 1 , but, these can be numerically 

computed given the parameter values. Following the steps similar to the derivation of (4), we 

can also numerically evaluate E[Nij | xi, Ti > aj−1]. The details are omitted here. These 

demonstrate that through our fully specified model along with Bayesian analysis, we can 

estimate different important model quantities of interest using a single unified inference 

procedure.

3. Likelihood and Posterior

It follows from (1) that, given wi, Nij for j = 1, … , J are independent Poi{wiexp(β1xi)/μj}, 

where μj = μ0(aj) – μ0(aj−1) and Poi(γ) denotes the Poisson distribution with mean γ. The 

likelihood based on the sampling distributions of the Nij is

L1 β1, μ0, w ∣ D ∝ ∏
i = 1

n
∏

j ∈ Mi
eβ1xiwiμj

Nijexp −eβ1xiwiμj , (5)

where Mi, is the set of inspection intervals when the subject i is under observation. Using 

(2), we obtain the likelihood based on the sampling distributions of the T1, … , Tn as

L2 β2, π, w ∣ D ∝ ∏
i = 1

n
1 − π i

wiαexp β2xi S i
exp β2xi wiα, (6)

where ti = a(i) ∈ {a1, … , aJ} is the termination time of the subject i and S i = ∏k = 1
i − 1πk. In 

(2), we use a discretized Weibull baseline hazard rate πj = exp −λj ajν − aj − 1
ν , with 

unknown parameter vector ϕ = (λ, ν). This model on πj allows for a very wide class for the 

hazard. In principle, it is possible to use a more flexible model with completely unspecified 

πj.

The observed data likelihood L0(β1, β2, α, ϕ, η | D) is obtained via the multiple integration 

L0 β1, β2, α, ϕ, η ∣ D ∝ ∫ L1 × L2 × g w ∣ η ∏i = 1
n dwi, where g(w | η) is the joint density of w = 

(w1, … , wn) given η. We present a semiparametric Bayes survival analysis approach (e.g., 

Sinha and Dey, 1997; Ibrahim et al., 2001) using a prior process to summarize the prior 
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information on μ0(·) and a prior distribution for the rest of the parameters. We assume that 

the prior information about μ0(t) is independent of the prior information about the rest of the 

parameters, π(μ, β, η, ϕ, α) = π(μ) × π(β, η, ϕ, α). As (5) involves μ0 only through (μ1, … , 

μJ), we only need the joint prior density of the increments (μ1, … , μJ). Using an independent 

increment gamma process prior (Kalbfleisch, 1978) on μ0(t) we have the prior distribution μj 

~ Ga(cγj, c) with independence for j = 1, … , J. The joint prior density of the increments is 

given by

π μ = ∏
j = 1

J ccγjμj
cγj − 1

Γ cγj
exp −cμj . (7)

The hyperparameters, c and γj’s, assumed to be known here, are determined by the prior 

expectation (mean) and the precision of the prior expectation of μ0(t). But, it is possible to 

put another level of hierarchy in this model using a hyperprior for (c, γ).

The joint posterior for our model is given by

p β, w, η, ϕ, α ∣ D ∝ L1 β1, μ, w ∣ D × L2 β2, ϕ, w ∣ D × g w ∣ η × π β, ϕ, η, α
× π μ , (8)

where g w ∣ η = ∏i ηηwi
η − 1exp −wiη /Γ η  is the product of gamma frailty densities and 

π(β, ϕ, η, α) is given below. Instead of dealing with complicated L0((β1, β2, α, ϕ, η | D), we 

use popular MCMC tools (e.g., Chen, Ibrahim, and Shao, 2000) to sample from (8) and then 

use those samples to do the posterior inference. For practical convenience, we further 

assume that

π β, η, ϕ, α = π β1 × π β2 × π ϕ × π η × π α . (9)

This assumption is reasonable, as β1 and β2 are the parameters associated with effects of 

covariate x, respectively, on N(t) and on T. In many practical applications, the priors on β1 

and β2 will be very noninformative to balance both the skeptical and the enthusiastic views 

about the effects of covariates such as assigned treatments. It is also a common practice to 

assume priors on baseline functions μ and π to be independent of the rest of the parameters. 

As we can expect to have independent expert opinions about two different types of events 

N(·) and T, we have the assumption of mutual independence between the set of parameters 

associated with N(·) and the set associated with T. The prior belief on α, the parameter 

quantifying the association between the two types of events, is expected to be obtained 

independently from others. The parameter π(α) is assumed to be N(α0, σ3) with α0 = 0 as 

we do not know a priori whether the association between the two classes of events should be 

either positive or negative. For further convenience we use N(β10, σ1) for π(β1), N(β20, σ2) 

for π(β2), and Ga(λ | A1, B1) × Ga(ν | A2, B2) for the density of π(ϕ). We are choosing the 

forms of the priors that are flexible, yet facilitate easy-to-sample conditional posteriors at 

each iteration of the MCMC. We would like to emphasize that if needed, MCMC is very 

capable of handling more complicated prior structures such as a multivariate π(β, η, ϕ, α) 

inducing prior dependencies among the parameters.
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The full conditional distributions for the MCMC steps are given as follows using the 

notation [θ | rest] to denote the conditional distribution of ϕ given all other parameters:

I. μj rest Ga τΛj + ∑iNijV ij, τ + ∑iwiexp β1xi V ij

II. λ ∣ rest Ga m + 1 + A1, B1 + ∑i tiνwiαexp β2xi

III. ν ∣ rest ∝ ∏iνtiν − 1exp −λtiνwiαexp β2xi × π ν

IV. β1 ∣ rest ∝ exp ∑iβ1xi∑jNijV ij − ∑iwiexp β1xi ∑jμjV ij × π β1

V. β2 ∣ rest ∝ exp ∑iβ2xi − λtiνwiαexp β2xi × π β2

VI. η ∣ rest ∝ ∏i ηη/Γ η wi
η − 1exp −η wi × π η

VII. wi ∣ rest ∝ wi
ΣjNijV ij + α + η − 1 × exp −wi exp β1xi ∑jμjV ij + η

− λwiαtiνexp β2xi

VIII. α ∣ rest ∝ ∏iwiαexp −λwiαtiνexp β2xi × π α .

Here Vij is the indicator variable of whether subject i is examined at time aj. Except for μj 

and λ, all other conditional densities are not in standard form. Fortunately, the conditional 

densities for β1, β2, η, v, and α are log concave. So, a readily available software program for 

the adaptive rejection sampling method (Gilks and Wild, 1992) has been used to sample 

from these log-concave densities. To avoid lengthening the article, the proofs of their log 

concavities are omitted. Notice that the conditional density of each wi is proportional to f(w) 

× h(w), where f(w) is proportional to gamma density function and h(w) is a bounded 

function. To sample wi’s, we have used a Metropolis-Hastings algorithm with acceptance 

probability r(wold, wnew) = min[{h(wnew)/h(wold)}, 1]. Here, wnew is the candidate value 

simulated from f(w) and wold is the current value of wi at this iteration. In particular we have 

used 10 Gibbs chains with 20,000 iterations in each chain. To monitor the convergence of 

MCMC, we have checked that the estimated scale reduction factor R of Gelman and Rubin 

(1992) is less than 1.2 for each of the parameters. This is a very popular and easy method to 

monitor the convergence of the MCMC algorithm. We have also checked several other 

convergence diagnostics of the MCMC using the publicly available software package CODA 

(Best, Cowles, and Vines, 1995).

4. Analysis of the Bladder Cancer Data

We reanalyze the bladder cancer data from the VACURG (Sun and Wei, 2000), allowing a 

possible association between the history of superficial tumor occurrences and the risk of 

termination. The data set is available at the website www.blackwellpublishers.co.uk/rss. We 

use only the binary regression variable treatment in our model. For each patient, some of the 

monthly clinic visits (before termination) have missing observations as the patients have 

missed some of their clinic visits. We assume here that patterns of missed clinic visits are 

noninformative in the sense that the probability of a patient missing a particular clinic visit 

does not depend on the unobserved number of tumors in that month. This assumption of 

missing at random (Little and Rubin, 1987) may not be valid for this data example, but the 

Sinha and Maiti Page 7

Biometrics. Author manuscript; available in PMC 2021 February 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.blackwellpublishers.co.uk/rss


patterns of missing data and methodologies dealing with them are beyond the scope of this 

article. To accommodate missing counts in some of the months, the set Mi in (5) should 

contain only those months when subject i has been observed to have his/her scheduled clinic 

visits.

Hyperprior specification:

We have used zero mean and high variance (1000) for the regression parameters β1 and β2 to 

reflect our prior opinions of no covariate effects on the rate of nonfatal events as well as on 

the risk of termination. Because we do not have prior input from any expert, we are using 

diffuse priors for β1 and β2 and similar diffuse priors later for other parameters. We have 

noticed that our analysis is not sensitive to the choice of the values of the hyperparameters as 

long as the priors remain sufficiently diffuse.

For hyperparameters τ = 1/c and γ1, … , γJ associated with the gamma process in (7), we 

take τ = 5.0 and γj = γ0 aj − γ0 aj − 1 = 0.01 × aj − aj − 1 . These choices imply that the 

prior guess for μj is 0.01 × aj − aj − 1  and the precision of the prior guess is very low, c = 

0.2 (or variability of the prior guess is 5.0). Our choice of the hyperparameters reflects our 

prior belief, although a very weak one, that the overall rate of superficial tumors is slightly 

higher than 0.01 per unit time. The selection of such a diffuse prior process allows the 

conclusion to be driven by the likelihood.

Table 1 presents the results of our data analysis. The posterior estimate of β2 is 0.0427, 

indicating a slight increase in risk of drop-out due to cure (positive response). There is not 

much evidence for the treatment effect on termination time because the 95% credible 

interval for β2 contains zero. There is, however, good evidence that thiotepa reduces the rate 

of superficial tumors as the 95% credible interval of β1 is (0.538, 2.77). Please note that the 

posterior standard deviation (0.507) of β1 is around 10% larger than the standard error of the 

corresponding estimate of Sun and Wei (2000). But, unlike the previous analysis, the 

standard deviation of the marginal posterior does take care of the additional uncertainty in 

the posterior estimate of a parameter due to the presence of the rest of the parameters of the 

model.

The posterior mean of α is negative, indicating some evidence of negative association 

between {N(t)} and T. So, the patients who are more prone to superficial tumors are likely 

to be terminated later (longer follow-up times). But, the evidence for negative α is not strong 

as the 95% credible interval for α contains zero. There is also strong evidence that the 

baseline hazard rate for the termination is increasing over time (that is, ν is positive). The 

results of our Bayesian analysis are in general agreement with the findings of Sun and Wei 

(2000).

Model validation:

Model validation diagnostics are very important in Bayesian survival analysis (Sinha and 

Dey, 1997; Ibrahim et al., 2001). We developed a method for model validation for panel-

count data via a Bayesian cross-validated residual called the conditional predictive ordinate 
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(CPO). The cross-validated posterior predictive probability evaluated at the observed data 

from patient i is given as

CPO i = P Ni = Ni, obs, T i = ti ∣ D −i

= E P Ni = Ni, obs, T i = ti ∣ θ −1 ∣ D −1,
(10)

where D(−i) is the observed data with the patient i removed, θ = (μ, β1, β2, η, α, λ, ν) is the 

set of parameters of the model, and Ni = Ni1, …, NiTi . The final expression of the CPO in 

(10) follows from a result of Gelfand, Dey, and Chang (1992). This expression actually 

enables us to use the samples from the posterior p(θ | D) to compute the CPO using the 

following Monte Carlo integration algorithm:

Step 1: Simulate from θl l = 1
M  from p(θ | D) MCMC;

Step 2: For each θl, simulate wib b = 1
B  from p(wi | θl, D) for i = 1, … , n;

Step 3: For l = 1, … , M, compute P(Ni = Ni,obs, Ti = ti | θl) using 
1
B ∑b = 1

B P Ni = Ni, obs ∣ θ, wib P T = ti ∣ θi, xi, wi ;

Step 4: Finally, compute CPO i = 1/M ∑i = 1
M 1/P Ni = Ni, obs, Ti = ti ∣ θl

−1
.

As they are probabilities, the CPOs lie between 0 and 1 and a higher value of the CPO 

implies a better agreement between the model and the observation. Typically, CPOs are 

plotted against their covariate values to check whether the CPO values have any relationship 

with the covariates. Figure 1 presents the plot of the CPO of each subject versus the 

corresponding termination time. Figure 1 also uses separate symbols for 47 subjects 

corresponding to the placebo group and the rest corresponding to the treatment group. From 

this plot, there appears to be neither evidence of any possible outlier nor evidence of a 

treatment-dependent pattern. The pattern of CPOs does not appear to depend on the 

termination times. This plot suggests that our model fits the data adequately.

Prediction:

Please note that one of the major advantages of a Bayesian analysis is that one can compute 

the predictive distributions of nonfatal events and termination time of a future patient given 

the values of his/her covariate x. The steps for simulating termination time T and number of 

events until termination N(T) of a future patient are very similar to the computation of CPO 

in the last paragraph:

Step 1: Simulate θl l = 1
M  from p(θ | D) using MCMC;

Step 2: For each θl, simulate wl from Ga(w | ηl);

Step 3: For l = 1, … , M, simulate Tl using P Tl = aj x, wl, θl = 1 − πjl
exp β2lx wl;

Step 4: Finally, simulate N(Tl) from Poi{μ0l(Tl)exp(β1lx)wlx}.

These {T1, N(T1)}, … , {TM, N(TM)} are MCMC samples from the bivariate predictive 

distribution of {T, N(T)} of a future patient with covariate value x. Now these MCMC 
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samples can be used to compute different quantities (e.g., mean, median, standard deviation, 

prediction interval, etc.) related to the predictive distributions of T and N(T).

5. Remarks

5.1 Censoring of the Termination

In many data examples encountered in practice, the termination time Ti may be subjected to 

right-censoring. Typically, the censoring time Ci is assumed independent of Ti and we 

further assume that risk of Ci does not depend on events history. To allow possible right-

censoring, we need a straight-forward modification of L2 in (6) as

L2 β2, π, w ∣ D

∝ ∏
i = 1

n
1 − π i

wiαexp β2xi
δi

π i
1 − δi wiαexp β2xi S i

exp β2xi wiα, (11)

where the observed ti = a(i) ∈ {a1, … , aJ} is the minimum of termination time Ti and 

censoring time Ci, and δi = 1 ti = Ti  is the indicator of censoring of termination for subject i. 

Our methodology can accommodate this case with this minor modification of the likelihood 

and without any major modification of the MCMC tool.

A potentially serious censoring problem may arise when Ti is actually continuous, but only 

observed as interval censored within the grid intervals a1 < a2 < ⋯ < aJ. Treating Ti as 

discrete when Ti is in reality only interval censored may give us biased inference, and the 

level and direction of bias in the inference are, at this point, unknown.

5.2 Comparison to LI Model

The LI model (Lancaster and Intrator, 1998), developed in the context of modeling the joint 

distribution of hospitalization rate and death in AIDS patients, assumes that the counting 

process N(t) (hospitalizations) occurs as a compound Poisson process and each 

hospitalization has a fixed (but unknown) probability of causing the termination (death). Due 

to the structure of the LI model, only positive association between rate of N(·) and risk of T 
is allowed. The assumption of discrete T is not very credible when the termination event is 

death. In Lancaster and Intrator (1998), T was assumed to be equal to one of a1, … , aJ. For 

a patient with T ∈ Ij = (aj−1, aj], the increment Nj = N(aj) – N(aj−1) is informative about T – 

aj–1 (length of interval-censored part of T) and ignoring the difference aj – T in the 

likelihood may bias the inference. Neither the LI model nor our model can describe 

accurately a situation with continuous termination time, as we need to use an approximation 

where the termination time is interval censored and the number of hospitalizations in the last 

observation interval can be informative about the exact termination time within the interval. 

For many data examples including the VACURG data, the termination event is not 

necessarily a random consequence of a nonfatal event, and there are cases when a history of 

higher rates of nonfatal events implies an expected delay in the favorable termination event 

such as the cure or discharge from hospital. The LI cannot accommodate this kind of 

negative relationship between recurrent events history and risk of termination.

Sinha and Maiti Page 10

Biometrics. Author manuscript; available in PMC 2021 February 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgements

The authors would like to thank the referee and the associate editor for helpful comments that greatly improved the 
presentation. Dr Sinha’s research was partially supported by NCI grant R01-CA69222. Dr Maiti’s research was 
partially supported by NSF grant SES-0221857.

Appendix

Proof of Theorem 1.

The conditional discrete hazard of the termination event given the nonfatal events history 

N aj  is given by

P T = aj ∣ N aj , x, T > aj − 1 =
P T = aj, N aj ∣ x

P T > aj − 1, N aj ∣ x

=
∫ Sj − 1

wαexp β2x 1 − πj
wαexp β2x wN aj exp −wμ0 aj eβ1x g w ∣ η dw

∫ Sj − 1
wαexp β2x wN aj exp −weβ1xμ0 aj g w ∣ η dw

,

where g(w | η) is the Ga(η, η) density of the frailty w. The above integral expressions are 

derived from the sampling distribution of N aj  in (1) and the conditional hazard in (2). The 

rest of the proof follows from here.

Proof of Theorem 2.

Let us define the vector (N1, … , Nj)—the vector of number of nonfatal events to a subject in 

first j intervals. Also, note that N(aj−1) = N1 + ⋯ + Nj−1. Then,

P Nj = m ∣ N aj − 1 , T > aj − 1, x

=
P Nj = m, T > aj − 1, N aj − 1 ∣ x

P T > aj − 1, N aj − 1 ∣ x

∝ ∫0
∞

P Nj = m, N aj − 1 = N1, …, Nj − 1 ∣ w P T > aj − 1 ∣ w g(w ∣ η)dw

∝ ∫0
∞

Sj − 1
wαexp β2x wN aj − 1 + m

m! × exp −wμ0 aj eβ1x g(w ∣ η)dw .

Note that the above probability needs to be evaluated only up to the normalizing constant as 

a function of m. The rest of the proof follows from here.
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Figure 1. 
Plot of termination time versus CPO for each patient: ○ for treatment and Δ for placebo.
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Table 1

Summary of posterior analysis

Parameter Mean SE 95% Credible interval

β1 −1.491 0.507 (−0.538, −2.77)

β2 0.0427 0.229 (−0.401, 0.580)

α −0.0137 0.0295 (−0.081, 0.037)

η 0.1313 0.0298 (0.0817, 0.1968)

ν 2.192 0.1849 (1.778, 2.546)

λ 0.0006 0.0005 (0.0001, 0.0019)
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