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Abstract

Previous studies found significant modification in spatiotemporal parameters of backward
walking in healthy older adults, but the age-related changes in the neuromuscular control
have been considered to a lesser extent. The present study compared the intersegmental
coordination, muscle activity and corresponding modifications of spinal montoneuronal out-
put during both forward and backward walking in young and older adults. Ten older and ten
young adults walked forward and backward on a treadmill at different speeds. Gait kinemat-
ics and EMG activity of 14 unilateral lower-limb muscles were recorded. As compared to
young adults, the older ones used shorter steps, a more in-phase shank and foot motion,
and the activity profiles of muscles innervated from the sacral segments were significantly
wider in each walking condition. These findings highlight age-related changes in the neuro-
muscular control of both forward and backward walking. A striking feature of backward walk-
ing was the differential organization of the spinal output as compared to forward gait. In
addition, the resulting spatiotemporal map patterns also characterized age-related changes
of gait. Finally, modifications of the intersegmental coordination with aging were greater dur-
ing backward walking. On the whole, the assessment of backward walk in addition to routine
forward walk may help identifying or unmasking neuromuscular adjustments of gait to aging.

Introduction

Age-related changes in the gait features of forward locomotion have been studied extensively
[1-4], and have been related to risk of falling [5] and/or to health status in older adults [6]. The
modifications of walking between young and older adults occur in parallel with, amongst
other factors, changes in the musculoskeletal system [7,8] as well as the central and peripheral
nervous systems [9,10]. A number of studies have provided new insights about the plasticity of
the neuromuscular control of gait to adapt to those age-related physiological changes (e.g.,
[11-13]).

In particular, a distal-to-proximal redistribution of joint efforts has been established as a
gait feature of older adults [14]. Part of this so-called biomechanical plasticity has been related
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to a reduction of muscle strength [12,15-17]. However, other studies have revealed that older
adults may retain the muscular potential to develop higher ankle power, and in turn reduce
the distal-to-proximal redistribution [18] under specific situations (e.g., during walking uphill
[19] or using biofeedback [20]). The decline of propulsive power generation during push-off is
thus not only due to a reduced muscular capacity but might also emerge from a different neu-
romuscular control strategy [19]. Therefore, recent efforts have been made to understand the
age-related plasticity of the neuromuscular system during forward walking [1,13,21-23]. For
example, using the planar covariation law [24,25], significant adjustments of the intersegmen-
tal coordination related to aging, and especially of the shank-foot coordination, have been doc-
umented. In addition, aging also involves modifications of muscle activations [26-29],
suggesting a loss of fine neural control [29,30]. These changes are reflected at the level of the
alpha-motoneuronal (MN) activity [28], however the modifications of spinal locomotor out-
put have never been quantified.

Although continuous backward walking occurs rarely, it is still critical for independence in
daily life, e.g., when stepping back in front of a forthcoming vehicle, when opening a door,
when backing up to sit down [31]. Backward walking has been extensively studied in the con-
text of theories on the organization of central pattern generators (CPGs). As first hypothesized
by Grillner [32], it has been suggested that backward walking is basically forward in reverse
[33-36]. While the kinematics seems to support this idea [36], suggesting sharing circuitry
[35,37], such reversal is not present for muscle activity, especially for ankle muscles [33,36].
Ivanenko et al. [38] have also noted important differences in the spinal cord MN activity
between backward and forward walking, suggesting a partial reconfiguration of lower level
networks [39]. In addition, backward walking requires the involvement of specialized control
circuits [40] mainly at supraspinal levels [41], suggesting that it is more challenging to the ner-
vous system than standard forward walking.

For this reason, there has been a growing interest in the use of backward walking for reha-
bilitation purposes. Recent studies suggest that backward walking can be used for rehabilita-
tion or for diagnostics in patients with neurological injuries [42-47]. Since older adults rely
more on visual feedback during both standing and walking than young adults [48-51], it has
been hypothesized that backward gait may be used to unmask mobility impairments and assess
risk of falling. Compared to young adults, backward walking in older adults is characterized by
higher stride frequency, slower speed, and increased gait variability [2,31,52]. However, per-
haps due to subtle neuromuscular adjustments associated with normal aging [22,28,53], it is
still unclear how the neuromuscular control adapts to backward walking with aging.

To the best of our knowledge, the present study is the first to provide quantitative compari-
sons of the pattern generator output during forward and backward walking between young
and older adults. We intended to better pinpoint underlying mechanisms of age-related neuro-
muscular adaptations in both backward and forward walking. In particular, because backward
walking is more challenging than forward walking and because patterns of neuromuscular
control are direction specific in humans [54], we wondered whether backward walking can
reveal age-related modifications of gait that are not otherwise apparent during forward
walking.

Altered spatiotemporal stride parameters [2,31], altered coordination patterns among the
elevation angles of the lower limb segments [1,13], and wider bursts of muscle activity [28,29]
have been previously documented for the forward locomotion of older adults. Here, we
expected that some of these alterations might apply also to backward walking. In particular, we
expected age-related adjustments of the intersegmental coordination, namely a more in-phase
shank and foot motion, as well as a widening of muscle activities. Importantly, we also
expected that some of these age-related modifications might be reflected in the pattern of

PLOS ONE | https://doi.org/10.1371/journal.pone.0246372 February 17, 2021

2/18


https://doi.org/10.1371/journal.pone.0246372

PLOS ONE

Assessment of backward and forward walking pattern in young and elderly adults

rostrocaudal activation of the motoneuron pools. Finally, we hypothesized that these age-
related differences of neuromuscular control would be more pronounced during backward
walking compared with forward walking.

Methods
Subject and experimental procedure

Ten young (4 ?; age: 28.745.1 yrs, mass: 74.5+10.7 kg, height: 1.75+0.07 m, means+SD) and 10
older adults (1 ?; age: 73.5%4.5 yrs, mass: 81.5£5.9 kg, height: 1.76+0.05 m, mean+SD) partici-
pated to the study. Mass and height were not significantly different between young and older
adults (mass: t = 0.5; p = 0.605; height: t = 1.8; p = 0.086). The number of subjects was deter-
mined by a priori power analysis using the G*Power program. Based on the age-related differ-
ence of stride length during forward walking on a treadmill [1], a total sample of 18
participants (9 per group) would be sufficient to detect a large effect size (17,” = 0.20) with 90%
power, using one-way ANOV A with p = 0.05. No subject had a recent history of falling. All
participants were able to walk without assistance and did not complain about musculoskeletal
disorders. All participants gave written informed consent. Experiments were performed
according to the Declaration of Helsinki and were approved by the ethics committee of IRCCS
Santa Lucia Foundation (CE/PROG749).

Participants were asked to walk forward and backward while they wore their own walking
shoes on a treadmill at two different fixed speeds [2 (0.56) and 3 (0.83) km h™'(m s™) back-
ward, 2 (0.56) and 4 (1.11) km h™! (m s!) forward]. Two young adults did not perform the
walking tasks at 2 km h™' and one older adult was unable to walk backward at 3 km h™. During
backward walking, subjects were allowed to hold a hand rail with their left hand for balance.
For each trial, at least 8 consecutive strides were analysed (Table 1). Bilateral, full-body three-
dimensional (3D) kinematics was recorded at 200 Hz by means of a Vicon-612 system
(Oxford, UK) with nine cameras placed around the treadmill. Twelve reflective markers were
attached to the skin of the subjects overlying the following bilateral landmarks: gleno-humeral
joint, lateral epicondyle of the elbow, ulnar process of the wrist, greater trochanter, lateral
femur epicondyle and lateral malleolus. In addition, four markers were placed on each shoe in
approximate correspondence with the heel, and fifth metatarso-phalangeal joint. The EMG
data were recorded at 2000 Hz by means of a Delsys Trigno Wireless System (Boston, MA).
The following 14 muscles were recorded on the right side of the body: erector spinae (ES) at L2
level, gluteus maximus (Gmax), gluteus medius (Gmed), tensor fasciae latae (TFL), vastus

Table 1. Number of muscles (and number of strides) analysed per subject in each walking condition (e.g. FW 2 is forward walk at 2 km h™").

Subject
Y1
Y2
Y3
Y4
Y5
Y6
Y7
Y8
Y9
Y10

https://doi.org/10.1371/journal.pone.0246372.t001

FW2
14 (12)
13 (12)
14 (13)
8 (10)
13 (11)
12 (10)
14 (11)
13 (13)

FW4
14 (16)
14 (12)
14 (12)
10 (11)
13 (12)
12 (11)
11(12)
13 (16)
13 (10)
14 (9)

Young Older
BW 2 BW 3 Subject FW2 Fw 4 BW 2 BW 3
12 (17) 13 (16) El 12 (11) 11 (10) 11 (10) 11 (8)
14 (13) 14 (17) E2 14 (11) 14 (15) 14 (10) 14 (8)
13 (12) 13 (13) E3 13 (12) 13 (11) 11 (12) 13 (9)
8 (11) 8 (11) E4 13 (12) 13 (11) 13 (11) 13 (8)
13 (11) 13 (11) E5 14 (13) 13 (17) 14 (15) 14 (15)
11 (11) 13 (10) E6 7 (11) 8 (10) 12 (11) 10 (10)
12 (10) 13 (12) E7 9 (14) 9(12) 12 (11) 11 (10)
13 (13) 13 (11) E8 14 (13) 13 (11) 13 (11) 10 (10)
- 14 (8) E9 13 (12) 12 (13) 13 (15) 13 (19)
- 14 (8) E10 13 (10) 10 (10) 12 (11) -
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medialis (VM), vastus lateralis (VL), rectus femoris (RF), long head of the biceps femoris, (BF),
semitendinosus (ST), tibialis anterior (TA), medial gastrocnemius (MG), lateral gastrocnemius
(LG), soleus (SOL) and peroneus longus (PERL). EMG electrodes were placed based on sugges-
tions from SENIAM (seniam.org), the European project on surface EMG. To ensure correct
placement of EMG electrodes, muscle bellies were located by means of palpation and the elec-
trodes were oriented along the main direction of the fibers [55]. In certain conditions, some
electrodes became partially detached and the data series produced by these electrodes were
removed from the analysis (replaced by a not-a-number vector) on a subject-specific basis (S1
Table). Table 1 presents the number of muscles and strides analysed for each subject in each
walking condition. Kinematic and EMG recordings were synchronized on-line. All analyses
were performed using custom Matlab sofware (MathWorks Inc., MA, USA).

Kinematic data analysis

The stride was defined as the period between two ground contacts of the right foot. Foot-con-
tact was estimated according to the local minima of the vertical displacement of the heel
marker [56], while the timing of the lift-off was estimated from the maximum excursion of the
lower limb elevation angle, defined as the angle between the vertical axis and the whole limb
segment (from the greater trochanter to the lateral malleolus), projected on the sagittal plane
[24].

From the marker locations, the orientation of the thigh, shank, foot and trunk relative to
the vertical axis (elevation angle) were computed as described in Borghese et al. [24]. For each
participant, the duration of different strides of each trial was normalized by interpolating indi-
vidual gait cycles over 200 points. To analyse the relative phase of the time-course of the eleva-
tion angles during a stride, the phase lags between two adjacent limb-segments were computed
by means of cross-correlation function.

As reported in prior studies, a principal component analysis was applied to determine the
covariance matrix of the segment elevation angles [57], after subtraction of the mean value.
Notice that, for this analysis, the amplitude of these angles was not normalized. Eigenvalues
and eigenvectors u; were computed by factoring the covariance matrix from the set of original
signals by means of a singular value decomposition algorithm. The first two eigenvectors (u;
and u,) lied on the best-fitting plane of angular covariation, and the data projected onto the
corresponding axes corresponded to the first (PC;) and second (PC,) principal components.
The planarity was evaluated for each condition by calculating the percentage of variance that
was explained by u; (PV}), u, (PV,) and u; (PV;). If the data lay perfectly on a plane, PV,

+ PV, would be 100% (and PV; would be 0%). By definition, the third eigenvector w5 is
orthogonal to the plane defined by u; and u,. The parameter w3, corresponds to the direction
cosine with the positive semi-axis of the thigh and provides one measure of the orientation of
the plane.

EMG data analysis

The collected raw EMG signals were high-pass filtered (30 Hz), then rectified and low-pass fil-
tered with a zero-lag third-order Butterworth filter (10 Hz). As for the kinematic data, the time
scale was normalized by interpolating individual gait cycles over 200 points. For each condi-
tion and for each EMG (rectified, filtered) waveform, the full width at half maximum
(FWHM) was calculated as the period during which the EMG activity exceeded the half of its
maximum [29,58,59].

The EMG activities were normalized to unit variance across all trials [60] and then mapped
onto the estimated rostro-caudal location of the MN pools in the human spinal cord from the
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L2 to S2 segments based on Kendall’s myotomal charts [55], as in Ivanenko et al [61,62]. To
account for size differences in MN pools at each spinal level, this fractional activity value was
then multiplied by the estimated segment-specific number of MNs (MN;), based on Tomlin-
son and Irving [63]. Note that, consistent with previous work [64], the spinal maps were rela-
tively insensitive to the subset of muscles analysed (Table 1). Indeed, spinal maps
reconstructed from a subset of seven muscles (minimum number of muscles recorded) were
strongly correlated with the maps computed from the full set of muscles, with average correla-
tion coefficients between 0.9-0.99 for each task and at each individual spinal segment (S2
Table).

To compute the relative activation of the lumbar and sacral segments in each condition, we
averaged the motor output patterns over the gait cycle in the upper part of the lumbar seg-
ments (sum of the activity from L2 to L4) and the sacral segments (sum of activity from S1 to
S2). To reduce overlaps due to maps smoothing, the spinal segment L5 was not taken into
account [65,66]. The FWHM, the maximal activation, and its timing were calculated for both
lumbar and sacral segments.

Statistics

The statistical analysis was designed to assess the effect of progression speed, direction (back-
ward vs. forward), age group (young vs. older), and the interaction between these factors. A
general linear mixed model was applied, with the direction and speed defined as repeated mea-
sures. The normality of the residuals was checked by means of the Kolmogorov-Smirnov test.
Normality was not assumed for 5 variables (range of motion of the trunk elevation angle, PV,
range of motion of the thigh elevation angle and FWHM of Gmax and TFL). In these cases, an
inverse (for the parameter trunk and thigh ROM) or log (for the other parameters) transform
was applied, and the normality of the residuals was then assumed. In each Figure, the asterisks
indicate significant student t-tests with Benjamini-Hochberg p-level adjustment [67] compar-
ing the age groups. The effect size, measure by the eta square (npz), is reported for age group
comparisons.

Results
Gait and kinematic parameters

The stride period (and stride length) decreased with speed (F, s, = 32.3; p< 0.001; Fig 1C) and
was significantly affected by both the age and the direction of progression: the stride period
decreased when walking backward as compared to walking forward (F; ¢, = 18.7; p< 0.001),
and in older as compared to young adults (F; s, = 71.1; p< 0.001; npz =0.49). The relative dura-
tion of the stance phase was shorter with increasing speeds (F, 4, = 17.6; p< 0.001) and in
older adults (F, 6, = 32.3; p< 0.001; 17,” = 0.34), but was not significantly affected by the direc-
tion of progression (F; ¢, = 2.1; p = 0.155).

When speed increased in both backward and forward walking, the range of motion (ROM)
of the thigh, shank and foot elevation angles increased (thigh: F, s, = 8.2; p = 0.001; shank:
F, 67 =63.9; p< 0.001; foot: F, ¢, = 37.7; p< 0.001) in both groups (Fig 1A and 1B), whereas the
ROM of the trunk elevation angle and its mean inclination were not significantly affected
(ROM: F, 57 = 0.8; p = 0.476; mean: F, 5, = 1.6; p = 0.203). During backward walking, the
thigh, shank and foot ROM significantly decreased (thigh: F, s, = 4.8; p = 0.032; shank: F; 4, =
26.6; p< 0.001; foot: F; 5, = 57.9; p< 0.001), the trunk ROM increased (F; 47 = 8.9; p = 0.006),
whereas the trunk mean inclination was not significantly different relative to forward walking
(trunk: F; 5, = 1.2; p = 0.289).
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Fig 1. Elevation angles of lower-limb segments and general gait parameters during forward (FW) and backward
(BW) walking in young and older adults. A—Elevation angles of the trunk, thigh, shank and foot over a stride. All the
curves of each subject walking at a given walking condition were first averaged (mean-curve). The curves presented
here are the average of the mean-curves of all the young (grey lines) and older (black lines) adults. The grey zone
represents+1 SD for the older adults. B—Average range of motion of the thigh, shank and foot over one stride. C—
Average, stride period, relative stance phase and mean trunk inclination over one stride. In panel B and C, the bars
represent the grand mean of all the young (grey) and the older (black) adults. Thin lines represent one standard
deviation. The * indicates a significant effect of age.

https://doi.org/10.1371/journal.pone.0246372.9001

In both age groups, the time-varying waveform of the elevation angles remained fairly simi-
lar across walking conditions (Fig 1A). However, the ROM of the shank and the foot segments
were significantly smaller (shank: F, 5, = 87.0; p< 0.001; npz = 0.58; foot: F; 4, = 75.1; p< 0.001;
77p2 =0.53), and the mean trunk inclination was significantly greater (F; 5, = 51.7; p< 0.001;
n,” = 0.45) in older than in young adults. The trunk and thigh ROM were not significantly dif-
ferent between young and older adults (trunk: F; 5, = 1.2; p = 0.288; thigh: F; 5, = 0.617; p<
0.543).

Intersegmental coordination

The coordination between thigh, shank and foot elevation angles was evaluated using principal
component analysis (Fig 2). Fig 2A illustrates the averaged gait loops plotted in 3D during
backward and forward walking in both age groups. Notice the appreciably smaller loops in
backward walking and in older adults (along with smaller ROM).

In each condition, PV, + PV, > 97% (Fig 2B). However, PV, was significantly smaller (and
PV, greater) in older than in young adults (PV: F; ¢, = 23.7; p< 0.001; np2 =0.26;PV2: F; 4, =
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20.9; p< 0.001; ,> = 0.24). Furthermore, PV, slightly but significantly increased (and PV,
decreased) with speed (PV: F, 4, =4.7; p = 0.012; PV2: F, 5, = 4.9; p = 0.010), but was not sig-
nificantly affected by the walking direction (PV: F; 5, = 0.4; p = 0.534; PV2: F; 5, = 0.6;

p =0.802). The percentage of variance accounted for by the third PC (PV3), which represents
the deviation from planarity, did not change significantly with speed (F, 4, = 1.4; p = 0.259),
but increased significantly during backward walking (F; ¢, = 13.2; p = 0.002) and in older
adults (F; 5, = 13.2; p = 0.001; nP2 =0.16). In addition, the effect of walking direction was sig-
nificantly greater in older adults (interaction: F; ¢, = 4.4; p = 0.039).

Obviously, during the stance phase of backward walking the foot relative to the hip moves
from back to front, whereas in forward walking the foot moves from front to back. Accord-
ingly, the orientation of the loop formed by the thigh, shank and foot elevation angles is
reversed during backward walking as compared to forward walking [36], resulting in an
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opposite sign of the direction cosine u3, (Fig 2B; F; 5, = 397.3; p< 0.001). In both conditions,
u3, was significantly smaller in older than in young adults (F; s, = 8.2; p = 0.006; np2 =0.12)
but was not significantly affected by the speed of progression (F, 4, = 1.2; p = 0.295).

Both the shape of the loop and the orientation of the plane depend on the amplitude ratio
and the time relationship characteristics of adjacent elevation angles (Fig 2C). The amplitude
ratio between thigh and shank segments was significantly smaller in older adults (F; 5, = 21.1;
p< 0.001; 7,> = 0.25), but was not significantly affected by speed (F,4, = 2.1; p = 0.126) or
walking direction (F; ¢, = 1.0; p = 0.316). The amplitude ratio between shank and foot seg-
ments was significantly smaller in backward walking (F; s, = 17.7; p< 0.001), but was not sig-
nificantly affected by speed (F, s, = 0.7; p = 0.507) or age groups (F; 5, = 0.9; p = 0.330).

At each speed, the phase lags between adjacent segments were greatly affected by walking
direction (thigh-shank: F; 5, = 914.8; p< 0.001; shank-foot: F; ¢, = 101.6; p< 0.001): in forward
walking, the phase lags were positive, showing that the oscillation of the proximal segment lead
the distal ones, whereas in backward walking the phases lags were negative. In addition, the phase
lags were significantly greater in older adults (thigh-shank: F, 5, = 33.7; p< 0.001; 77,” = 0.31;
shank-foot: F; s, = 22.7; p< 0.001; 7,” = 0.24), and the effect of age was significantly greater during
backward walking (thigh-shank: F, 4, = 19.5; p< 0.001; shank-foot: F, ¢, = 16.8; p< 0.001).

EMG activities and spinal motor output

Fig 3A illustrates the ensemble averages of rectified EMG envelopes at all walking conditions
in young and older adults. EMGs for forward walking were qualitatively consistent with those
reported in the literature [28,68]. The activity patterns of some muscles for backward walking
were strikingly different from those of forward walking. For example, BF and ST were mostly
active during early stance and the end of swing in forward walk, whereas they were mostly
active during early stance in backward walk. The ankle extensors GM, GL, SOL and PERL were
mostly active during mid-stance in forward walking, whereas they were active during late
swing and early stance in backward walking.

In older adults, the EMG data remained roughly similar to young adults. However, some
muscles were characterized by a different duration of activation, which we estimated as the
FWHM (Fig 3B). In particular, the trunk extensor muscles (ES: F; 59 = 12.4; p = 0.001; npz =
0.17), the hamstrings (BF: F; 6; = 10.0; p = 0.002; n,” = 0.14; ST: F; 5, = 10.8; p = 0.002; 1,” =
0.16), and the ankle extensors (GM: F; 56 = 7.0; p = 0.010; npz =0.09; GL: F; 59 =9.4; p = 0.003;
n,” = 0.14; SOL: F, 5, = 39.9; p< 0.001; 1,> = 0.39; PERL: F, 55 = 9.7; p = 0.003; 17,,> = 0.15) pre-
sented significantly longer burst durations in older than in young adults.

Fig 4A presents the EMG of Fig 3A normalized to unit variance across all trials [60],
mapped onto the estimated rostro-caudal location of the MN pools in the spinal cord (see
Methods). The lumbar segments showed one major spot of activity around touchdown, involv-
ing primarily hip and knee extensors, whereas the sacral segments showed one major spot of
activity around lift-off, mainly corresponding to the ankle extension at the end of stance
[65,69,70]. The burst timing and duration of the spinal segments differed with age and direc-
tion of progression. As compared to young adults, the FWHM of the sacral MN activation was
significantly greater in older adults (F, ¢5 = 19.9; p< 0.001; 1,> = 0.23), whereas FWHM of the
lumbar MN activation was not significantly different (F; ¢5 = 2.9; p = 0.091; Fig 4). In addition,
the occurrence of the maximal activation of the lumbar segment occurred significantly earlier
in older than in young adults (F; ¢s = 11.1; p = 0.001; n,” = 0.14). Instead, no significant differ-
ence with age was observed at the sacral level (F; 5 = 1.1; p = 0.307), except for an earlier acti-
vation in backward than forward walking (F; 45 = 40.3; p< 0.001). In addition, the effect of
walking direction was significantly greater in older adults (interaction: F; 55 = 7.4; p = 0.008).
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Fig 3. Ensemble-averaged electromyogram (EMG) patterns during forward and backward walking in young and older
adults. A-ensemble-averaged EMG patterns over one stride. ES, erector spinae; GM, gluteus maximus; Gmed, gluteus medius;
SART, sartorius; TFL, tensor fascia latae; ADD, adductor longus; VM, vastus medialis; VL, vastus lateralis; RF, rectus femoris; BF,
biceps femoris; ST, semitendinous; TA, tibialis anterior; MG, gastrocnemius medialis; LG, lateral gastrocnemius; SOL, soleus;
PERL, peroneus longus. The curves presented here are the average of the mean-curves of all the young (grey lines) and older
(black lines) adults. The grey zone represents+1 SD for the older adults. B-Full Width Half Maximum (FWHM) of the 14 lower-
limb muscles at each walking condition. The bars represent the grand mean of all the young (grey) and the older (black) adults.
Thin lines represent one standard deviation. The * indicates a significant effect of age.

https://doi.org/10.1371/journal.pone.0246372.g003
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Fig 4. Spatiotemporal spinal motor outputs computed from normalized EMGs (A) and average full width half maximum and mean
activation of the lumbar (top) and sacral (bottom) segments (B) during forward and backward walking. For each individual, EMG signals
from each muscle were normalized to unit variance across all trials [60]. The bars represent the grand mean of all the young (grey) and the
older (black) adults. Thin lines represent one standard deviation. The * indicates a significant effect of age.

https://doi.org/10.1371/journal.pone.0246372.9004

Another age-related difference was represented by the intensities of the sacral and lumbar
segments, when evaluated from non-normalized EMGs (Fig 3A and S1 Fig). The sacral mean
intensity increased significantly with speed (F, s, = 5.1; p = 0.009), whereas the lumbar mean
intensity did not change significantly with speed (F, 4, = 2.15; p = 0.124). Reversing the walk-
ing direction augmented the engagement of lumbar segments (F; 55 = 5.3; p = 0.025), without
affecting the sacral ones (F; 45 = 0.5; p = 0.470). Older adults presented significantly greater
intensities at both lumbar and sacral levels (lumbar: F; 45 = 18.3; p< 0.001; npz =0.21; sacral:
F;65=28.3; p=0.005; ’7p2 =0.11). Notice that the effect of age on the burst duration did not
depend on normalization (S1 Fig): the FWHM of the sacral MN activation was greater in older

adults (F; ¢5 = 19.4; p< 0.001; npz =0.23), whereas FWHM of the lumbar MN activation was
not different (F; g5 = 1.8; p = 0.180).

Discussion

In this study, we investigated the effect of aging on the neuromuscular control of both forward
and backward walking. Changing direction of locomotion is performed rather readily by both
young and older adults. The effect of age on forward gait pattern has been often associated
with a reduction of ankle propulsion force, for instance [19]. Despite the inverted plantigrade-
digitigrade sequence during backward walking, we found similar age-related modifications of
kinematic coordination and muscle activities in both backward and forward walking, suggest-
ing specific adjustments of the motor control. In addition, we found that the age-related modi-
fications on the intersegmental coordination were greater during backward walking.

With aging, motor weakness is due in part to neuromuscular degeneration, but also to
degenerative changes in the central nervous system. Thus, reduction in grey matter volume
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[71], number of motor cortical [72] and spinal motor neurons [73], synaptic density [74],
white matter integrity [75], and descending commands for motor activation [76] are some of
the factors that may contribute to age-related motor impairment.

To date, several studies have dealt with the effects of aging on forward walking. Our results
are aligned with prior results showing that older subjects take shorter steps [77] (Fig 1) and adapt
their intersegmental coordination mainly by changing the amplitude and phase of shank and foot
motion [1,13,21,22] (Fig 2A). Most authors of previous work discuss a reduction in mechanical
power generated by the plantarflexor muscles as the hallmark biomechanical features of older
gait. More recently, it has also been shown that older adults display longer bursts of muscle activa-
tion [29] (Fig 3) that could be related to a more robust neuromuscular control (i.e. more able to
cope with errors) to deal with poorer balance control [78,79]. Again, the reduced dynamic stability
in older adults has been associated with a diminished ankle push-off [18].

Here, we found that the modifications of the intersegmental coordination during backward
walking are similar to those during forward walking. In particular, the changes in the orienta-
tion of the covariation plane with age (Fig 2B) are mainly related to a change of the phase shift
between shank and foot elevation angles (Fig 2C; [1]). The more in-phase oscillation of the
shank and the foot in older adults may explain the reduction of ankle ROM with aging (Fig
1B), which is not only due to shorter steps (Fig 1C) since the ratio between proximal and distal
segments also changed (Fig 2C). This reduced angular excursion at the ankle in older adults
has already been ascribed to co-contractions of distal antagonist muscles, in part due to EMG
widening [58]. Accordingly, the activity profiles of the muscles innervated by the sacral seg-
ments were significantly wider in older adults (Fig 4A). The reconstructed spinal maps of MN
activity further illustrate this finding. Similar results during forward walking at matched
cadence were previously documented by Monaco et al. [28], suggesting that the widening of
EMG is not dependent on spatiotemporal gait parameters. In addition, this result does not
simply reflect the documented distal-to-proximal modification of kinematics or kinetics, since
the human spinal topography does not reflect the muscle topography on the lower limbs.
Indeed, both distal (GM, GM, SOL, PERL) and proximal (BF, ST) muscles mainly innervated
by distal segments of the spinal cord [55,80] displayed wider activations (Fig 3B).

The present results of a caudal-cranial gradient of involvement of the spinal locomotor seg-
ments in older adults remain to be explained. It is well established that there exists a cranio-
caudal gradient of corticospinal development in infancy [81], but less is known about differen-
tial degeneration of different portions of the corticospinal tract with aging. In general, it
appears that projection tracts, such as the corticospinal tract, which develop earlier than associ-
ation tracts in infancy, degenerate later than association tracts in older subjects [82].

Normal aging and the development of neurodegeneration are two processes that are closely
linked [83,84]. Indeed with aging, neurodegeneration might occur when cells fail to adapt to
the increases in oxidative, metabolic and ionic stress [85]. In addition, the disks between the
vertebrae become hard and brittle when aging. As a result, more pressure is put on the spinal
cord and on the spinal nerve roots, especially in distal segments. These observations may partly
underlie the distal-to-proximal age-related changes in the neuromuscular system with aging.
Accordingly, when the spinal excitability is estimated using the Hoffmann reflex technique, no
difference is found between young and older adults on VM muscle [86], whereas age-related
modulations of the reflex response have been reported in SOL muscle [87]. Further, during
standing, when a perturbation is delivered, older adults exhibit intermittent reversals of the
classical distal-proximal postural synergy used in young adults [88]. Similarly, proximal mus-
cles tend to be activated first in the paretic limb of hemiplegic subject [89]. Interestingly, Mar-
tino et al. [90] found that the spinal maps of patients affected by hereditary spastic paraplegia
were characterized by a spread of the loci of activation at the sacral segments and, at more
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severe stages, the lumbar segments, somewhat reminiscent of what happens in older adults. It
is theoretically possible that the age-related changes in the neuromuscular control of gait are,
at least in part, related to the progression of the aging degenerative process within the corti-
cospinal tract, involving initially the sacral segments and later the lumbar segments. However,
this possibility must be corroborated by studies specifically investigating changes in corticosp-
inal innervation of different spinal segments.

The fact that the age-related modifications of neuromuscular control of gait observed dur-
ing forward walking are also observed during backward walking indirectly supports the idea
that walking impairment is not solely dependent on the reduction of force generated by the
plantar-flexor muscles. Indeed, during backward walking, plantar flexion plays only a small
role in propulsion [91]. The similarity of age-related modifications between the two walking
directions indirectly supports the idea that somewhat similar spinal automatisms are used for
forward and backward walking, as proposed by Grasso et al [36], Earhart et al. [92] and Iva-
nenko et al. [38], with a partial reconfiguration of lower-level networks [39] plus the probable
intervention of supraspinal elements specifically for backward walking [40,41].

On the other hand, it has been shown that the plasticity associated with locomotor adapta-
tion in human is direction specific, suggesting separate functional networks controlling for-
ward and backward walking [54]. Moreover, backward walking is more challenging for the
nervous system [40,41], and this style of walking is much less practiced than forward walking.
Accordingly, we expected that the age-related differences of the neuromuscular control of gait
would be greatly evidenced during backward walking. Indeed, several findings support the
idea that backward walking may unmask mobility impairments in adult stroke patients [43],
Parkinson disease [93], and in children with cerebral palsy [42]. By comparing older to young
adults, greater adjustments of spatiotemporal gait parameters have been observed during back-
ward than forward walking [2,31,52]. However, in these studies, subjects walked at self-
selected speed and their velocity was significantly lower for older adults. In addition, the
reduction of velocity was greater in backward than forward walking, and it was therefore diffi-
cult to differentiate the effect of age from the effect of speed.

By comparing young and older adults at matched speeds, we showed an interaction
between age group and the direction of progression on the relative duration of the stance
phase (Fig 1C), on PV; (Fig 2B), on the phase lags between adjacent segment (Fig 2C), and on
the timing of maximal sacral MN activity. By separating the effects of concomitant issues, such
as age and speed, these changes of gait parameters, kinematics and muscle activity suggest that
older persons have greater deficits in backward performance than during forward walking.

Our sample size was relatively small and the older subjects tended to be active and had no
recent history of falls. Future studies involving a more heterogeneous population of individuals
should be designed to focus on specific gait abnormalities in challenging conditions as a func-
tion of physical functioning. It is also important to note that the familiarization time for the
backward walking task was limited. Whether similar differences between age groups would be
still apparent after longer familiarization to backward walking is also an open question. Never-
theless, the findings of this study extend the available information on age-related differences in
the neuromuscular control of gait occurring both during backward and forward walking. In
addition, the results suggest that assessing backward walking in clinical practice may shed light
on or even unmask neuromuscular adjustments of gait in older adults.

Supporting information

S1 Fig. Unilateral spatiotemporal spinal motor outputs computed from ensemble-aver-
aged electromyograms (EMGs) during forward and backward walking. A—Ensemble-
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averaged normalized electromyogram (EMG) patterns. For each individual, EMG signals from
each muscle were normalized to unit variance across all trials. B-Motor output (reported

in nV) is plotted as a function of gait cycle in young (top) and older (bottom) adults. C-Aver-
age full width half maximum and mean activation of the lumbar (top) and sacral (bottom) seg-
ments. The bars represent the grand mean of all the young (grey) and the older (black) adults.
Thin lines represent one standard deviation. The * indicates a significant effect of age.

(TIF)

S1 Table. List of muscles analysed (1) or removed (0) for each condition (from left to right:
Forward 2 km h™; Forward 4 km h™'; Backward 2 km h'}; Backward 3 km h™) in young (Y)
and older (O) adults.

(DOCX)

S2 Table. Average (mean+ SD) coefficient of correlation r between the activation of each
individual spinal segment (from L2 to S2) reconstructed from a subset of seven muscles
(minimum number of muscle recorded) and from the full set of muscles in each walking
condition.

(DOCX)

S1 Data.
(XLS)
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