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ABSTRACT
Autophagy, a bulk degradation system conserved among most eukaryotes, is also involved in responses 
to viral infection in plant. In our previous study, a new host factor P3IP was identified to interact with RSV 
(rice stripe virus) p3 and mediate its autophagic degradation to limit the viral infection. Here, we further 
discovered that P3IP of Nicotiana benthamiana (NbP3IP) participated in regulation of autophagy. 
Overexpression of NbP3IP induced autophagy and down-regulation of NbP3IP reduced autophagy. 
Combined the functions of autophagy-mediated plant defense against plant virus and regulation autop-
hagy, we indicate that P3IP participates in the regulation of autophagy.
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Autophagy is a highly conserved eukaryotic mechanism that 
leads to the degradation and recycling of cytoplasmic compo-
nents and damaged organelles through lysosomal pathways. 
Macroautophagy (hereafter referred to as autophagy) is 
mediated by autophagosome, a de novo-formed double- 
membrane vesicles. This process involves multiple autophagy- 
related (ATG) proteins. Autophagy can be induced in various 
stress conditions including starvation, oxidative stress, drought, 
salt and pathogen invasion in plants.1–5 The recruitment of 
autophagy targets is mediated by cargo adaptor proteins like 
p62/SQSTM1 and NBR1 that interact with membrane- 
associated ATG8/LC3 through a conserved motif termed LC3- 
interacting region (LIR).6–8

In our previous paper, an uncharacterized plant protein P3IP 
was shown to interact with p3 and mediate its autophagic degra-
dation to limit RSV infection. P3IP also interacted with ATG8f, 
indicating a potential selective autophagosomal cargo receptor 
role for P3IP.9 It is known that ATG8 family proteins execute 
important functions during autophagy in various species.10–13 

To determine whether P3IP itself also possesses the ability to 
induce autophagy in N. benthamiana, we transiently co- 
expressed NbP3IP with CFP-NbATG8f to visualize autophagic 
structures and to monitor induced autophagic activity in 
N. benthamiana using a previously validated approach.14 The 
term relative autophagic activity is widely used in plant autop-
hagy research. It means autophagy activity of samples relative to 
that of control. When we co-expressed CFP-NbATG8f with 
NbP3IP-Myc, we found an increase in the number of CFP- 
labeled autophagic structures compared to cells in which CFP- 
NbATG8f was co-expressed with a control protein GUSp-Myc 
(Figure 1a and b). Moreover, treating the cells with the lysosomal 
proteinase inhibitor E-64d, which blocks the vacuolar degradati 

on of proteins, increased even more the number of CFP-ATG8f- 
labeled structures in both NbP3IP-Myc and GUSp-Myc co- 
expressed cells (Figure 1a and b), which is evidence that autop-
hagic flux was normal in all the tested cells. In the presence of 
E-64d, both of autophagic bodies and autolysosomes could be 
observed. In addition, a GFP-ATG8 (green fluorescent protein 
fused to ATG8) processing assay was also performed to monitor 
autophagy, as indicated by the appearance of free GFP generated 
within the vacuole/lysosome.15–17 In the absence of E-64d, the 
ratio of GFP:GFP-ATG8 in NbP3IP-Myc containing leaves was 
increased compared to that in GUSp-Myc containing leaves 
(Figure 1c). Furthermore, the ratio of GFP:GFP-ATG8 in 
NbP3IP-Myc samples treated with E-64d was also higher than 
that in NbP3IP-Myc samples without E-64d treatment, indicat-
ing that the vacuolar processing of GFP-ATG8 could be blocked 
by the protease inhibitor (Figure 1c). These results reveal that 
overexpression of NbP3IP-Myc induces autophagy without 
affecting the autophagic flux. Transmission electron microscopy 
was also used to verify the autophagy activation. Compared to 
the control plants, we could clearly observed increased numbers 
of autophagic structures in leaves with transient expression of 
NbP3IP (Figure 1d). There was about a twofold increase in the 
number of visible structures typical of autophagosomes in the 
cytoplasm (Figure 1e).

In addition, we employed expression of CFP-NbATG8f to 
monitor autophagy in NbP3IP-silenced plants (TRV:NbP3IP). 
Confocal microscopy showed that no matter treated with E-64d 
or not, there were fewer autophagosomes as represented by CFP- 
NbATG8f puncta in TRV:NbP3IP plan 
ts compared with control plants, respectively (Figure 2a and b). 
Compared to TRV:00 control plants, the mRNA levels of ATGs 
were down-regulated in NbP3IP-silenced plants (Figure 2c). The 
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accumulation of Joka2/NBR1, which has been demonstrated to 
be a selective autophagy substrate and also a suitable autophagy 
marker for autophagic flux analysis in plants,18,19 was examined 
in NbP3IP-silenced plants. The protein level of Joka2 increased 
in NbP3IP-silenced leaves compared to non-silenced (TRV:00) 
leaves, similar to what was observed in ATG5 and ATG7- 
silenced leaves (Figure 2d), suggesting that autophagy is sup-
pressed in NbP3IP-silenced plants. Taken together, these data 
suggest that NbP3IP is a new player in the regulation of autop-
hagy in plants.

Moreover, OsP3IP, an NbP3IP homolog in rice, which was 
reported to interact with p3, OsATG8b and mediate the degra-
dation of p3 protein, could also induce autophagy in our pre-
vious study. All these data suggest that P3IP has function as 
regulator in autophagy pathway.
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Figure 1. NbP3IP overexpression activates autophagy. (a) Co-expression of NbP3IP-Myc with CFP-NbATG8f increases the appearance of autophagosomes and 
autophagic vesicles compared to expression of CFP-NbATG8f with a control protein (GUSp-Myc) with or without (left) E-64d. Images were collected at 48 hpi. 50 μM 
E-64d was pre-infiltrated at 10 h ahead of imaging. Bars, 10 μm. The picture of chlorophyll is used to show the shape of leave cells. (b) Quantification of increase of 
autophagic activity in cells imaged in panel A. The autophagic activity was calculated in relation to GUSp-Myc with or without E-64d treated plants. Autophagic bodies 
were counted from approximately 150 cells for each treatment in three independent experiments. Values represent the mean ± SD. Different letters indicate significant 
difference (ANOVA, P < 0.05). (c) GFP-ATG8 processing assay in control and NbP3IP- 
Myc-expressing leaves with or without E-64d treatment. Arrowheads indicate the free GFP band and GFP-ATG8f band respectively. The value represents ratio of 
GFP/GFP-ATG8f relative to rubisco, and the relative levels were calculated in relation to GUSp-Myc without E-64d treated. GFP-ATG8f 40 kD, GFP 27 kD. (d) Examination 
of autophagic vesicle production by TEM of leaf cells from plants infiltrated with GUSp-Myc or NbP3IP-Myc. Samples collected for processing at 60 hpi. Typical 
autophagic structures are indicated with red arrows. Bars, 1 μm. (e) Quantification of autophagic vesicles from approximately 20 cells present in TEM images. The 
autophagic activity is calculated relative to GUSp-Myc-treated plants. The value represents the mean ± SD from three independent experiments. Double asterisks 
indicate P < 0.01 of significant difference between GUSp-Myc and NbP3IP-Myc treatments (Student’s t-test, two-sided).

Figure 2. Silencing of NbP3IP inhibits autophagy. (a) Silencing of the endogenous NbP3IP gene reduces the number of autophagosomes with or without (upper) E-64d. 
Confocal images showing NbP3IP-silenced (TRV:NbP3IP) or control (TRV:00) plants transiently expressing CFP-NbATG8f at 48 hpi. 50 μM E-64d was pre-infiltrated at 10 h 
ahead of imaging. Bars, 10 μm. (b) Relative autophagic activity in NbP3IP-silenced plants. The autophagic activity was calculated in comparison to TRV:00 plants with or 
without E-64d. Autophagic bodies were counted from approximately 150 cells for each treatment in three independent experiments. Values represent the mean ± SD. 
Different letters indicate significant difference (ANOVA, P < 0.05). (c) Real-time RT-PCR analysis of the relative expression of ATGs in TRV:NbP3IP plants compared to 
TRV:00 plants. Values represent means ± SD from three independent experiments. Double asterisks indicate P < 0.01 of significant difference between TRV:00 control 
plants and TRV:NbP3IP silenced plants. (Student’s t-test, two-sided). (d) Joka2 was accumulated in NbP3IP-silenced plants. Joka2 was detected using Anti-NBR1 
antibody. The value represents protein accumulation relative to rubisco, and the relative levels were calculated in relation to the TRV:00 treatment. Tests were repeated 
three independent times. Representative result was displayed. Anti-NBR1 120 kD.
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