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Abstract

Ultrasound is emerging as a promising tool for both characterizing and fabricating engineered 

biomaterials. Ultrasound-based technologies offer a diverse toolbox with outstanding capacity for 

optimization and customization within a variety of therapeutic contexts, including improved 

extracellular matrix-based materials for regenerative medicine applications. Non-invasive 

ultrasound fabrication tools include the use of thermal and mechanical effects of acoustic waves to 

modify the structure and function of extracellular matrix scaffolds both directly, and indirectly via 

biochemical and cellular mediators. Materials derived from components of native extracellular 

matrix are an essential component of engineered biomaterials designed to stimulate cell and tissue 

functions and repair or replace injured tissues. Thus, continued investigations into biological and 

acoustic mechanisms by which ultrasound can be used to manipulate extracellular matrix 

components within three-dimensional hydrogels hold much potential to enable the production of 

improved biomaterials for clinical and research applications.
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1. Introduction

Tissue engineering combines the methodologies of cell biology, chemistry, and engineering 

to produce materials that replace or facilitate the repair of diseased or injured tissue [1]. 

Tissue engineering techniques typically utilize progenitor cells, biological scaffolds, and 

bioactive molecules, either alone or in combination, to achieve desired tissue characteristics 

[1, 2]. While the potential of tissue engineering to produce laboratory-grown, whole-organ 

transplants has gained widespread attention [2], other applications of tissue engineering 
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include the development of materials that facilitate endogenous tissue repair [3]. Tissue 

engineering also offers the opportunity to address fundamental biological and physiological 

questions that cannot be answered with conventional approaches through the development of 

artificial tissues or organs for research purposes, as typified by “lab-on-a-chip” technologies 

[4].

The extracellular matrix (ECM) is a complex network of fibrillar glycoproteins and 

associated molecules that serves the critical role of defining tissue structure while also 

providing key biochemical and mechanical cues [5]. Cell-mediated assembly of ECMs plays 

essential roles in wound healing in many tissues [6, 7], and in tissue assembly during 

embryonic development [5]. As such, it is no surprise that therapeutic biomaterials targeting 

ECM assembly, structure, and function have become essential components from which to 

develop biomaterials for regenerative medicine applications. The potential clinical impact of 

ECM-based biomaterials is far-reaching, with utility for the treatment of injuries in tissues 

with low regenerative potential such as peripheral nerves [8], as well as chronic wounds in 

which the normal progression of healing is dysregulated [9]. In spite of significant progress, 

limitations still persist in the ability to engineer biomaterials that sufficiently recapitulate 

critical features of cell-assembled ECMs produced by healthy tissue [2, 10]. Thus, a critical 

need remains for technologies that can close the gap between the complex, highly organized 

structures of native ECMs and engineered products designed to enhance tissue repair.

Ultrasound is a versatile biomedical tool that has already revolutionized multiple domains of 

modern health care with non-invasive approaches to both diagnosis and therapy [11, 12]. 

Applications of ultrasound for tissue engineering have expanded rapidly [13], and include 

important contributions to both the characterization [14] and fabrication of engineered 

tissues [10]. In this review, we present recent innovations in the application of acoustic 

methodologies to manipulate both materials constructed from native ECM proteins, and 

synthetic scaffolds designed to mimic structural and functional aspects of the ECM in tissue 

homeostasis and repair. These applications include the strategic use of ultrasound to alter 

ECM protein structure via thermal effects and/or mechanical forces, as well as the use of 

engineered, acoustically responsive elements to manipulate scaffold properties. Finally, we 

discuss the use of ultrasound to enhance cell-mediated ECM remodeling behaviors, thereby 

indirectly modifying engineered scaffold structure. Together, these emerging ultrasound-

based methodologies offer innovative strategies to enable non-invasive manufacturing and in 

situ translation of therapeutic materials for regenerative medicine.

2. Tissue Injury and Regeneration

Tissue repair in response to injury is an integral part of the physiology of many adult tissues 

but may be impaired as the result of comorbid health conditions. As well, the inherent repair 

capacity of some tissues is low. In both cases, failure to repair damaged tissue often leads to 

lifelong disability or premature death. Thus, interventions that support restoration of tissue 

function are of vital clinical relevance. In this section, we use dermal wound healing as a 

representative example to illustrate functional roles and clinical impacts of the ECM in 

tissue repair. It is important to note that the assembly, composition and organization of ECM 

structures are tissue-specific, and vary during course of development, with adult 
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homeostasis, and during tissue repair in response to injury [15]. However, given the central 

role that ECMs play in organizing tissue structure and controlling function [5], the principles 

described herein apply to a variety of different tissues. Indeed, similar approaches for 

incorporating ECM-derived, tissue-specific cues into engineering frameworks have recently 

been reviewed for the treatment of injuries in bone [16], cartilage [17], tendon [18], cornea 

[19], muscle [20], and peripheral nerves [8, 21], and have been discussed extensively for 

chronic wounds [9, 22].

2.1 Role of Cell-Mediated ECM Remodeling in Wound Healing

Wound healing in response to injury relies on coordinated processes to rapidly induce 

hemostasis, followed by construction of replacement tissue [6]. Throughout this process, the 

ECM plays a critical role as a structure- and function-defining scaffold that coordinates cell 

and tissue responses [9]. Immediately following cutaneous injury, a transient ECM 

consisting primarily of fibrin and fibronectin forms quickly via the clotting cascade to 

restore homeostasis and barrier function [23]. This “provisional matrix” also supports 

subsequent stages of wound healing, including recruitment of immune mediators as well as 

activated fibroblasts from the surrounding tissue [24]. Cells that migrate into the wound 

space contribute to ongoing ECM remodeling through coordinated processes of matrix 

degradation, synthesis, and contraction [6, 25]. Several key signaling mechanisms are 

involved in the translation of ECM remodeling into coordinated tissue responses. These 

include cell-derived tensile forces and subsequent matrix contraction, which exposes cryptic, 

bioactive epitopes in matrix proteins [26], provides topological cues such as fiber alignment 

[27], and increases tissue tensile strength [28]. Matrix remodeling also acts as a cue for 

subsequent steps of tissue regeneration, as cell-derived tensile forces and associated changes 

in the surrounding ECM are key factors in recruitment and function of numerous cell types, 

including fibroblasts [29, 30], macrophages [31], and vascular cells [32]. In addition, many 

ECM components contain binding sites for growth factors, serving to sequester or present 

growth factors to cells in appropriate conformations [33]. Matrix remodeling and cell 

signaling are also influenced by proteolytic activity, particularly via activation of matrix 

metalloproteases (MMPs) and associated regulatory proteins (TIMPs), which are key 

facilitators of ECM turnover and release of soluble signaling factors [34].

2.2 ECM Dysfunction in Chronic Wounds

The collective result of these coordinated remodeling processes is the generation of 

replacement tissue in which the primary ECM components are types I and III collagen [6]. 

Although healed skin never reaches the full integrity of uninjured tissue, successful wound 

healing produces a stratified structure that sufficiently replaces the physiological function 

and mechanical integrity of uninjured skin tissue [35]. In contrast, failure of the wound 

healing process is associated with a number of chronic conditions, including obesity, 

diabetes, and peripheral vascular disease, many of which disproportionately affect aging 

populations [36, 37]. As a result, chronic and non-healing wounds are a widespread public 

health burden affecting an estimated 20 million people worldwide [38]. While the 

underlying etiologies of chronic wounds are complex and multifactorial, dysfunctional ECM 

remodeling may contribute to a number of wound healing pathologies. Long-term (> 20 

years) diabetes is associated with increased glycation of dermal collagen [39]. In vitro 
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investigations into downstream effects of collagen glycation have identified changes in 

fibroblast remodeling behavior, including decreased fibronectin matrix deposition and 

collagen gel contraction [40], as well as decreased proliferative capacity in endothelial cells 

[41]. Abnormal quantities and distribution of numerous ECM components have also been 

observed in histological sections taken from diabetic and venous ulcers in human patients 

[42, 43].

As impaired matrix remodeling has been associated with wound healing defects, cell-

assembled matrices are emerging as valuable tools to treat non-healing wounds. Cell-

remodeled collagen scaffolds were among the first engineered biomaterials to receive FDA 

approval and are still in use in today’s clinical environments [2, 44]. Critically, investigations 

of donor cell persistence within such materials suggest that donor cells are not maintained 

past 4 weeks post-transplantation [45]. This suggests that mechanisms by which cell-

embedded biomaterials facilitate healing are not dependent on the persistence of donor cells, 

but rather the ability of cell-remodeled matrices to support host cell infiltration and 

subsequent healing [3]. The broad utility of cell-derived ECM as a regenerative template is 

further exemplified by the use of decellularized xenogenic or allogenic ECMs for a diverse 

array of regenerative medicine applications [44, 46]. In these applications, tissues such as 

porcine small intestinal submucosa or cadaveric tissue are decellularized, sterilized, and 

lyophilized to prepare acellular scaffolds comprised of a heterogeneous mixture of ECM 

proteins [47], glycosaminoglycans [48], and growth factors [49]. Decellularized ECM 

scaffolds are either in clinical use or under investigation as therapeutics for a broad spectrum 

of regenerative medicine applications, including vascular, urinary, skin, and nerve 

reconstruction [8, 46].

In summary, the ECM performs key structural and signaling functions throughout the wound 

healing process. Cell-mediated ECM remodeling via mechanical contraction, proteolysis, 

and matrix deposition directs cell signaling through exposure of neoepitopes, growth factor 

release, and topographic cues. The unique functional contributions of each of these 

components varies among tissues, injuries, and disease states. Yet, the versatility of 

decellularized tissue as a regenerative biomaterial suggests that many of these mechanisms 

are common to a variety of wound healing and regeneration processes. As such, 

incorporating key structural and functional characteristics of cell-remodeled ECMs into the 

design of therapeutic biomaterials is a promising strategy for facilitating tissue repair.

3. Biological Effects of Ultrasound

Biomedical ultrasound has been employed for a variety of diagnostic and therapeutic 

applications. Ultrasound is defined as sound with frequencies above the upper limit of 

human hearing (20 kHz), with current FDA-approved ultrasound devices operating up to 20 

MHz [11–13]. Higher frequency devices are also used for a variety of applications, including 

acoustic microscopy [12]. Diagnostic ultrasound has an unparalleled safety record in 

comparison with other imaging modalities, many of which rely on ionizing radiation or 

hazardous contrast agents to acquire images [50, 51]. Extensive work devoted to 

understanding the interaction of sound waves with tissue, and the potential for biological 
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effects, has been essential to establishing safety guidelines for diagnostic applications of 

ultrasound in clinical settings [51].

A growing number of ultrasound applications employ the deliberate induction of ultrasound 

bioeffects for therapeutic benefit. These techniques include well-established therapies such 

as shock wave lithotripsy, as well as non-invasive surgery using high-intensity focused 

ultrasound (HIFU) fields [11]. A new and rapidly expanding application is the use of 

ultrasound for tissue engineering and regenerative medicine. Ultrasound-based tissue 

engineering technologies have already yielded a number of innovative approaches for using 

ultrasound to organize cells, proteins and microparticles within in vitro environments [13]. 

In the following section, a brief overview of the known biological effects of ultrasound is 

presented. Several representative examples then follow to illustrate the wide range of 

strategies that have been employed to harness ultrasound for the purposes of producing 

biomaterials with enhanced functionality.

3.1 Sound Propagation Through Tissue

Propagation of sound waves through a medium results in a decrease in acoustic amplitude 

due to acoustic attenuation. In tissue, sound attenuation occurs via both scattering of sound 

by heterogeneous tissue structures, as well as direct absorption of acoustic energy [52, 53]. 

The attenuation coefficient (α) describes the rate at which sound energy is lost in a material 

over a given propagation distance and is dependent upon the frequency of the sound field. 

Typical values for the acoustic attenuation coefficient in solid tissue at 1 MHz frequency 

range from approximately 1 dB/cm in some soft tissues to upwards of 10 dB/cm for highly 

attenuating tissues such as bone [54]. Absorption of sound by tissue arises from the 

absorption behavior of its biochemical components, as well as macromolecular interactions 

between structures such as cells and proteins [55, 56]. The absorption properties of many 

proteins in dilute solutions have been characterized, and generally increase as a function of 

protein concentration, acoustic frequency [57, 58], and the extent of chemical crosslinking 

and other intermolecular interactions [55, 56].

As the most abundant protein in the body, the acoustic properties of collagen are of 

particular relevance for understanding the acoustic properties of tissue. However, technical 

limitations arising from the high viscosity and self-assembly capacity of purified collagen 

solutions have made quantitative characterization of collagen at physiologically-relevant 

concentrations infeasible [58]. Characterization studies of dilute collagen suspensions in 

acidic solution have demonstrated that collagen exhibits relatively high absorption in 

comparison to globular proteins at comparable concentrations and acoustic frequencies [58, 

59]. Further, the fibrillar structure of collagen is thought to be a contributor to the acoustic 

scattering behavior of solid tissues [52, 60]. Recent work has demonstrated that changes in 

collagen fiber structure, due to concentration and polymerization temperature, influence the 

amount of backscattered acoustic signal in quantitative ultrasound imaging applications [61]. 

These results are consistent with reports of increased acoustic attenuation as a result of 

chemical crosslinking [56], however detailed investigations of how the acoustic properties of 

collagen change as fibers are formed have not been published.
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3.2 Acoustic Mechanisms of Ultrasound-Induced Bioeffects

Absorption of sound in tissues can result in several biological effects with clinical relevance. 

First, significant heating may arise from the absorption of acoustic energy, and the extent of 

heating is dependent upon the acoustic exposure intensity, acoustic frequency, as well as the 

absorption properties of the propagation medium [53]. In therapeutic applications, HIFU 

fields have been used as a non-invasive surgical technique, in which acoustic beam forming 

methods selectively heat a small focal area without damage to the intervening tissue [11]. 

HIFU treatments have been FDA-approved for ablation of uterine leiomyomas, bone 

metastases, and prostate cancer, with many additional applications currently in different 

stages of clinical trials [62].

Sound propagation through a medium is also associated with a radiation pressure in the 

direction of acoustic propagation [63]. In solid materials, this pressure results in the 

generation of an acoustic radiation force and is of particular interest to ultrasound 

elastography applications, such as acoustic radiation force impulse (ARFI) imaging [64]. In 

fluids, the same radiation pressure results in fluid flow in the direction of acoustic 

propagation, referred to as acoustic streaming [65]. In experimental and simulation studies 

of streaming within cylindrical wells, such as those found in typical tissue culture systems, 

this includes the generation of cylindrical vortices around the axis of acoustic propagation 

[66]. Ultrasound-driven fluid streaming has been used to enhance fluid mixing in a variety of 

applications, including in vitro biological culture systems [67, 68].

In addition to radiation forces associated with travelling wave fields, interaction of multiple 

waves can result in the generation of ultrasound standing wave fields (USWF), which are 

characterized by stable regions of zero pressure (nodes) and pressure maxima (antinodes) 

that result from interference patterns between interacting fields [69]. Particles suspended 

within a standing wave field are subject to radiation forces, causing particles to cluster at 

either nodal or antinodal locations [70]. Radiation forces associated with USWFs are the 

primary mechanism for a number of applications in which ultrasound has been used to 

distribute particles, including cells and microbubbles into pre-defined patterns [13]. The use 

of ultrasound to non-invasively pattern cells is of growing interest to tissue engineering, as 

spatial cues such as relative position, spacing, and density of cells serve as important 

determinants of cellular behavior [71–73]. USWF exposures have been used to pattern a 

variety of cell types, including fibroblasts, endothelial cells, Schwann cells, and myocytes to 

produce enhanced collagen gel contraction [74], vascular network formation [75–77], and 

cellular alignment [78–81], respectively.

In addition to absorption-dependent mechanisms of ultrasound bioeffects, pressure 

oscillations associated with acoustic waves can cause expansion and compression of gas 

bubbles within both fluids and tissues [82, 83]. Bubble oscillations of small amplitude 

around their equilibrium size are known as stable (or non-inertial) cavitation [84, 85]. 

Stabilized microbubbles are widely used to enhance contrast during ultrasound imaging, 

particularly in cardiovascular applications [86]. In contrast, ultrasound-induced expansion of 

a gas bubble to several times its initial radius can cause inertial collapse of the microbubble. 

This effect, known as inertial or transient cavitation, produces extremely high pressures, 

temperatures, and fluid velocities with the potential to damage biological structures [83, 87]. 
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Numerous applications of inertial cavitation are also under investigation for therapeutic 

applications, including drug delivery, clot lysis, and gene transfection through sonoporation 

techniques [88].

4. Acoustic Manipulation of ECM-Based Scaffolds

The ability of ultrasound to exert non-invasive, spatially- and temporally-localized effects 

within biological systems makes it an attractive tool for tissue engineering [13]. In 

particular, native protein components of the ECM are inherently sensitive to both 

temperature and mechanical forces [89–91], both of which can be induced non-invasively by 

ultrasound exposures of sufficient intensity [13, 92]. The versatility of ultrasound-mediated 

effects on ECM-based scaffolds has been furthered by the incorporation of thermal- or 

cavitation-responsive elements into ECM-based scaffolds to provide acoustic sensitivity. 

Finally, within the context of cell-embedded biomaterials, ultrasound may also indirectly 

influence ECM structure and function by stimulating cell behaviors involved in ECM 

remodeling. Together, these ultrasound-based technologies hold great potential for 

optimizing and customizing ECM-based biomaterials for regenerative medicine by non-

invasively and site-specifically tuning their mechanical, chemical, and biological properties 

(Figure 1). In the remainder of this review, we discuss these approaches, with representative 

examples highlighted in Table 1.

4.1 Direct Effects of Ultrasound on ECM Proteins

Early investigations into effects of ultrasound on ECM structure and function demonstrated 

that exposing fibrin clots to ultrasound (0.2 – 4 MHz, 1–8 W/cm2) in the presence of 

proteolytic enzymes (i.e., tissue plasminogen activator, tPA) accelerated the rate of fibrin 

degradation [94, 105]. Subsequent mechanistic investigations demonstrated that ultrasound 

did not fragment fibrin scaffolds directly [94]. Rather, in the presence of ultrasound, fibrin 

fibers were separated into strands of reduced diameter and local density [95]. While the 

overall fiber structure of the fibrin gels returned to its pre-exposure state once ultrasound 

was removed, the transient reduction in fiber density was sufficient to accelerate proteolytic 

degradation [94, 95]. The primary acoustic mechanism by which ultrasound influenced 

fibrin fiber structure was thought to be cavitation, although heating and fluid streaming 

mechanisms may have also contributed to clot degradation [94, 106]. This work was among 

the first to demonstrate that ultrasound can be used to manipulate the structure of ECM 

proteins. Related techniques are under active investigation as therapeutic strategies to 

accelerate thrombolysis in animal models of ischemic stroke [107, 108].

Type I collagen is the most abundant protein in the human body, contributing to the ECMs of 

a variety of tissues, including skin, tendon, cornea, and bone [109] Collagen’s high 

abundance low antigenicity, and versatility have made it a promising starting material for the 

production of tissue-engineered scaffold structures in a variety of applications [110]. Under 

appropriate conditions in vitro, solubilized collagen can spontaneously self-assemble into 

3D hydrogels, providing a valuable platform for regenerative medicine applications [44, 

111]. Self-assembled collagen fibers mimic many of the features of native collagen ECM 

structures, including fiber diameter and periodicity [112]. However, 3D hydrogels assembled 
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from purified collagen differ from native ECM collagen in several critical ways, including an 

absence of tissue-specific fiber structures and co-assembly with other ECM components 

[113, 114]. For this reason, numerous techniques for manipulating the structure and function 

of collagen within in vitro environments have been explored. Collagen polymerization 

parameters, including concentration, pH, and temperature, have been widely exploited to 

manipulate scaffold characteristics such as fiber diameter [91], pore size [115], and gel 

stiffness [116], and have been reviewed previously [110]. Collagen fiber characteristics 

directly influence cell behaviors important to wound healing, including cell spreading and 

adhesion, as well as migration and collagen fiber contraction [29, 115, 117, 118]. Several 

techniques have been developed to manipulate the hierarchical, macromolecular 

organization of collagen fibers within 3D hydrogels. These include the use of fluid flow 

[119], mechanical tension [120], electrospinning [121], and magnetic fields [122, 123] to 

produce aligned fibers within 3D collagen matrices. Other approaches have used PDMS or 

other non-adhesive molds to produce micron-scale microchannels within collagen gel 

structures [124].

The use of ultrasound to directly and non-invasively manipulate the structure and function of 

collagen hydrogels was first described by Garvin et al. [102]. This work demonstrated that 

ultrasound exposure (1- or 8.3-MHz, with acoustic intensities up to 30 W/cm2) during 

collagen polymerization could produce local changes in collagen fiber microstructure, 

including increased collagen fiber density and reduced fiber diameter [102]. Measurements 

of ultrasound-induced heating within the center of polymerizing gels demonstrated 

temperature increases of up to 10 °C above unexposed sham samples [102]. Ultrasound-

induced changes in collagen fiber structure could be mimicked using a non-acoustic heat 

source, suggesting a thermal acoustic mechanism [102]. This conclusion is consistent with 

previous reports that elevated temperature during collagen polymerization is associated with 

thinner, more densely packed collagen fiber structures [91, 115]. One advantage of 

ultrasound is that local heating can be produced non-invasively and site specifically, thereby 

providing avenues for fabricating collagen hydrogels with spatial control of collagen fiber 

structure. In addition to thermal effects of ultrasound, acoustic exposure during collagen 

polymerization can produce collagen fiber alignment through non-thermal mechanisms 

[103]. This effect was only observed when ultrasound was present during the active phase of 

collagen fibril self-assembly [104]. The pattern of ultrasound-mediated collagen fiber 

alignment was consistent with simulation patterns of fluid flow within ultrasound-exposed 

cylindrical vessels [66, 68], and thus resembles other systems in which fluid streaming is 

induced by non-acoustic mechanisms, such as flow through microchannels [119].

Other groups have used laboratory benchtop sonicators to partially disrupt ECM structures. 

These devices operate at comparatively low frequencies (15–30 kHz), and high power (≥ 

150 W total power) to induce acoustic cavitation within a fluid volume, and have been used 

to facilitate surface cleaning, chemical catalysis, and cell lysis [125, 126]. Examples in 

which benchtop sonicators have been used for regenerative medicine applications include 

sonication of detergent-decellularized porcine tendon, which produced fiber separation 

within the collagenous ECM structure [96]. Sonicated tendon scaffolds supported enhanced 

cellular infiltration, but did not support long-term viability of cells embedded within the 

center of the construct [96]. Likewise, Maller and colleagues utilized a model of sonicated 
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type I collagen in combination with other ECM components to investigate effects on cellular 

morphology and integrin activation in mammary tumor cells [127]. In this study, volumes of 

soluble collagen were sonicated until the detection of fibers by second harmonic generation 

(SHG) imaging was eliminated, indicating unfolding or fragmentation of the collagen triple 

helical structure [127, 128]. Both examples demonstrate the feasibility of influencing 

collagen structure and function with ultrasound-induced bioeffects. However, typical 

benchtop sonicators do not offer precise control over acoustic parameters and vary among 

manufacturers, thereby limiting both optimization and reproducibility.

Finally, many ECM proteins contain regions that undergo conformational changes in 

response to temperature or mechanical force, thereby exposing new epitopes for cell and/or 

protein engagement [26, 89, 129]. A key example of this behavior is fibronectin, a large 

molecular weight glycoprotein whose incorporation into the fibrillar ECM requires 

application of cell-derived mechanical forces and exposure of cryptic, self-interacting 

epitopes [26, 130]. Interactions of fibronectin with other ECM components, including 

collagen, are also influenced by conformational changes that arise as a result of temperature 

[89] or the application of mechanical force [131]. Recent work describing the 

polymerization of collagen-fibronectin composite gels suggests that ultrasound exposure can 

trigger fibronectin fibril assembly at hydrogel surfaces [93]. Effects were observed only in 

the presence of ultrasound under permissive temperature conditions, suggesting that a 

combination of thermal and non-thermal effects of ultrasound are involved in triggering 

fibril formation within engineered hydrogels [93]. Collagen-fibronectin binding is one of 

many examples in which interactions among ECM components co-regulate downstream 

functions [132–134]. As investigations into effects of ultrasound expand to other composite 

ECM materials [101], additional examples of how ultrasound can be used to influence 

interactions among ECM components are likely to emerge.

4.2 Acoustically-Responsive Engineered Scaffolds

The development of novel techniques to enhance the susceptibility of biological systems to 

acoustic effects has expanded the versatility of ultrasound across both diagnostic and 

therapeutic domains. In particular, advances in microbubble chemistry have enabled the use 

of acoustically-responsive droplets as vehicles for the delivery of drugs, including 

recombinant proteins [135], small molecules [136], and genetic material [137]. In these 

systems, which vary among applications in their composition and preparation, a therapeutic 

payload is suspended in a cavitation-sensitive material, often gas or perfluorocarbons, and 

encapsulated within a stabilizing shell [138]. The development and potential applications of 

acoustically-responsive droplets has been reviewed recently [138, 139]. Here, we discuss 

specific examples of relevance to ECM-based scaffolds and within engineered environments.

A key advantage of acoustically-triggered release is its capacity to simultaneously enable 

spatial and temporal control over drug release [138]. Nele et al. recently reported using 

ultrasound to trigger calcium release from acoustically responsive liposomes to initiate fibrin 

hydrogel polymerization [97]. In this system, ultrasound-induced calcium release was used 

to activate transglutaminase activity, which in turn triggered catalysis of soluble fibrinogen 

to initiate hydrogel crosslinking [97]. The kinetics of calcium release and enzymatic activity, 
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as well as the elastic modulus of the polymerized fibrin hydrogel, were sensitive to acoustic 

exposure duration [97]. Thus, ultrasound-induced calcium release simultaneously enabled 

hydrogel assembly and tuning of hydrogel mechanical properties. Many components of 

ECM signaling networks are sensitive to calcium, including matrix metalloprotease 

activation [140], integrin-mediated adhesion [141], and interactions between ECM proteins 

[142]. As such, techniques that take advantage of ultrasound-triggered calcium release to 

initiate enzymatic activity or cell signaling cascades in temporally- and spatially-defined 

patterns within ECM-based scaffolds are likely to expand.

Native ECM also serve as reservoirs for localized growth factor release [33]. The use of 

acoustically responsive droplets to mimic controlled release of growth factors has been 

demonstrated in fibrin gels. With this technique, growth factors are encapsulated into 

acoustically responsive droplets (<10 μm) which are then embedded in fibrin-based 

hydrogels. Exposing fibrin-embedded, basic fibroblast growth factor (bFGF)-loaded droplets 

to ultrasound triggered growth factor release into the surrounding media, and treatment of 

endothelial cells with this conditioned media enhanced cell viability [98] and vascular sprout 

formation [143]. Additionally, ultrasound-induced cavitation increased the porosity and 

stiffness of these fibrin scaffolds [98]. When similar constructs were loaded with a 

fluorescent tracer and implanted subcutaneously in mice, acoustic exposure supported 

accelerated payload release [99]. The kinetics of release were sensitive to acoustic pressure, 

with the composition [144] and concentration [145] of perfluorocarbons used in manufacture 

of acoustically responsive droplets having a significant influence on the threshold pressure at 

which cavitation and drug release were triggered. This technology has also been proposed as 

a method for sequential release of paired growth factors [146].

An alternative method to achieve ultrasound-triggered growth factor release has been to 

genetically engineer cells with heat-responsive gene elements. This technique exploits a 

well-characterized transcriptional response to heat shock [147], in which cells are 

transfected with plasmids containing a target gene sequence under the combined control of 

the HSP70B promoter and a rapamycin-dependent gene switch [148]. Thus, when 

engineered cells are cultured in the presence of rapamycin and exposed to high-intensity 

focused ultrasound (HIFU), localized heating induces expression of target genes with spatial 

and temporal specificity [100]. This approach has been used to induce expression of both 

BMP-2 [100] and VEGF [148], key growth factors for therapeutic bone fracture healing and 

angiogenesis, respectively [149]. Further tuning of growth factor expression has been 

achieved by addition of hydroxyapatite to cell-embedded fibrin gels to enhance acoustic 

absorption [101]. The translation potential of this approach has been demonstrated in vivo 

using ultrasound-induced luciferase expression in murine models [101]. Critically, the 

acoustic mechanisms used to induce growth factor release with heat-shock induction 

systems, namely absorption-dependent heating [100], are distinct from the cavitation-

dependent release of growth factors from acoustically-responsive lipid droplets [98]. Thus, 

the secondary effects on surrounding native ECM components will likely be distinct, 

enabling an additional level of control in engineering custom scaffolds for specific 

applications.
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4.3 Indirect Effects of Ultrasound on Cell-Mediated ECM Remodeling

A critical consideration in the fabrication of tissue engineered scaffolds is an understanding 

of the bi-directional relationship between the ECM and its resident cells. Within this 

framework, known as dynamic reciprocity, structural changes in the ECM induce changes in 

cell behaviors, which in turn remodel the ECM [150]. Key cellular programs associated with 

ECM remodeling include enhanced actin-myosin contractility and cell migration, as well as 

upregulation of ECM gene expression and matrix protein deposition [7]. The strategic use of 

intrinsic ECM-remodeling capabilities of cells has emerged as an essential tool for 

biomaterial fabrication. Examples include the use of geometric patterning and cell-derived 

tensile forces to achieve fiber alignment [27, 151, 152], and the use of tissue-specific cell 

types to assemble matrices with appropriate molecular composition [153, 154]. In 

combination, these techniques have been used to reconstruct complex biomaterials 

mimicking numerous features of tissue-specific ECMs, with particular utility in loadbearing 

tissues such as tendon [155], intervertebral discs [156] and menisci of the knee [157, 158].

Contraction of fibroblast-embedded collagen hydrogels and associated changes in cell 

migration and differentiation is a long-standing in vitro model for investigations of ECM 

remodeling in a wound-like environment [25]. Studies of fibroblast-embedded collagen 

hydrogels exposed to ultrasound standing wave fields during collagen polymerization 

showed that ultrasound exposure enhanced cell-mediated gel contraction compared to sham-

exposed controls [74]. Subsequent studies demonstrated that exposing soluble collagen to 

ultrasound during hydrogel polymerization produces collagen fibrils that are more readily 

remodeled by cells than sham-exposed fibrils [102, 103]. Similar collagen remodeling was 

observed when primary cells derived from diabetic murine dermal explants were seeded on 

acoustically modified collagen hydrogels [103]. In these studies, cell-mediated collagen 

fibril remodeling and contraction were likely facilitated by ultrasound-induced changes in 

collagen structure [102, 103]. Given the role of ECM remodeling in the coordinated healing 

response of skin to injury [25, 159], these results raise the possibility that ultrasound-based 

techniques may improve current fabrication technologies for regenerative biomaterials by 

enhancing the healing capacity of acellular, collagen-based wound dressings.

The use of ultrasound standing wave fields as a technology to pattern cells in vitro has also 

emerged as a versatile technique for engineering cellular biomaterials, with applications to 

vascular [75–77], muscular [80, 81], and neuronal [78, 79] tissue engineering. In these 

systems, secondary radiation forces associated with ultrasound standing waves are used to 

pattern cells into planar bands or columns within solutions of soluble ECM proteins, often 

collagen [75] or fibrinogen [79]. Following hydrogel polymerization, cells are retained in the 

ultrasound-established pattern after the acoustic source is removed [160]. The majority of 

these studies have focused on cellular responses to acoustic patterning, including cellular 

morphogenesis [76] and differentiation [79]. Several pieces of evidence suggest that 

enhanced remodeling of the initial ECM template also contributes to cellular responses. 

First, vascular sprouting and collagen fiber alignment along the direction of vessel growth 

have been observed in acoustically-patterned systems containing vascular endothelial cells 

[75], consistent with observations of sprouting angiogenesis from microvessel explants 

[161]. Likewise, enhanced contraction of acoustically-patterned constructs has been reported 
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in several studies [74, 80]. Critically, the direction of cell alignment can be directed to 

develop either parallel or perpendicular to the acoustic exposure axis by altering the 

orientation in which the engineered tissue is anchored [80]. Taken together, these findings 

suggest that the expression of tissue-mimicking cellular morphologies may arise from an 

enhanced capability of resident cells to remodeling the ultrasound-exposed scaffold.

5. Emerging Technologies

As technologies to manipulate biological systems advance, the uses of ultrasound in the 

fabrication of ECM-based scaffolds is also likely to expand. Many ultrasound properties are 

highly attractive for regenerative medicine applications, particularly the ability to be used 

non-invasively and with high temporal and spatial control. In this regard, ultrasound is one 

of several emerging modalities by which biomaterials, as well as cells and other components 

of the tissue-engineered environment, can be manipulated non-invasively [10]. Given the 

complexity of native tissues, producing engineered tissue substitutes with sufficient fidelity 

to restore healthy function in patients with severe disease and injury will likely require the 

synergy of multiple strategies and technologies. The use of tissue-specific cells to further 

remodel acoustically-modified ECM templates is one such example of this approach that has 

already generated promising preliminary success [75, 80, 103]. Here, we discuss additional 

examples in which ultrasound-based methodologies may extend the potential of other 

experimental strategies.

One technology of interest is the development of acoustic tweezing cytometry (ATC) to 

apply mechanical forces to cells or proteins. Pioneering work in this field demonstrated the 

feasibility of targeting microbubbles to the surface of cells via attachment of an integrin-

binding peptide ligand to the microbubble shell [162, 163]. Exposure of microbubble-

targeted cells to ultrasound induced microbubble displacement was followed by sustained 

generation of cellular traction forces [162, 163]. Cytoskeletal contraction required Rho- and 

Rho-associated kinase (ROCK)-mediated signaling [163], and was not observed when 

microbubbles were targeted to a non-integrin receptor [162]. Assembly of fibronectin fibrils, 

a key event during tissue repair [3, 23] is likewise dependent upon integrin ligation and Rho-

mediated cytoskeletal contractility [130]. Thus, these studies suggest the possibility that 

ATC-stimulated cellular contractility may offer yet another technique to manipulate cellular 

ECM deposition and/or force-sensitive conformational changes to ECM proteins.

Another area of expanding potential is the use of acoustic techniques to assemble scaffold 

materials into increasingly complex patterns with high precision. The use of acoustic 

holograms, in which sound passes through a 3D-printed phase plate to generate an acoustic 

pressure field in a user-defined pattern, has emerged recently as a significant advance in the 

complexity of structures that can be achieved using ultrasound-mediated particle patterning 

[164]. This approach has been used to pattern cells [165] and PEG-DMA scaffolds [166] 

into complex geometries. The use of ultrasound to pattern PEG-based scaffolds is of 

particular interest to the engineering of biocompatible scaffolds, as PEG hydrogels can be 

functionalized with appropriate ligands to engineer specific ECM compositions and 

conformations [167]. Such an approach has the potential to enable the incorporation of a 

diverse array of bioactive signals [168], including adhesive [169, 170] and matricryptic 
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[171] ligands, as well as enzymatically-sensitive [172] and growth factor-simulating [170, 

172] sequences. Other technologies use ultrasound beam steering and vortex beams to move 

and steer particles in 3D through fluid materials [173]. Together, these technologies may be 

used in coordination to create engineered matrices of high spatial and biochemical 

complexity.

6. Conclusions

In summary, ultrasound is a versatile tool for manipulating biological systems and continues 

to find novel applications in the fabrication of biomaterials for regenerative medicine 

applications. Ultrasound has the capacity to induce several distinct effects within biological 

systems, including heating, fluid streaming, and microbubble cavitation. Numerous 

ultrasound-based techniques that have the capacity to manipulate biomaterials have emerged 

in recent years. These include the use of ultrasound to modify the conformation and 

organization of fibrillar ECM proteins either directly or indirectly, as well as innovative 

strategies to use ultrasound to enhance cellular activities within engineered scaffolds. The 

convergence of these developments with an evolving understanding of the role of ECM 

during tissue repair represents a significant opportunity to harness ultrasound as a non-

invasive methodology for fabricating ECM-based scaffolds with enhanced complexity and 

regenerative capacity.
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Figure 1. 
Mechanisms of Ultrasound-ECM Interactions. Ultrasound exposure parameters can be tuned 

to affect ECM proteins directly via heating, radiation force, or microbubble cavitation. 

Scaffolds can also be engineered with acoustically responsive elements for drug and protein 

delivery with spatial and temporal resolution. Additionally, mechanical forces associated 

with ultrasound may induce cell remodeling activity directly, or indirectly via changes in 

ECM protein composition or conformation.

Norris et al. Page 22

Recent Prog Mater. Author manuscript; available in PMC 2021 February 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Norris et al. Page 23

Ta
b

le
 1

E
xa

m
pl

es
 o

f 
ac

ou
st

ic
 m

od
if

ic
at

io
n 

of
 E

C
M

 s
ca

ff
ol

d 
st

ru
ct

ur
e 

an
d 

fu
nc

tio
n.

 A
bb

re
vi

at
io

ns
: C

W
, c

on
tin

uo
us

 w
av

e;
 U

SW
F,

 u
ltr

as
ou

nd
 s

ta
nd

in
g 

w
av

e 
fi

el
d;

 

I S
PP

A
, s

pa
tia

l p
ea

k,
 p

ul
se

 a
ve

ra
ge

 in
te

ns
ity

; I
SP

TA
, s

pa
tia

l p
ea

k,
 te

m
po

ra
l a

ve
ra

ge
 in

te
ns

ity
; P

FC
, p

er
fl

uo
ro

ca
rb

on
; r

tP
A

, r
ec

om
bi

na
nt

 ti
ss

ue
 p

la
sm

in
og

en
 

ac
tiv

at
or

.

E
C

M
/U

S 
In

te
ra

ct
io

n
A

co
us

ti
c 

C
on

di
ti

on
s

A
co

us
ti

c 
M

ec
ha

ni
sm

Sc
af

fo
ld

 C
om

po
si

ti
on

B
io

lo
gi

ca
l R

es
po

ns
e

R
ef

er
en

ce

D
ir

ec
t e

ff
ec

t o
n 

E
C

M
 p

ro
te

in
s

8 
M

H
z,

 C
W

 I
SP

PA
 ≤

 1
0 

W
/c

m
2

T
he

rm
al

 a
nd

 n
on

-
th

er
m

al
C

ol
la

ge
n 

an
d 

fi
br

on
ec

tin
Fi

be
r 

al
ig

nm
en

t, 
fi

br
on

ec
tin

 f
ib

ri
l f

or
m

at
io

n;
 

Fi
br

ob
la

st
 s

el
f-

as
se

m
bl

y
[9

3]

D
ir

ec
t e

ff
ec

t o
n 

E
C

M
 p

ro
te

in
s

1 
M

H
z,

 C
W

 1
 –

 8
 W

/c
m

2
C

av
ita

tio
n

Fi
br

in
 a

nd
 r

tP
A

D
ec

re
as

ed
 f

ib
er

 d
en

si
ty

, e
nh

an
ce

d 
pr

ot
eo

ly
si

s
[9

4,
 9

5]

D
ir

ec
t e

ff
ec

t o
n 

E
C

M
 p

ro
te

in
s

B
en

ch
to

p 
so

ni
ca

to
r

C
av

ita
tio

n
D

ec
el

lu
la

ri
ze

d 
te

nd
on

D
ec

re
as

ed
 f

ib
er

 d
en

si
ty

 a
nd

 in
cr

ea
se

d 
po

re
 s

iz
e;

 
E

nh
an

ce
d 

ce
llu

la
r 

in
fi

ltr
at

io
n

[9
6]

A
co

us
tic

al
ly

 r
es

po
ns

iv
e 

sc
af

fo
ld

20
kH

z,
 p

ul
se

d
C

av
ita

tio
n

C
a2+

-s
pi

ke
d 

lip
os

om
es

 in
 

tr
an

sg
lu

ta
m

in
as

e-
fi

br
in

og
en

 
so

lu
tio

n

T
ra

ns
gl

ut
am

in
as

e-
tr

ig
ge

re
d 

fi
br

in
og

en
 

po
ly

m
er

iz
at

io
n

[9
7]

A
co

us
tic

al
ly

 r
es

po
ns

iv
e 

sc
af

fo
ld

3.
5 

M
H

z,
 p

ul
se

d 
M

Pa
 +

(−
) 

=
 1

2.
9 

[6
.0

]
C

av
ita

tio
n

PF
C

-g
ro

w
th

 f
ac

to
r 

em
ul

si
on

s 
em

be
dd

ed
 in

 f
ib

ri
n

In
cr

ea
se

d 
po

re
 s

iz
e,

 in
cr

ea
se

d 
st

if
fn

es
s;

 G
ro

w
th

 
fa

ct
or

 r
el

ea
se

[9
8,

 9
9]

A
co

us
tic

al
ly

 r
es

po
ns

iv
e 

sc
af

fo
ld

2.
5 

M
H

z,
 C

W
 I

SP
TA

 =
 6

58
–7

50
 W

/c
m

2
T

he
rm

al
C

el
l-

em
be

dd
ed

 f
ib

ri
n 

(+
/−

 
hy

dr
ox

ya
pa

tit
e)

G
ro

w
th

 f
ac

to
r 

ex
pr

es
si

on
[1

00
, 1

01
]

C
el

lu
la

r 
E

C
M

 R
em

od
el

in
g

2–
2.

2 
M

H
z,

 U
SW

F 
0.

12
 M

Pa
U

SW
F

C
ol

la
ge

n
C

ol
la

ge
n 

co
nt

ra
ct

io
n;

 M
yo

bl
as

t a
lig

nm
en

t a
lo

ng
 

te
ns

io
na

l a
xi

s
[8

0]

C
el

lu
la

r 
E

C
M

 R
em

od
el

in
g

1 
M

H
z,

 U
SW

F 
0.

2M
Pa

U
SW

F
C

el
l-

em
be

dd
ed

 c
ol

la
ge

n
E

nh
an

ce
d 

ge
l c

on
tr

ac
tio

n;
 F

ib
er

 a
lig

nm
en

t a
lo

ng
 

va
sc

ul
ar

 s
pr

ou
ts

[7
4,

 7
5]

D
ir

ec
t e

ff
ec

t o
n 

E
C

M
 p

ro
te

in
s;

 
C

el
lu

la
r 

E
C

M
 R

em
od

el
in

g
8 

M
H

z,
 C

W
 I

SP
PA

 ≤
 1

0 
W

/c
m

2
N

on
-t

he
rm

al
C

ol
la

ge
n

A
lte

re
d 

po
re

 d
en

si
ty

 a
nd

 r
ad

ia
l f

ib
er

 a
lig

nm
en

t; 
Fi

br
ob

la
st

 m
ig

ra
tio

n 
an

d 
E

C
M

 c
on

tr
ac

tio
n

[1
02

–1
04

]

Recent Prog Mater. Author manuscript; available in PMC 2021 February 17.


	Abstract
	Introduction
	Tissue Injury and Regeneration
	Role of Cell-Mediated ECM Remodeling in Wound Healing
	ECM Dysfunction in Chronic Wounds

	Biological Effects of Ultrasound
	Sound Propagation Through Tissue
	Acoustic Mechanisms of Ultrasound-Induced Bioeffects

	Acoustic Manipulation of ECM-Based Scaffolds
	Direct Effects of Ultrasound on ECM Proteins
	Acoustically-Responsive Engineered Scaffolds
	Indirect Effects of Ultrasound on Cell-Mediated ECM Remodeling

	Emerging Technologies
	Conclusions
	References
	Figure 1
	Table 1

