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Abstract

Importance

Intensity and duration of the COVID-19 pandemic, and planning required to balance con-

cerns of saving lives and avoiding economic collapse, could depend significantly on whether

SARS-CoV-2 transmission is sensitive to seasonal changes.

Objective

Hypothesis is that increasing temperature results in reduced SARS CoV-2 transmission and

may help slow the increase of cases over time.

Setting

Fifty representative Northern Hemisphere countries meeting specific criteria had sufficient

COVID-19 case and meteorological data for analysis.

Methods

Regression was used to find the relationship between the log of number of COVID-19 cases

and temperature over time in 50 representative countries. To summarize the day-day vari-

ability, and reduce dimensionality, we selected a robust measure, Coefficient of Time (CT),

for each location. The resulting regression coefficients were then used in a multivariable

regression against meteorological, country-level and demographic covariates.

Results

Median minimum daily temperature showed the strongest correlation with the reciprocal of

CT (which can be considered as a rate associated with doubling time) for confirmed cases

(adjusted R2 = 0.610, p = 1.45E-06). A similar correlation was found using median daily

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0246167 February 17, 2021 1 / 16

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Kaplin A, Junker C, Kumar A, Ribeiro MA,

Yu E, Wang M, et al. (2021) Evidence and

magnitude of the effects of meteorological changes

on SARS-CoV-2 transmission. PLoS ONE 16(2):

e0246167. https://doi.org/10.1371/journal.

pone.0246167

Editor: Eric HY Lau, The University of Hong Kong,

CHINA

Received: June 10, 2020

Accepted: January 14, 2021

Published: February 17, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0246167

Copyright: This is an open access article, free of all

copyright, and may be freely reproduced,

distributed, transmitted, modified, built upon, or

otherwise used by anyone for any lawful purpose.

The work is made available under the Creative

Commons CC0 public domain dedication.

Data Availability Statement: The manuscript

describes where all data was obtained, and all data

is publicly available (see links below). We have also

included an URL to excel files where all of the data

https://orcid.org/0000-0002-5196-7647
https://orcid.org/0000-0002-5037-9026
https://orcid.org/0000-0002-2567-5042
https://orcid.org/0000-0002-8377-353X
https://doi.org/10.1371/journal.pone.0246167
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0246167&domain=pdf&date_stamp=2021-02-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0246167&domain=pdf&date_stamp=2021-02-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0246167&domain=pdf&date_stamp=2021-02-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0246167&domain=pdf&date_stamp=2021-02-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0246167&domain=pdf&date_stamp=2021-02-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0246167&domain=pdf&date_stamp=2021-02-17
https://doi.org/10.1371/journal.pone.0246167
https://doi.org/10.1371/journal.pone.0246167
https://doi.org/10.1371/journal.pone.0246167
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/


dewpoint, which was highly colinear with temperature, and therefore was not used in the

analysis. The correlation between minimum median temperature and the rate of increase of

the log of confirmed cases was 47% and 45% greater than for cases of death and recovered

cases of COVID-19, respectively. This suggests the primary influence of temperature is on

SARS-CoV-2 transmission more than COVID-19 morbidity. Based on the correlation

between temperature and the rate of increase in COVID-19, it can be estimated that,

between the range of 30 to 100 degrees Fahrenheit, a one degree increase is associated

with a 1% decrease—and a one degree decrease could be associated with a 3.7% increase

—in the rate of increase of the log of daily confirmed cases. This model of the effect of

decreasing temperatures can only be verified over time as the pandemic proceeds through

colder months.

Conclusions

The results suggest that boreal summer months are associated with slower rates of COVID-

19 transmission, consistent with the behavior of a seasonal respiratory virus. Knowledge of

COVID-19 seasonality could prove useful in local planning for phased reductions social

interventions and help to prepare for the timing of possible pandemic resurgence during

cooler months.

Introduction

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is a newly-identified envel-

oped, non-segmented, positive sense RNA virus. It is responsible for Coronavirus Disease

2019 (COVID-2019), which was designated a pandemic by the World Health Organization

(WHO) on March 11, 2020 [1]. SARS-CoV-2 belongs to a large family of human corona

viruses such as MERS-CoV and SARS-CoV-1, which are respiratory pathogens associated with

a range of respiratory and non-respiratory outcomes. Like other respiratory infectious agents,

most coronaviruses display marked seasonality [2]. Seasonality in respiratory viruses is charac-

terized by increased transmission in cooler, less humid months and decreased transmission in

warmer and more humid months. It has been demonstrated in the laboratory that for most

respiratory viruses, including Influenza, SARS-CoV-1 and SARS-CoV-2, the stability of the

envelope surrounding and protecting these viruses is temperature sensitive—degrading more

rapidly at higher temperatures and showing increased stability at cooler temperatures [3]. In

addition to temperature, the transmission of respiratory viruses demonstrating seasonality are

also impacted by humidity, where lower humidity leads to smaller droplets that are more vola-

tile and capable of lodging deeper in the lung [3]. Usually, rather than humidity, dewpoint is

substituted instead in meteorological reports. Dew point is the temperature, at constant pres-

sure, to which the air needs to be cooled in order to achieve a 100% relative humidity [4]. At

that point the air cannot hold more water in the gas form. SARS-CoV-1, which shows seasonal

changes with decreased rates of transmission with elevated temperatures, is genetically 80%

identical to SARS-CoV-2 [4, 5].

Because SAR-CoV-2 is a recently identified human pathogen, seasonal variations in its

transmission have not become evident, though there is much speculation that seasonal change

with the boreal summer might decrease infection rates of SARS-CoV-2 and help flatten the

epidemic curve of COVID-19 [6]. Several studies, varying in their geographical sampling,
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methodology and findings, have endeavored to shed light on this subject. With respect to geog-

raphy, four out of seven of the peer-reviewed studies that attempted to establish whether

SARS-CoV-2 has seasonal changes in its transmissibility examined rates in China [7–10], two

others restricted themselves to either Japan or France [11, 12], and two examined a collection

of cities or countries around the world [7, 13]. Methodologies included the use of generalized

additive model, poisson regression analysis, and univariate and multiple regression modeling

[7, 9–11, 14]. The findings concerning whether SARS-CoV-2 is likely to display seasonality in

its rates of transmission varied widely, including: a) two studies reported an asymmetric

impact of temperature (one being biphasic at 50˚F, and another demonstrating effects only

below 37.4˚F [8, 15], b), one showed no influence of temperature on COVID-19 rates [9], c)

two showed inconclusive results with respect to the likelihood of seasonality of SARS-CoV-2

[8, 13], d) one showed distribution of substantial community outbreaks of COVID-19 along

restricted latitude, temperature, and humidity measurement [13] and e) one showed a sensitiv-

ity to temperature that was of such large magnitude (i.e. a 50% decrease in rate of transmission

with every 1 degree increase in average temperature) that it seemed incongruous with observed

variations across the globe [14].

A better understanding of the seasonal dependence of SARS-CoV-2 infections, and the

identification of environmental conditions that regulate its spread, would be helpful in assess-

ing the differential impact of the virus in different geographic locations under various meteo-

rological conditions. Such knowledge would also help in predicting the timing and degree of

potential slowing of transmission in the summer and resurgence of the virus during winter

[16].

To understand the seasonal dependence of SARS-CoV-2 infections in the absence of year-

long incidence data, we examined the effect of atmospheric temperature, the main variable

with season [16], on SARS CoV-2 transmissibility using currently available data on the rates of

SARS-CoV-2 infection during winter and spring from fifty representative countries in the

Northern Hemisphere.

Methods

Geographical sampling criteria

Geographical changes in cumulative COVID-19 confirmed deaths, and recovered cases from

1/22/20 through 4/6/20 were estimated from databases made available by the Johns Hopkins

University [17]. The start date of January 22, 2020 was chosen because that is when the data-

base started tracking cases. For analysis, we selected only the Northern Hemisphere countries

because even though the number of cases have been increasing on both sides of the equator,

only the Northern Hemisphere experienced an increase in temperature during the study

period. The opposite was true in the Southern Hemisphere. As a result, the impact of tempera-

ture on the rate of new cases cannot be investigated simultaneously on pooled data from both

hemispheres. We excluded tropical regions because of the minimal change in temperature

throughout the year. Italy was excluded because of its “massive underreporting and undertest-

ing of COVID-19,” with an estimate of only 2% of total cases being reported based on calcula-

tions involving crude case fatality risks [18].

We also excluded from analysis China [19] and Russia [20]. We excluded China and other

countries with multiple data sites (for both COVID-19 cases and NOAA meteorological data)

within its borders. Each country had differing responses to the increasing rates of COVID-19

within its borders (e.g. the timing and availability of testing, government policy decisions

about when and how robustly to respond with non-pharmaceutical interventions, etc).

Because each country that was included contributed data representing a single response to
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COVID-19, the variability in the response would be randomized (some countries more and

some less in various aspects of their response). The inclusion of a single country with numer-

ous measures within its borders would risk creating a systematic bias for that country in

terms of a potential effect on the rate of transmission of COVID-19. China had 33 provinces

for which cases were collected from JHU COVID-19 Data Repository by the Center for Sys-

tems Science and Engineering (CSSE) at Johns Hopkins University (https://github.com/

CSSEGISandData/COVID-19). Thus, to preserve methodological conformity, countries like

China with separate reports of cases from multiple regions were excluded.

There is also an abundance evidence to support the dramatic under-reporting of cases from

China before the time the JHU COVID-19 Data Repository database begins on 1/22/20, thus

suggesting that trying to base results on non-JHU sources prior to that date would be fraught

with large inaccuracies. For example, a recent publication by Krantz et al [21] calculated the

ratio of reported COVID-19 cases and contrasted them with model-based predictions of

COVID-19 for 8 major countries. The ratio of reported to infected cases for China was

between 1:149 to 1:1104. In comparison, France was 1:5 and Germany was 1:4. Based on cre-

mation related information from China, He et al [22] were able to calculate COVID-19 case

estimates projected on February 7, 2020 in Wuhan ranged from 305,000 to 1,272,000 for infec-

tions that were at least 10 times the official figure of 13,603. The same source of information

implied starting time of the outbreak is October 2019, rather than the government reported

date of 12/31/19 [22].

Including Russia presented a problem of size. A country of Russia’s magnitude had only a

single JHU CSSE COVID-19 data entry with a single latitude and longitude, which could

clearly not accurately represent the appropriate temperature corresponding to the rate of

increase of cases for the entire country. Russia has the largest land area of any country in the

world, with vastly differing temperatures across its vast expanse, being comprised of 17 million

square kilometers. The largest country included in the 50 analyzed in our manuscript was

Algeria, that has a land area of 2.4 million square kilometers, which is 7-fold smaller than Rus-

sia. One temperature for such a vast country with a huge range of local climates would not

yield accurate data. Thus, Russia was excluded.

Other countries were excluded due to limited access to, or the lack of, reliable data on

COVID-19 cases or meteorological data. To enable analysis of cases during consecutive days

in a log linear fashion, we established the following criteria to ensure sufficient numbers of

confirmed cases: to be included, during time period 1/22/20-4/6/20, countries needed to have

a median number of cumulative confirmed cases >1 or the mean number of cumulative con-

firmed cases >75.

The resulting 50 representative countries (Table 1) had a mean latitude of 38 +/-15 SD,

range 1–65 degrees, that covers 70% of the total range (1–90 degrees), with each country being

separated from the next by a mean of 1.3 +/-1.7 SD degrees. Countries had a mean longitude

of 34+/-44 SD, range -103 to 138, that covered 70% of the total range (-180 to 180 degrees),

with each country separated from the next by a mean of 6 +/- 13 SD degrees. The resulting

wide range of temperatures across the 50 countries was as follows: 1) mean average tempera-

ture 51.1 +/-16.9˚F, median 44.9˚F, range 22.6–85.7˚F, and 2) mean minimal temperature 42.0

+/-16.3˚F, median 36.6˚F, range 15.5–77.4˚F.

Meteorological variables

Daily weather data for each of the 50 countries were obtained from National Oceanic and

Atmospheric Administration (NOAA) [23]. Daily minimum temperatures (Tmin) were used

because they appear to be more important for virus transmissibility [24]. We used Dew Point
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Table 1. First regression: Rate of rise of confirmed cases of COVID-19 in 50 countries, and the associated local meteorological and demographic variables.

Country CT Conf Cases CT-1 Conf Cases R2 Tmin Median DP Median Land Area Per Capita Median age Conf Cases Days

Algeria 0.081 12.42 0.969 56.3 25.2 0.05431 28.9 42.0

Armenia 0.103 9.74 0.909 26.6 25.2 0.00961 36.6 37.0

Austria 0.097 10.26 0.941 29.1 31.2 0.00915 44.5 42.0

Belgium 0.090 11.17 0.913 38.7 37.4 0.00261 41.6 63.0

Bosnia and Herzegovina 0.086 11.68 0.967 20.3 23.8 0.01554 43.3 33.0

Croatia 0.074 13.59 0.977 32.9 32.8 0.01363 43.9 42.0

Czechia 0.091 10.93 0.942 33.0 30.2 0.00721 43.3 37.0

Egypt 0.076 13.21 0.928 48.3 38.7 0.00973 24.1 53.0

Estonia 0.088 11.36 0.908 31.5 32.5 0.03196 43.7 40.0

Finland 0.062 16.13 0.899 19.3 22.3 0.05485 42.8 69.0

France 0.071 14.03 0.940 34.6 38.2 0.00839 41.7 74.0

Germany 0.074 13.49 0.940 34.7 33.4 0.00416 47.8 71.0

Greece 0.074 13.52 0.904 40.1 42.2 0.01237 45.3 41.0

Hungary 0.081 12.29 0.965 32.0 31.3 0.00937 43.6 34.0

Iceland 0.072 13.81 0.881 15.5 17.4 0.29378 37.1 39.0

India 0.055 18.32 0.903 64.0 56.6 0.00215 28.7 68.0

Iran 0.076 13.18 0.820 34.8 18.5 0.01939 31.7 48.0

Iraq 0.058 17.13 0.913 49.3 45.5 0.01080 21.2 43.0

Ireland 0.104 9.66 0.947 35.8 37.4 0.01395 37.8 38.0

Israel 0.096 10.45 0.986 46.0 42.3 0.00250 30.4 46.0

Japan 0.041 24.67 0.967 44.6 38.2 0.00288 48.6 76.0

Kuwait 0.035 28.56 0.792 56.9 46.9 0.00417 43.2 43.0

Lebanon 0.067 15.02 0.929 41.8 40.4 0.00150 29.7 46.0

Malaysia 0.044 22.77 0.932 74.8 75.8 0.01015 33.7 73.0

Mexico 0.089 11.23 0.967 46.4 36.7 0.01508 29.2 39.0

Moldova 0.098 10.23 0.947 31.6 29.3 0.00814 29.3 30.0

Morocco 0.098 10.19 0.974 44.2 18.5 0.01209 37.7 36.0

Netherlands 0.097 10.34 0.894 36.8 37.5 0.00197 29.1 40.0

Norway 0.080 12.50 0.840 21.1 21.5 0.06738 42.8 41.0

Oman 0.049 20.28 0.972 57.9 52.9 0.06061 39.5 43.0

Pakistan 0.095 10.51 0.952 49.6 36.5 0.00349 26.2 41.0

Philippines 0.055 18.09 0.863 74.2 76.1 0.00272 30.1 68.0

Poland 0.102 9.80 0.923 31.1 30.9 0.00809 24.1 34.0

Portugal 0.109 9.16 0.957 47.9 48.6 0.00898 41.9 36.0

Qatar 0.056 17.82 0.798 57.9 49.5 0.00403 33.7 38.0

Romania 0.095 10.50 0.977 28.4 30.3 0.01196 44.6 41.0

Saudi Arabia 0.098 10.22 0.927 59.0 29.0 0.06175 42.5 36.0

Serbia 0.105 9.53 0.916 34.2 32.9 0.01001 30.8 32.0

Singapore 0.031 32.04 0.932 77.4 74.7 0.00012 43.4 75.0

Slovakia 0.079 12.65 0.841 26.5 27.4 0.00881 35.6 32.0

Slovenia 0.067 14.83 0.803 32.3 33.3 0.00969 44.9 33.0

South Korea 0.058 17.10 0.882 29.4 23.6 0.00190 44.9 76.0

Spain 0.100 10.01 0.949 42.2 43.0 0.01067 43.9 66.0

Sweden 0.076 13.14 0.915 18.9 22.8 0.04063 41.1 67.0

Switzerland 0.096 10.43 0.899 30.7 33.6 0.00457 42.7 42.0

Thailand 0.032 31.33 0.869 73.4 71.3 0.00732 39.0 76.0

Turkey 0.177 5.65 0.924 27.4 31.1 0.00913 32.2 27.0

(Continued)
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(DP) as a measure of humidity because it is an absolute assessment of water vapor content that

does not depend upon temperature, and it is the only country meteorological data related to

humidity that is tracked by NOAA. The daily Tmin and DP for each country were obtained

from NOAA station locations closest to the specific latitude and longitude that the JHU data-

base listed for each country. The medians of the daily Tmin and daily DP were derived for

each country for whatever portion of 1/22/20 through 4/6/20 that they had cases of confirmed

COVID-19 reported (Table 1). Median was chosen because it is less affected by outliers and

skewed data than the mean.

Software packages used in analyses

Statistical analysis was performed with StatPlus software for the Mac [25]. The graphing soft-

ware employed was GraphPad Prism 8 for the Mac [26].

Corrections applied to account for multiple comparisons

The unit variable was country. At the unit level, dependent and independent variables were

evaluated. There were three correlated outcome measures: confirmed, deaths, or recovered

cases. For each of these three outcomes, an aggregate measure CT or CT-1 was calculated and

then associated with multiple independent variables. Due to evaluating three outcomes in

the same population, a multiple adjustment was required. Two simple and conservative

approaches that have been used include the following: 1. to compare observed p values (p)

with adjusted alpha (= alpha/3) or 2. inflate the observed p values by 3 (p�3) and compare at

fixed alpha level [27, 28] We adopted the latter approach. Also note that because CT and CT-1

are one-to-one transformations, there was no need to adjust for using CT or CT-1 as an depen-

dent variable.

Relationship of CT to doubling time (Td)

To clarify the relative magnitude of our findings, we explored the relationship between CT

and doubling time (Td), a standard measure of rate of viral transmission [29]. Doubling times

are the intervals at which the cumulative incidence of cases doubles. Under conditions of

Table 1. (Continued)

Country CT Conf Cases CT-1 Conf Cases R2 Tmin Median DP Median Land Area Per Capita Median age Conf Cases Days

United Arab Emirates 0.039 25.87 0.950 64.8 56.9 0.00845 38.4 69.0

United Kingdom 0.075 13.33 0.964 36.1 36.3 0.00356 40.6 67.0

Vietnam 0.027 36.94 0.924 73.2 71.4 0.00319 31.9 75.0

Fifty representative countries meeting specific criteria (e.g. all Northern Hemisphere, because seasons in Southern Hemisphere are opposite) are shown. Meteorological

data (daily minimum and average temperatures, daily dewpoint) were obtained from NOAA stations closest to the latitude and longitude listed in the JHU COVID-19

database (https://github.com/CSSEGISandData/COVID-19) as the location from which cases in each country were associated. Median minimum temperature (Tmin

MEDIAN) and dewpoint (DP MEDIAN) were ascertained for each country over the timeframe that cases were increasing between 1/22/20 (when data began to be

collected) and 4/6/20. Median average temperature is included as a reference to provide the reader with additional climate information about each country. Linear

regression of the log of the daily cumulative COVID-19 confirmed cases versus time (sequential days) was conducted, starting with the date of the first case for each

country, and the resulting regression coefficients (which were termed coefficients of time (CT)) for each country was thereby obtained. R2 are shown for this linear

regression in each country. The reciprocal of CT (CT-1) was used in a second regression analysis of CT-1 vs Tmin MEDIAN, to explore the correlation between

temperature and rates of increase in the log of confirmed cases. The second regression included with temperature or dewpoint the additional independent variables of

Land Area per capita, Median Age, and Days of Cases for each country, because of the potential influence of these variables on interactions and behavior that could

influence rates of transmission. Land area for each country was obtained from Worldometer (https://www.worldometers.info/coronavirus/#countries) and median age

from CIA World Factbook (https://www.cia.gov/library/publications/the-world-factbook/fields/343rank.html).

https://doi.org/10.1371/journal.pone.0246167.t001
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exponential, with a constant growth rate r, the doubling time equals (ln 2)/r [30]. Thus, an

increase in the doubling time represents a decreased rate of transmission.

To calculate Td from our data obtained in our first regression (see Results section for

details), we took the following steps: to begin, we used our first regression of log of confirmed

cases vs time to interpolate on which days the number of cases doubled for each country, utiliz-

ing a centered second order polynomial model to fit the data (mean R2 = 0.958, Standard Devi-

ation = +/- 0.025). Because we were using log of confirmed cases, we converted doubling of

cases to log form (e.g. 2, 4, 8, 16, 32, 64 corresponds to 0.301, 0.602, 0.903, 1.204, 1.505, 1.806).

Since the period of time we measured cases and temperature was 75 days long (1/22/20-4/6/

20), we included doubling times up to day 64. We next calculated the average Td (i.e. number

of days) between each interval corresponding to a doubling of confirmed cases. We then per-

formed a linear regression on Td and CT, and Td and Tmin Med, with the following results:

Results

Analysis of the impact of changing temperature on the rate of rise of

COVID-19 cases

To investigate the relationship between Tmin and COVID-19 transmissibility, we devised a

two-step process. In the first step, starting with the date of the first case for each country we

examined linear regressions of the log of the daily cumulative COVID-19 cases versus time in

sequential days (Fig 1). From this analysis we calculated the resulting regression coefficients

(which we termed coefficients of time (CT) with units of log cases/day) for each country

(Table 1). To determine consecutive days, we converted calendar dates to sequential serial

numbers that can be used in calculations—e.g. 1/22/2020 was converted to 43852 because it is

43,851 days after 1/1/1900. The CT of log confirmed cases vs sequential days for all fifty coun-

tries yielded a mean overall R2 of 0.919 +/- 0.049 SD, range 0.792–0.986, and p-value mean

4.20 x10-14 ± 2.61 x10-13, range 1.00 x10-15–1.84 x 10−12 (Table 1).

In the second step, we investigated whether CT was associated with the median daily Tmin

(Tmin_Med) in each country for the same time period that cases had been sampled. Because of

the approximate proportionality of fitted CT with the standardized residuals when performing

linear regression with Tmin_Med, we used a reciprocal transformation of the dependent variable

[31] Thus, for the second regression for all countries we used the reciprocal of CT (CT-1) (Fig 2).

To account for susceptibility variation resulting from age differences that could affect both

the comorbidity levels as well as social gathering behavior, we used each country’s population

median age (MA) as another covariate [32]. Because the 50 countries varied widely in size, and

the density of the population could impact transmission, we used land area per capita (LAPC)

as an additional covariate [33]. Finally, each country differed with respect to when it reported

its identified cases, so that between the target dates of 1/22/20-4/6/20, there were different

durations of time over which the course of transmission occurred. To account for this, the

total number of days for each country during which they had cases of COVID-19 between 1/

22/20 and 4/6/20 (Days of Cases) was used as a final covariate. In multivariable regression

analysis of CT-1 versus the median of Tmin_Med (Table 2), we found that the rate of increase

of the log of confirmed cases was significantly associated with the covariates Tmin_Med,

LAPC, MA and Days of Cases (adjusted R2 = 0.610, p = 1.45 x 10−6; see Fig 2 & Table 2).

Sensitivity of the correlation between CT-1 and Tmin_Med

In our two-step model, first we aggregated the outcome measure CT or CT-1 at the country

level and applied a standard linear regression; second, using multivariable regression analysis
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we associated CT or CT-1 with local meteorological and demographic independent variables.

Since the initial aggregation might have played a role in determining response measures, we

performed a sensitivity analysis by reducing sampling systematically (by approximately 10–

20%) in the first stage [34]. This permitted us to test the robustness of the findings of our

model.

The initial selection of days sampled during the 75 day period—1/22/20-4/6/20—was varied

by progressively removing 8 or 16 days (11% or 22%) from either the 1/22/20 or the 4/6/20

end, and the resulting periods were run through our two step regression model. The tempera-

ture sampling was changed according to the new time periods (i.e. 1/22/20-3/29/20, 1/22/20-3/

21/20, 2/7/20-4/6/20, 2/24/20-4/6/20). As shown in S1 and S2 Figs, removal of 8 or 16 days

Fig 1. The first regression of log of confirmed cases vs consecutive days for 4 of the total of 50 countries is shown. Starting with the date of the first case for each

country, which was standardized to day 1 for purposes of visual comparison, we examined linear regressions of the log of the daily cumulative COVID-19 cases versus

time in sequential days. From this analysis we calculated the resulting regression coefficients (which we termed coefficients of time (CT) with units of log cases/day) for

each country.

https://doi.org/10.1371/journal.pone.0246167.g001
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(from either end of the time period) resulted in only modest changes in the Tmin Med P val-

ues, R2, or regression coefficients. Comparing changes from the original analysis using 1/22/

20-4/6/20 to results using 1/22/20-3/29/20, 1/22/20-3/21/20, 2/7/20-4/6/20, and 2/24/20-4/6/

20 yielded the following findings: 1) P values changed from 2.90x10-6 to an average of

4.18x10-6 (+/-4.62x10-6 SD), 2) R2 changed from 0.60 to an average of 0.63 (+/-0.086 SD), and

3) regression coefficients changed from 0.24 to 0.27 (+/-0.028 SD). Thus, as shown in the S1

and S2 Figs and these summary scores, it is evident that even with 11%-22% changes in either

the earlier or later end of the sampled time period, there was very little change in the results

using our two step model. This demonstrates the robustness of our findings.

Fig 2. Shows for fifty representative countries the predicted regression of the reciprocal of the rate of increase of the log of confirmed cases (CT-1) vs the

median minimal temperature. Predicted values (i.e. fitted values) are the values that the model predicts using the regression equation generated from the

multiple regression. This establishes the relationship between temperature and the rate of daily increase of confirmed cases of COVID-19. The multiple

regression of CT-1 for all countries yielded a significant correlation (adjusted R2 = 0.610, p = 1.45 x 10−6) using covariates Tmin_Med, median age, land area per

capita and days of cases.

https://doi.org/10.1371/journal.pone.0246167.g002
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Analysis of dewpoint and its influence on COVID-19 rate of rise of cases

In addition to regression of CT-1 with Tmin_Med, we also examined the median daily DP

(DP_Med) for each country. We found that the rate of increase of the log of confirmed cases

per unit time using covariates DP_Med, LAPC, MA and Days of Cases, when compared to

Table 2. Second regression: The association of temperature and dewpoint with the rate of rise of COVID-19 cases.

Case Type Dependent Variable Independent Variables Regression Coefficients P value Adjusted R2

Confirmed CT Tmin -0.000911 ��� 0.300

Confirmed CT-1 Tmin 0.275 ������� 0.449

Confirmed CT-1 Tmin 0.205 ���� 0.587

Days Cases (DC) 0.174 ���

Confirmed CT-1 Tmin 0.247 ����� 0.610

Days Cases (DC) 0.150 ��

Land Area Per Capita (LAPC) 21.244 NS

MA 0.151 NS

Case Type Dependent Variable Independent Variables Regression Coefficients P value Adjusted R2

Deaths CT Tmin -0.001 � 0.172

Deaths CT-1 Tmin 0.173 �� 0.198

Deaths CT-1 Tmin 0.161 �� 0.354

Days Cases (DC) 0.199 ��

Deaths CT-1 Tmin 0.164 �� 0.323

Days Cases (DC) 0.198 �

Land Area Per Capita (LAPC) -1.058 NS

MA 0.021 NS

Case Type Dependent Variable Independent Variables Regression Coefficients P value Adjusted R2

Recovered CT Tmin -0.00105 ��� 0.303

Recovered CT-1 Tmin 0.319 ���� 0.332

Recovered CT-1 Tmin 0.215 � 0.442

Days Cases (DC) 0.215 �

Recovered CT-1 Tmin 0.218 � 0.421

Days Cases (DC) 0.222 �

Land Area Per Capita (LAPC) 13.446 NS

MA -0.0117 NS

The regression coefficients (abbreviated CT for coefficients of time) from the linear regression of the log of cumulative COVID-19 cases vs time (see Table 1) for each

country were converted to their reciprocal values (CT-1). This was done because of an approximate proportionality of fitted CT with the standardized residuals when

performing linear regression with Tmin MEDIAN [31]. A second regression was then performed using the CT-1 for each country as the dependent variable and

independent variables consisting of median minimal temperature [Tmin_MEDIAN] with or without regional demographic variables (i.e. land area and population

median age). The total number of days for each country during which they had cases of COVID-19 between 1/22/20 and 4/6/20 (Days of Cases) was also used as a

covariate. Shown are the resulting estimated regression coefficients and the R2 for each regression. To control for multiple comparisons, since the same CT-1 and Tmin

was used for Confirmed, Deaths and Recovered cases, P values were multiplied by 3. P values are displayed with progressively more stars for each 10-fold decrease in

value according to this pattern: 0.05, 0.005, 0.0005, 0.00005, etc = �, ��, ���, ����, etc. NS stands for Not Significant (P>0.05). To control for multiple comparisons—since

the same CT-1 and Tmin was used for Confirmed, Deaths and Recovered cases—p values were multiplied by 3 to account for the repeated measures of cases (See S1 and

S2 Tables for further details). All countries were included in the Confirmed Case Analysis. For Death Cases there were 4 countries not included for the following three

reasons: 1) Insufficient data for Kuwait (3 days of 0 log cases) and Vietnam (no days of deaths), 2) Inconsistent and limited data for Slovakia (4 days 0 log cases, 10 days

no reported cases, then 5 days 0 log cases followed by a single 0.3 log cases), 3) Outlier: Iceland. Recovered Cases had one exclusion: Outlier: Slovakia. Outliers were

determined using the ROUT method of Graph Pad’s Prism software. Briefly, ROUT first fits a model to the data using a robust method where outliers have little impact.

Then it uses a new outlier detection method, based on the false discovery rate, to decide which points are far enough from the prediction of the model to be called

outliers [26].

https://doi.org/10.1371/journal.pone.0246167.t002
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Tmin_Med, showed a comparably robust and statistically significant association (adjusted

R2 = 0.599, p = 2.68 x10-6). Because of the collinear relationship between Tmin_Med and

DP_Med, which in linear regression resulted in an adjusted R2 of 0.76, (p = 1.4 x 10−16), we

assumed that, since Tmin_Med had the higher correlation with cases, it was likely the primary

factor underlying the association between weather and COVID-19 transmission.

Magnitude of effect of temperature change on rate of transmission of

COVID-19

From the second regression described above, the following equation was derived:

CT ¼ 0:116 � 0:000911 x Tmin Median

It was therefore possible to obtain CT for temperatures ranging from 30˚F to 100˚F—i.e.

0.0885 (log cases/day) to 0.0248 (log cases/day), respectively. This analysis indicated that an

increase in temperature from 30 to 100˚F was associated with a 72% decrease in the rate of

number of confirmed cases per day (CT 0.0885 to 0.0248), whereas a decrease in temperature

from 100˚ to 30˚ F represents a 257% increase in the rate of change of confirmed cases (CT

0.0248 to 0.0885). This corresponds to 1.03% decrease in confirmed cases for each degree

increase in temperature, and a 3.68% increase for each degree decrease in temperature (e.g.

-72/(100–30) and 368/(100–30)).

Correlation with rates of death and recovered cases of COVID-19

The correlation between the reciprocal of the rise in the log of the number of deaths and recov-

ered cases of COVID-19 (CT-1) vs Tmin_Med was 47% and 45% less than that of confirmed

cases, respectively (see Table 2). Moreover, the covariates of LAPC and MA for death and

recovered cases had regression p values of 0.5 or greater, suggesting that the impact of these

covariates on confirmed cases was specific.

Relationship of CT to doubling time (Td)

As described in the method section, we explored the relationship between CT and doubling

time (Td), a standard measure of rate of viral transmission [29]. Doubling times are the inter-

vals at which the cumulative incidence of cases doubles. Under conditions of exponential

growth, with a constant growth rate r, the doubling time equals (ln 2)/r [30]. Thus, an increase

in the doubling time represents a decreased rate of transmission. We calculated Td from our

data obtained in our first regression, and we took the following steps: we used our first regres-

sion of log of confirmed cases vs time to interpolate on which days the number of cases dou-

bled for each country utilizing a centered second order polynomial model to fit the data (mean

R2 = 0.958, Standard Deviation = +/- 0.025). Because we were using log of confirmed cases we

converted doubling of cases to log form (e.g. 2, 4, 8, 16, 32, 64 corresponds to 0.301, 0.602,

0.903, 1.204, 1.505, 1.806). We included doubling times up to day 64. We calculated the aver-

age Td (i.e. number of days) between each interval corresponding to a doubling of confirmed

cases. We then performed a linear regression on Td and CT, and Td and Tmin Med, with the

following results:

Td ¼ 7:56 � 49:9 � CTðadjusted R2 ¼ 0:724; p ¼ 3:2x10� 15Þ

Td ¼ 1:01þ 0:064 � Tmin Medðadjusted R2 ¼ 0:45; p ¼ 1x10� 7Þ
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For all 50 countries the average Td for the first 6 doubling times was 3.69 (range 1.28–8.65

days).

Thus, the smaller the CT (i.e. rate of increase of cases of COVDI-19) or greater the Tmin

Med, the longer the doubling time—consistent with increasing temperatures decreasing the

rate of transmission.

Details of the model formulations (including equations in appropriate

context)

We began by performing a two-step regression to derive the relationship between temperature

and rate of increase in COVID-19 cases.

First regression involved the rate of rise of confirmed cases of COVID-19 in 50 countries,

and the associated local meteorological and demographic variables:

LogðCumulative CasesÞ ¼ CT �Day � 3416

A second regression was then performed using the inverse of CT for each country as the

dependent variable and the independent variables consisted of associated meteorological vari-

ables (i.e. median minimal temperature [Tmin_Med] or median dewpoint [DP]) with or with-

out regional demographic variables (i.e. land area per capita and population median age):

CT� 1 ¼ 0:278 � Tmin Medþ 3:19

Discussion

The major finding of this study is that the rates of transmission of SARS-CoV-2 infections are

robustly associated with the ambient atmospheric temperature. The results of our analysis of

longitudinal data from 50 representative countries in the Northern Hemisphere suggest that

changes in the minimum daily temperature are associated with alterations in SARS CoV-2

transmissibility and viability. In addition, we found that the median daily dewpoint had a sig-

nificant effect on the cumulative confirmed COVID-19 cases over time. However, because of

the collinearity between dewpoint and atmospheric temperature over time, it was not possible

to deduce whether the two atmospheric parameters independently affect SAR CoV-2 transmis-

sion. Since dewpoint is less predictable, and temperature more frequently monitored and used

as a meteorological variable, we focused on changes in temperature for its potential predictive

value.

We found that in 50 representative countries spread out over 70% of the possible latitude

and longitude across the Northern Hemisphere, a slower rise in the log of daily cumulative

number of confirmed cases was associated with higher daily minimum temperatures and dew-

points over the period from 1/22/20 to 4/6/20. This finding was robust, yielding an adjusted R2

= 0.610, p = 1.45 x 10−6 (using covariates Tmin_Med, median age, land area per capita, and

days of cases). The correlation between the reciprocal of the rise in the log of the daily number

of death and recovered cases (CT-1) vs Tmin_Med was almost 50% less than that of confirmed

cases. This is not surprising, given that the impact of temperature on seasonal respiratory

viruses has been found to have a consistent influence on the stability and transmission of infec-

tion, and not on the morbidity of infected individuals [2]. In view of these findings, atmo-

spheric temperature would be expected to influence confirmed cases, and not deaths or the

number of recovered subjects (e.g. once an infection occurred, temperature exerts a small or

absent effect on the course of COVID-19 morbidity).
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This study was able to achieve a clear and robust association between meteorological

changes (i.e. temperature and dewpoint) and transmissibility of COVD-19, and to quantitate

the magnitude of these correlations, because of the following steps taken: 1. we chose system-

atic criteria to select 50 representative countries that were selected to increase the probability

that the data gathered (e.g. confirmed, deaths, recovered) and the rate of spread of COVID-19

would be comparable or at least randomly biased; 2. we took great care to ensure that we used

weather stations located as close to the longitude and latitude corresponding to the cases in

each country as presented by the Johns Hopkins real time COVID-19 tracking database; 3. our

two-step regression model permitted us to relate the rate of rise of cases to changes in meteoro-

logical variables; 4. we focusing our analysis on the initial rise in cases across the various coun-

tries. During this early phase there was a delayed response on the part of the country (usually

both the government and the populace) to institute and practice non-pharmaceutical interven-

tions to slow the spread of the virus. We were therefore able to capture a period where weather

and not social interventions played the predominant role in impacting transmission. And 5.

after investigating numerous independent variables, we were able to select those that mediated

the greatest association between meteorological variables and rate of transmission in our mul-

tivariable regression model.

Although our study is a systematic and quantitative analysis of the dependence of SAR-

CoV-2 infection rates on temperature dewpoint that has demonstrated a robust and significant

correlation (Table 2), it has several notable limitations. This is an ecological study and is there-

fore potentially subject to ecological fallacy [35]. Moreover, our data are not direct measures of

individual-to-individual transmission, so cause and effect relationships cannot be established.

However, the biological plausibility for our hypothesis is supported by previous work showing

that the transmission rates of SARS-CoV-2 and similar viruses depend upon atmospheric tem-

perature [2, 36].

In temperate regions, the annual occurrence of respiratory viral diseases during the winter

season—from the common cold to influenza—has been appreciated for several thousand years

[2]. A similar seasonal pattern of infections has been reported for SARS-CoV, which was prev-

alent mostly during winter months [2]. Despite this, there is sparse evidence on the seasonal

behavior of the novel SARS-CoV-2 [6], and there are conflicting reports on how its transmis-

sion is affected by meteorological conditions. In this context, our study provides the most

comprehensive and up-to-date evidence for a robust and significant impact of temperature

and dewpoint on SARS-CoV-2 transmissibility.

Further research is needed to clarify whether the association between temperature and

SARS-CoV-2 transmissibility described here has a biological underpinning, and whether our

model is accurate for seasonal predictions, surveillance and preparedness related to the spread

of the virus over different geographical areas. Nonetheless, should the association between

temperature and the rate of transmission hold true (either because of an underlying causal

relationship or because of the empirical relationship described here), it may be possible to

approximate the impact of weather on the rates of transmission of SARS-CoV-2. Because

atmospheric parameters are measurable, and routinely tracked on a daily basis across the

world, determining the contribution of temperature to the rate of transmission should make it

possible to quantify the contribution of non-weather factors (e.g. social and non-pharmaceuti-

cal interventions (NPI))—since observed rate of transmission is equal to the contribution of

meteorological variables plus the contribution of NPI. Once calibrated to the contributions of

meteorological variables and social interventions and other NPI, such estimates may be able to

inform and guide systematic academic, business and governmental decisions about when and

how to impose or relax shelter-in-place or social distancing guidelines. Such evidence-based

policies may succeed in minimizing social and economic disruptions due to the pandemic
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while at the same time optimizing public health and safety. Finally, our analysis predicts that,

between the range of 30 to 100˚F, the decrease in the rate of COVID-19 transmission with

increasing temperature (1% per degree F) is smaller than the increase rate of transmission with

decreasing temperatures (3.7% per degree F) in the 50 representative countries in the Northern

Hemisphere countries examined. If this model is correct, then it implies that effort invested in

containing, minimizing, and ideally eliminating the spread of COVID-19 during Spring and

Summer months could pay off significantly in the Fall and Winter, due to potentially dispro-

portionate effects of decreasing temperatures compared to increasing temperatures on the cur-

rent pandemic.
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