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Fusaric acid decreases p53 expression by altering promoter methylation and 
m6A RNA methylation in human hepatocellular carcinoma (HepG2) cells
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ABSTRACT
Fusaric acid (FA) is a food-borne mycotoxin that mediates toxicity with limited information on its 
epigenetic properties. p53 is a tumour suppressor protein that regulates cell cycle arrest and 
apoptotic cell death. The expression of p53 is regulated transcriptionally by promoter methylation 
and post-transcriptionally by N-6-methyladenosine (m6A) RNA methylation. We investigated the 
effect of FA on p53 expression and its epigenetic regulation via promoter methylation and m6A 
RNA methylation in human hepatocellular carcinoma (HepG2) cells. HepG2 cells were treated with 
FA [0, 25, 50, 104, and 150 µg/ml; 24 h] and thereafter, DNA, RNA, and protein was isolated. 
Promoter methylation and expression of p53 was measured using qPCR and Western blot. RNA 
immuno-precipitation was used to determine m6A-p53 levels. The expression of m6A methyl
transferases (METTL3 and METTL14), demethylases (FTO and ALKBH5), and readers (YTHDF1-3 and 
YTHDC2) were measured using qPCR. FA induced p53 promoter hypermethylation (p < 0.0001) 
and decreased p53 expression (p < 0.0001). FA decreased m6A-p53 levels (p < 0.0001) by 
decreasing METTL3 (p < 0.0001) and METTL14 (p < 0.0001); and suppressed expression of 
YTHDF1 (p < 0.0001), YTHDF3 (p < 0.0001), and YTHDC2 (p < 0.0001) that ultimately reduced 
p53 translation (p < 0.0001). Taken together, the data shows that FA epigenetically decreased p53 
expression by altering its promoter methylation and m6A RNA methylation in HepG2 cells. This 
study reveals a mechanism for p53 regulation by FA and provides insight into future therapeutic 
interventions.
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Introduction

Fusaric acid (FA; 5-butylpicolinic acid) is 
a mycotoxin produced by the Fusarium species 
that parasitize agricultural foods and feeds and 
impacts on human and animal health. To date, 
little is known on the toxic and epigenetic effects 
of FA in humans and animals and the elucidation 
of cellular epigenetic mechanisms can lead to 
a better understanding of FA toxicity as well as 
assist in the development of preventative and ther
apeutic measures against FA toxicity. This is ben
eficial in underprivileged communities where the 
food supply and storage conditions are inadequate. 
Currently, the only epigenetic study on FA showed 
induction of DNA hypomethylation that led to 
genotoxicity and cytotoxicity in an in vitro 
model [1].

FA has diverse toxicological effects in plants [2– 
5] and animals [6–9]; it exhibits phytotoxicity by 
causing necrosis and wilt disease symptoms in 
various plants [5]. FA is also toxic to human and 
animal cells by inducing oxidative stress [10], 
mitochondrial dysfunction [11], DNA damage 
[12,13], and apoptotic cell death [10–12,14,15]. It 
has neurochemical effects in mice [16], rats [17], 
and pigs [18,19]; and reduced aggressive behaviour 
and motor activity [16]. Additionally, the toxicity 
of FA was associated with alterations in platelet 
function [20], delayed bone ossification [21], 
hypotension [7,22], and notochord malformation 
[8]. Synergism between FA and other Fusarium- 
produced mycotoxins such as deoxynivalenol 
(DON) [23], fumonisin B1 (FB1) [24], and 4,15- 
diacetoxyscirpenol (DAS) [25] have also been 
demonstrated.
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The tumour suppressor protein, p53 is 
a transcription factor that is activated in response 
to cellular stress [26]. The most common p53 
activating stressors include oxidative stress, DNA 
damage, excessive oncogene activation, and 
hypoxia [26,27]. Once activated, p53 recruits core 
transcriptional machinery to its target promoters, 
enabling the transcription of genes, with cellular 
outcomes such as cell cycle arrest and apoptosis 
[28,29]. Dysregulation in p53 expression has been 
associated with several human diseases including 
neurodegenerative diseases [30,31] and can
cer [32].

Although previous studies have indicated that 
p53 is regulated at the post-translational level by 
ubiquitination, phosphorylation, and acetylation 
[33–35], the expression of p53 is also regulated 
epigenetically at the transcriptional and post- 
transcriptional levels by promoter methylation 
and N-6-methyladenosine (m6A) RNA 
methylation.

Promoter methylation, methylation of CpG 
islands within the promoter regions of specific 
genes, is crucial in regulating gene transcription. 
The p53 promoter region was sequenced and basal 
promoter activity was localized to an 85bp region 
(nucleotides 760–844) that is indispensable for its 
full promoter activity [36], and the p53 promoter 
has putative binding sites for transcription factors. 
Alterations in p53 promoter methylation have 
been linked with an array of p53 mutations, loss 
in tumour suppressor function, and cancer pro
gression [32]. Previously, it was shown that pro
moter hypermethylation of p53 prevents binding 
of transcription factors and is associated with 
a reduction in p53 expression, whereas promoter 
hypomethylation increases p53 expression [37,38].

Post-transcriptional regulation of messenger 
RNA (mRNA) expression involves RNA-protein 
and RNA-RNA interactions [39]. M6A RNA 
methylation occurs in approximately 0.2–0.5% of 
adenines and is the most abundant post- 
transcriptional modification of mammalian 
mRNA [40,41]. M6A is commonly found in the 
coding region and 3� untranslated region 
(3�UTR) of mRNA and is involved in regulating 
cellular processes including mRNA translation 
[42,43], degradation [44], splicing [45], and cellu
lar localization [46]. Dysregulation in the m6A 

methylation pattern has been associated with 
developmental abnormalities [46–48], obesity 
[49,50], type 2 diabetes [51], cancer [52–54], and 
other human diseases [55].

M6A is catalyzed by the methyltransferase com
plex which consists of methyltransferase-like 3 
(METTL3), methyltransferase-like 14 
(METTL14), and Wilm’s tumour 1-associated pro
tein (WTAP) [56,57]. METTL3 is catalytically 
active and regulates m6A levels by binding to 
s-adenosyl methionine and catalyzing the transfer 
of a methyl group to the N-6 position of specific 
adenines on the target mRNA, METTL14 func
tions to maintain structure and substrate recogni
tion by interacting with and stabilizing METTL3, 
whereas WTAP is catalytically inactive and facil
itates RNA binding and m6A deposition by coor
dinating nuclear localization of the METTL3- 
METTL14 complex [57]. The m6A demethylases, 
fat mass and obesity-associated protein (FTO) and 
ALKB homolog 5 (ALKBH5), are Fe2+ and alpha- 
ketoglutarate-dependent and function by oxidizing 
N-methyl groups of m6A to a hydroxymethyl 
group [39,58].

Chemical modifications of RNA transcripts alter 
the charge, base-pairing, secondary structure, and 
RNA-protein interactions, thereby, regulating gene 
expression by modulating RNA processing, locali
zation, translation, and decay [42,44–46]. 
Similarly, m6A also affects RNA processing by 
recruiting specific reader proteins. The m6A read
ers such as the YT521-B homology domain con
taining proteins 1 and 2 (YTHDC1 and YTHDC2) 
and the YT521-B homology domain family pro
teins 1, 2, and 3 (YTHDF1, YTHDF2, and 
YTHDF3) specifically recognize m6A modified 
RNAs and regulate the expression and function 
of specific mRNAs and proteins. YTHDF1, 
YTHDF3, and YTHDC2 regulate mRNA transla
tion [42,43], YTHDF2 regulates mRNA degrada
tion [44], and YTHDC1 regulates mRNA splicing 
and cellular localization [45,46].

Previously, we determined that FA (104 µg/ml) 
post-translationally activates p53 in response to 
DNA damage in human hepatocellular carcinoma 
(HepG2) cells [12]; however, the mechanism 
underlying the effect of FA on p53 expression 
and its epigenetic regulation is not well under
stood. This study aimed to determine the effect 
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of FA on p53 expression and its epigenetic regula
tion at the transcriptional and post-transcriptional 
levels by promoter methylation and m6A RNA 
methylation in HepG2 cells. Results from this 
study provide insight into a possible mechanism 
of FA mediated regulation of p53 at the epigenetic 
level that may serve as an alternative mechanism 
for FA toxicity.

Results

Fusaric acid decreased p53 expression in HepG2 
cells

The tumour suppressor protein, p53 is activated 
during cellular stress and functions in cell cycle 
control and apoptosis [27]. Previously, it was 
shown that FA activates p53 via phosphorylation 
and acetylation in HepG2 cells [12]; however, its 
effect on p53 mRNA and protein expression is not 
well understood. We determined the effect of FA 
on p53 mRNA and protein expression in HepG2 
cells using qPCR and Western blot, respectively. 

FA significantly decreased p53 mRNA (p < 0.0001; 
Figure 1a) and protein (p < 0.0001; Figure 1b) 
expression in HepG2 cells compared to the 
control.

Fusaric acid altered p53 promoter methylation in 
HepG2 cells

The promoter methylation of genes is essential in 
regulating transcriptional activity and gene expres
sion. Previously, p53 promoter hypomethylation 
was shown to increase p53 expression [59,60], 
whereas p53 promoter hypermethylation was 
shown to decrease p53 expression [37,38]. We 
determined if the decrease in p53 mRNA expres
sion observed in the FA-treated HepG2 cells was 
a result of alterations in p53 promoter methyla
tion. FA significantly increased p53 promoter 
methylation in the 25, 104, and 150 µg/ml FA 
treatments; however, the promoter methylation of 
p53 was significantly decreased by the 50 µg/ml FA 
in HepG2 cells (p < 0.0001; Figure 2).

Figure 1. The effect of FA on p53 expression in HepG2 cells. (a) RNA isolated from control and FA-treated HepG2 cells were reverse 
transcribed into cDNA and analyzed for p53 expression using qPCR. FA decreased the mRNA expression of p53 in HepG2 cells. (b) 
Protein expression of p53 was determined using Western blot. FA decreased the protein expression of p53 in HepG2 cells. Results are 
represented as mean fold-change ± SD (n = 3). Statistical significance was determined by one-way ANOVA with the Bonferroni 
multiple comparisons test (***p < 0.0001).
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Fusaric acid decreased m6A-p53 levels in HepG2 
cells

M6A, an abundant and dynamic post- 
transcriptional modification of mRNA, regulates 
mRNA degradation and translation [42–44]. Due 
to the FA-induced decrease in p53 expression at 
both the transcript and protein levels, we determined 
the effect of FA on m6A-p53 levels in HepG2 cells 
using RNA immuno-precipitation. FA significantly 
decreased m6A-p53 expression in HepG2 cells 
(p < 0.0001; Figure 3) compared to the control.

Fusaric acid decreased the expression of m6A 
methyltransferases and demethylases in HepG2 
cells

The m6A methyltransferases, METTL3 and 
METTL14, and demethylases, FTO and ALKBH5, 
regulate m6A levels of RNA transcripts. Due to the 
FA-induced decrease in m6A-p53 levels observed 
in the FA-treated HepG2 cells, we determined the 
effect of FA on the mRNA expression of METTL3, 
METTL14, FTO, and ALKBH5. FA significantly 
decreased the expression of METTL3 (p < 0.0001; 
Figure 4a), METTL14 (p < 0.0001; Figure 4b), FTO 
(p < 0.0001; Figure 4c), and ALKBH5 (p < 0.0001; 
Figure 4d) in HepG2 cells compared to the con
trol. This suggests that FA may decrease m6A-p53 

levels by modulating the expression of the m6A 
methyltransferases in HepG2 cells.

Fusaric acid decreased the expression of m6A 
readers in HepG2 cells

M6A plays a major role in RNA processing by recruit
ing specific readers which recognize m6A modified 
mRNAs and regulate the expression of the target 
mRNA and protein [55]. The m6A readers, 
YTHDF1, YTHDF3, and YTHDC2 have been 
shown to regulate mRNA translation/protein expres
sion [42], whereas YTHDF2 was shown to regulate 
mRNA expression [44]. Due to the decrease in p53 
mRNA and protein expression observed in the FA- 
treated HepG2 cells as well as the FA-induced 
decrease in m6A-p53 levels, we determined the effect 
of FA on the mRNA expression of YTHDF1, 
YTHDF2, YTHDF3, and YTHDC2. FA significantly 
decreased the expression of YTHDF1 (p < 0.0001; 
Figure 5a), YTHDF2 (p < 0.0001; Figure 5b), 
YTHDF3 (p < 0.0001; Figure 5c), and YTHDC2 
(p < 0.0001; Figure 5d) in HepG2 cells compared to 
the control.

Discussion

Exposure to mycotoxins causes adverse effects in 
humans and animals. FA is a common food-borne 

Figure 2. The effect of FA on the promoter methylation of p53 
in HepG2 cells. DNA isolated from control and FA-treated 
HepG2 cells were assayed for p53 promoter methylation using 
the OneStep qMethyl Kit. FA altered p53 promoter methylation 
in HepG2 cells. Results are represented as mean fold-change ± 
SD (n = 3). Statistical significance was determined by one-way 
ANOVA with the Bonferroni multiple comparisons test 
(***p < 0.0001).

Figure 3. The effect of FA on m6A-p53 levels in HepG2 cells. 
RNA immuno-precipitation using m6A antibody and quantifica
tion of p53 mRNA levels in control and FA-treated HepG2 cells. 
FA decreased m6A-p53 levels in HepG2 cells. Results are repre
sented as mean fold-change ± SD (n = 3). Statistical signifi
cance was determined by one-way ANOVA with the Bonferroni 
multiple comparisons test (***p < 0.0001).
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mycotoxin and chelator of divalent cations that 
alters cellular pathways in plants and animals 
[3,5,7,8,61]; however, its epigenetic mechanisms 
of toxicity are unclear. Recently, FA was shown 
to induce global DNA hypomethylation as an epi
genetic mechanism of genotoxicity and cytotoxi
city in liver cells [1]. Similarly, FB1 (a common 
mycotoxin found in corn) caused chromatin 
instability and liver tumourigenesis by inducing 
global DNA hypomethylation and histone 
demethylation [62]. Zearalenone (a myco- 
oestrogen) also reduced cell viability and caused 
apoptotic cell death by inducing global DNA 
hypomethylation [63] and histone demethylation 
[64]. Despite several studies indicating the geno
toxic and cytotoxic effects of mycotoxins, no stu
dies have been conducted on mycotoxins and its 
effect on the epigenetic regulation of p53 expres
sion at the transcriptional and post-transcriptional 
level.

Previously, FA was shown to inhibit cell prolif
eration and induce apoptosis in HepG2 cells by 
post-translational modifications of p53 [12]; how
ever, the effect of FA on p53 expression and its 
epigenetic regulation is not well understood. In 
addition to post-translational regulation of p53 
protein stability and activity, the expression of 
p53 is also regulated at the transcriptional and 
post-transcriptional level by promoter methylation 
and m6A RNA methylation. In this study, we 
provide evidence for an epigenetic mechanism of 
FA-induced changes in p53 expression at both the 
transcript and protein levels by altering p53 pro
moter methylation and m6A RNA methylation in 
HepG2 cells.

Our results indicate that FA significantly 
decreased p53 mRNA (Figure 1a) and protein 
(Figure 1b) expression by inducing p53 promoter 
hypermethylation (Figure 2) and decreasing m6A- 
p53 expression levels (Figure 3) in HepG2 cells. 

Figure 4. The effect of FA on the expression of m6A methyltransferases and demethylases in HepG2 cells. RNA isolated from control 
and FA-treated HepG2 cells were reverse transcribed into cDNA and analyzed for METTL3, METTL14, FTO, and ALKBH5 expression 
using qPCR. FA decreased the mRNA expression of METTL3 (a), METTL14 (b), FTO (c), and ALKBH5 (d) in HepG2 cells. Results are 
represented as mean fold-change ± SD (n = 3). Statistical significance was determined by one-way ANOVA with the Bonferroni 
multiple comparisons test (***p < 0.0001).
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This is in agreement with previous studies in 
which p53 promoter hypermethylation was asso
ciated with a decrease in p53 transcript levels 
[37,38] and p53 promoter hypomethylation was 
associated with an increase in p53 expression levels 
[59,60]. The data is also consistent with our pre
vious findings in which FA decreased p53 protein 
expression in HepG2 cells [12]. Although it is clear 
that FA decreased p53 expression at the mRNA 
and protein levels, the decrease in p53 protein 
expression was dose-dependent, whereas the 
mRNA expression displayed a stepwise increase 
(albeit still lower than the control) at 104 and 
150 µg/ml FA. This implied possible regulation 
by a post-transcriptional modification and may 
be the result of the FA-induced decrease in m6A 
levels on p53 RNA transcripts.

As an epitranscriptomic marker, m6A is the most 
abundant post-transcriptional modification of 
mRNA that promotes translation efficiency and 
mRNA degradation by recruiting specific m6A- 
dependent readers [43,65,66]. Previously, aberrant 
regulation of m6A RNA transcripts were shown to 

affect many biological processes including circadian 
rhythm and lipid metabolism [67], adipogenesis 
[49], cell differentiation [41], and embryonic stem 
cell renewal [47]. Additionally, modulation of m6A 
RNAs were associated with various cancers such as 
acute myeloid leukaemia [68,69], breast cancer [70], 
liver cancer [71], and lung cancer [66].

Dietary factors have also been shown to affect 
RNA m6A levels [72,73], and studies on p53 and 
m6A have indicated that m6A located within the 
coding region (codon 273) of p53 pre-mRNA leads 
to the translation of mutant (R273H) p53 that alters 
the p53 signalling pathway and contributes to 
tumour formation and progression [74]. Similarly, 
mutations in m6A regulatory genes were correlated 
with a reduction in wild-type p53 expression and the 
presence of p53 mutations in patients with acute 
myeloid leukaemia [69]. A decrease in m6A levels 
was also associated with cytotoxicity via activation of 
p53 and apoptosis in arsenite-transformed human 
keratinocytes [75].

In our study, we found that FA decreased m6A- 
p53 levels in HepG2 cells (Figure 3). This occurred 

Figure 5. The effect of FA on the expression of m6A readers in HepG2 cells. RNA isolated from control and FA-treated HepG2 cells 
were reverse transcribed into cDNA and analyzed for the expression of YTHDF1, YTHDF2, YTHDF3, and YTHDC2 by qPCR. FA decreased 
the expression of YTHDF1 (a), YTHDF2 (b), YTHDF3 (c), and YTHDC2 (d) in HepG2 cells. Results are represented as mean fold-change ± 
SD (n = 3). Statistical significance was determined by one-way ANOVA with the Bonferroni multiple comparisons test (***p < 0.0001).
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despite the significant decrease in both m6A 
methyltransferases (METTL3 (Figure 4a) and 
METTL14 (Figure 4b)) and demethylases (FTO 
(Figure 4c) and ALKBH5 (Figure 4d)) in the FA- 
treated HepG2 cells. The FA-induced decrease in 
FTO and ALKBH5 suggests that it may not neces
sarily be responsible for the decrease in m6A-p53 
levels in the HepG2 cells, and that the decrease in 
m6A-p53 levels is rather a consequence of the FA- 
induced decrease in METTL3 and METTL14. This 
is in agreement with previous studies in which 
knockdown of METTL3 and/or METTL14 was 
associated with a substantial decrease in m6A 
mRNA levels [57], whereas overexpression of 
METTL3 and/or METTL14 was associated with 
an increase in m6A mRNA levels [67]. 
Additionally, knockdown of METTL3 and 
METTL14 was shown to downregulate the expres
sion of several tumour suppressor genes including 
CDKN2A, BRCA2, and TP53I11 [76], thereby, 
reducing cell proliferation, migration, and colony 
formation of cancer cells in vitro [71]. The deple
tion of FTO and ALKBH5 was also found to 
reduce cell proliferation and invasiveness in vitro 
[66,77]. Interestingly, although FTO and ALKBH5 
have been recognized as m6A demethylases, it was 
shown that FTO is highly co-expressed with the 
m6A methyltransferases in vitro, thereby, estab
lishing a dynamic equilibrium between methylated 
and un-methylated RNA transcripts within the 
cells [78], and this may account for the positive 
correlation observed between FTO and ALKBH5 
and METTL3 and METTL14 expression in the FA- 
treated HepG2 cells. This simultaneous expression 
in both the m6A methyltransferases and demethy
lases has been observed in other studies [79,80]. 
However, further investigation is required to 
determine whether or not this simultaneous 
expression counteracts the effects of each other.

YTHDF1, YTHDF2, YTHDF3, and YTHDC2 
specifically recognize m6A modified mRNAs and 
regulate mRNA degradation [44] and translation 
[42,43]. In HepG2 cells, the FA-induced decrease 
in m6A-p53 levels led to a decrease in the expres
sion of YTHDF1 (Figure 5a), YTHDF2 (Figure 5b), 
YTHDF3 (Figure 5c), and YTHDC2 (Figure 5d). 
YTHDF2 plays a major role in mRNA degrada
tion; the carboxy-terminal domain of YTHDF2 
selectively binds to m6A-containing mRNA, 

whereas the amino-terminal domain is responsible 
for the localization of the YTHDF2-mRNA com
plex to RNA decay sites such as processing bodies 
[44]. The decrease in YTHDF2 expression, 
decrease in p53 mRNA expression, and increase 
in p53 promoter methylation observed in the FA- 
treated HepG2 cells suggests that FA may decrease 
p53 mRNA expression via promoter hypermethy
lation and inhibition in p53 transcription, and not 
YTHDF2-mediated degradation of p53 mRNA.

YTHDF1, YTHDF3, and YTHDC2 function by 
interacting with translational machinery and 
actively promote protein synthesis to ensure effec
tive protein production from dynamic transcripts 
that are marked by m6A [43]. Therefore, the FA- 
induced decrease in YTHDF1, YTHDF3, and 
YTHDC2, in addition to the FA-induced decrease 
in p53 transcription, may be responsible for the 
decrease in p53 protein expression observed in the 
HepG2 cells. Similar results were observed in 
a previous study where a decrease in YTHDF3 
reduced the protein expression of FOXO3 without 
affecting the expression of FOXO3 mRNA [81]. 
These results are also in agreement with the 
study by Wang et al (2015) in which ribosome 
profiling on METTL3 knockdown cells showed 
that YTHDF1 promotes translation efficiency in 
an m6A-dependent manner, and knockdown of 
YTHDF1 reduced ribosome occupancy and trans
lation efficiency of m6A targeted transcripts [43]. 
Similarly, YTHDF3 and YTHDC2 promote pro
tein synthesis in synergy with YTHDF1 by inter
acting with ribosomal proteins and unwinding the 
5�UTR of mRNA [82–84].

In conclusion, this study provides evidence for 
a possible mechanism of FA-induced changes in 
p53 expression at the epigenetic level. The results 
indicate that FA epigenetically decreases p53 
expression at both the transcript and protein 
levels by increasing p53 promoter methylation 
and decreasing m6A-p53 methylation levels in 
HepG2 cells (Figure 6). The results further indi
cate that the decrease in m6A-p53 expression 
levels was mediated by a decrease in the expres
sion of METTL3 and METTL14, and may have 
occurred independently of FTO and ALKBH5. 
Together, these results may serve as an alterna
tive mechanism of FA-induced toxicity in the 
liver and are beneficial in poverty stricken areas 

EPIGENETICS 85



where there are high levels of FA contamination. 
This study provides insight for future studies on 
FA and p53 in an in vivo model as well as asses
sing the ability of FA to induce p53 mutant 
proteins by altering m6A levels.

Materials and methods

Materials

FA (Gibberella fujikuroi, F6513) was purchased 
from Sigma-Aldrich. The HepG2 cell line (HB- 
8065) was purchased from the American Type 
Culture Collection (ATCC). Cell culture reagents 
were purchased from Lonza Biotechnology. 
Western blot reagents were purchased from Bio- 
Rad. All other reagents were purchased from Merck.

Cell culture and treatment

HepG2 cells (1.5 X 106, passage 3) were cultured (37° 
C, 5% CO2) to 90% confluency in 25 cm3 cell culture 

flasks containing complete culture media (CCM; 
Eagle’s Minimum Essentials Medium (EMEM) sup
plemented with 10% foetal calf serum, 1% penicillin- 
streptomycin fungizone, and 1% L-glutamine). 
A stock solution of FA (1 mg/ml) in 0.1 M phosphate 
buffered saline (PBS) was prepared and the cells were 
incubated (37°C, 5% CO2, 24 h) with a range of FA 
concentrations (25, 50, 104, and 150 µg/ml) [1]. An 
untreated control (CCM only) was also prepared. The 
viability of the cells was assessed using the trypan blue 
cell exclusion method. All results were verified by 
performing two independent experiments in 
triplicate.

RNA isolation and quantitative polymerase chain 
reaction (qPCR)

Total RNA was extracted from control and FA- 
treated HepG2 cells using Qiazol Reagent (Qiagen, 
79,306), as previously described [1]. The RNA was 
quantified using the Nanodrop2000 spectrophot
ometer (Thermo-Fisher Scientific), standardized to 

Figure 6. Proposed mechanism of FA-induced decrease in p53 expression. FA decreases p53 expression at both the transcript and 
protein levels by inducing p53 promoter hypermethylation and decreasing m6A-p53 methylation levels. FA decreased m6A-p53 
levels by decreasing METTL3 and METTL14; and suppressed expression of the m6A readers, YTHDF1, YTHDF3, and YTHDC2, which led 
to the decrease in p53 translation/protein expression. Furthermore, the decrease in p53 protein expression may be a consequence of 
the FA-induced decrease in p53 mRNA expression.
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1,000 ng/µl, and reverse transcribed into complemen
tary DNA (cDNA) using the Maxima H Minus First 
Strand cDNA Synthesis Kit (Thermo-Fisher 
Scientific, K1652). Thereafter, the mRNA expression 
of p53, METTL3, METTL14, FTO, ALKBH5, 
YTHDF1, YTHDF2, YTHDF3, and YTHDC2 was 
determined using the PowerUp™ SYBR™ Green 
Master Mix (Thermo-Fisher Scientific, A25742) and 
the CFX96 Real Time PCR System (Bio-Rad) with the 
following cycling conditions: initial denaturation (95° 
C, 8 min), followed by 40 cycles of denaturation (95° 
C, 15 s), annealing (Supplementary Table S1, 40 s), 
and extension (72°C, 30 s). Primer sequences and 
annealing temperatures are listed in Supplementary 
Table S1. GAPDH was used as the internal control to 
normalize mRNA expression. The comparative 
threshold cycle (Ct) method was used to determine 
relative changes in expression [85].

Protein isolation and Western blot

The protein expression of p53 was determined 
using Western blot. Briefly, crude protein was iso
lated from control and FA-treated HepG2 cells 
using cytobuster reagent (200 µl; Novagen, 
71,009) supplemented with protease and phospha
tase inhibitors (Roche; 05892791001 and 
04906837001, respectively). The bicinchoninic 
acid (BCA) assay was used to quantify the proteins 
and the samples were subsequently standardized to 
1 mg/ml. The samples were then boiled (100°C, 
5 min) in a 1:1 dilution with 1X Laemmli buffer 
[dH2O, 0.5 M Tris-HCl (pH 6.8), glycerol, 10% 
SDS, 5% β-mercaptoethanol, 1% bromophenol 
blue], separated in sodium dodecyl sulphate poly
acrylamide gels (10% resolving gel, 4% stacking 
gel; 1 h, 150 V), and transferred onto nitrocellulose 
membranes using the Bio-Rad Trans-Blot® Turbo 
Transfer System (20 V, 30 min). The membranes 
were then blocked in 5% non-fat dry milk 
(NFDM) in Tris buffered saline with 0.05% 
Tween 20 [TTBS; 150 mM NaCl, 3 mM KCl, 
25 mM Tris, 0.05% Tween 20, dH2O, pH 7.5; 
1 h, RT] and probed overnight (4°C) with primary 
antibody [p53 (1:500; Santa Cruz, sc-6243)]. 
Membranes were rinsed five times in TTBS 
(10 min, RT) and incubated with a horse-radish 
peroxidase (HRP)-conjugated secondary antibody 
[goat anti-rabbit (1:5,000; Cell Signalling 

Technology, #7074 S); 1 h, RT]. Membranes were 
rinsed five times in TTBS (10 min, RT). 
Immunoblots were visualized using the Clarity™ 
Western ECL Substrate Kit (Bio-Rad, #170-5060) 
and the images were captured using the 
ChemiDoc™ XRS+ Molecular Imaging System 
(Bio-Rad). Following detection, membranes were 
quenched in hydrogen peroxide (5%, 37°C, 
30 min) and probed with the housekeeping pro
tein, anti-β-actin (1:5,000, 30 min, RT; Sigma- 
Aldrich, A3854) to normalize protein expression. 
Protein expression was determined using the 
Image Lab Software version 5.1 (Bio-Rad) and 
the results were represented as a fold-change in 
band density (RBD) relative to the control.

Promoter methylation of p53

Genomic DNA was extracted from control and FA- 
treated HepG2 cells using the Quick-g-DNA 
MiniPrep Kit (Zymo Research, D3007) and purified 
using the DNA Clean and Concentrator™-5 Kit (Zymo 
Research, D4003), as per manufacturer’s instructions. 
DNA concentration was determined using the 
Nanodrop2000 spectrophotometer and standardized 
to 4 ng/µl. The purity of the DNA was assessed using 
the A260/A280 absorbance ratio. The promoter 
methylation of p53 was determined using the 
OneStep qMethyl Kit (Zymo Research, 5310) in 
which 20 ng DNA was subject to a test and reference 
reaction containing specific primers. Primer 
sequences and annealing temperatures are listed in 
Supplementary Table S1. Cycling conditions were as 
follows: digestion by methyl sensitive restriction 
enzymes (37°C, 2 h), initial denaturation (95°C, 
10 min), followed by 45 cycles of denaturation (95°C, 
30 s), annealing (Supplementary Table S1, 60 s), exten
sion (72°C, 60 s), final extension (72°C, 60 s), and 
a hold at 4°C. The percentage methylation was calcu
lated using the supplied formula (Supplementary 
Information) and represented as a fold-change relative 
to the control.

RNA immuno-precipitation

Quantification of m6A-p53 levels were conducted 
using RNA immuno-precipitation. Briefly, control 
and FA-treated HepG2 cells were incubated in 
nuclear isolation buffer [500 µl; 1.28 M sucrose, 
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40 mM Tris-HCl (pH 7.5), 20 mM magnesium 
chloride, 4% Triton X-100; 4°C, 20 min] and cen
trifuged (2,500xg, 4°C, 15 min). Nuclear pellets 
were re-suspended in RNA immuno- 
precipitation buffer [1 ml; 150 mM potassium 
chloride, 25 mM Tris-HCl (pH 7.4), 5 mM 
EDTA, 0.5 mM DTT, 0.5% IGEPAL, 100 U/ml 
SUPERase IN™ RNase Inhibitor (Thermo-Fisher 
Scientific, AM2694), protease inhibitors (Roche, 
05892791001), phosphatase inhibitors (Roche, 
04906837001)] and the chromatin was mechani
cally sheared using a needle (20 gauge/20 strokes). 
Thereafter, the nuclear membrane and debris were 
pelleted by centrifugation (13,000xg, 4°C, 10 min). 
The supernatant containing RNA was separated 
into two fractions of 500 µl each. Qiazol Reagent 
(500 µl) was added to one fraction and stored at 
−80°C for reference RNA isolation. The second 
fraction was incubated with m6A antibody 
[1:100; Abcam, ab208577] overnight at 4°C and 
the antigen-antibody complex was precipitated 
using protein A beads [20 µl 50% bead slurry 
(Cell Signalling Technology, #9863), 4°C, 3 h]. 
Thereafter, the immuno-precipitates were recov
ered by centrifugation (2,500xg, 4°C, 60 s), washed 
three times in RNA immuno-precipitation buffer, 
followed by re-suspension in Qiazol Reagent 
(500 µl). RNA was isolated from both the refer
ence and m6A-precipitated samples, as previously 
described [1]. The RNA was quantified using the 
Nanodrop2000 spectrophotometer, standardized 
to 400 ng/µl, and reverse transcribed into cDNA 
using the Maxima H Minus First Strand cDNA 
Synthesis Kit (Thermo-Fisher Scientific, K1652). 
The expression of p53 was then determined 
using qPCR as mentioned above. The expression 
of p53 in the m6A-precipitated sample was nor
malized against the expression of p53 in the refer
ence sample in order to determine the ratio of 
m6A methylated p53 relative to the total p53 
expressed. Primer sequences and annealing tem
peratures are listed in Supplementary Table S1.

Statistical analysis

GraphPad Prism version 5.0 (GraphPad Prism 
Software Inc.) was used to perform all statistical 
analyses. The D’Agostino and Pearson tests were 
used to determine normality. All data was 

analyzed using the one-way analysis of variance 
(ANOVA), followed by the Bonferroni multiple 
comparisons test. Results were represented as 
a mean fold-change ± standard deviation (SD) 
(n = 3). Statistical significance was considered at 
p < 0.05.
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