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Dysregulation of matrix metalloproteinase- (MMP-) 9 is implicated in the pathogenesis of acute lung injury (ALI). However, it
remains controversial whether MMP-9 improves or deteriorates acute lung injury of different etiologies. The receptor for
advanced glycation end products (RAGE) plays a critical role in the pathogenesis of acute lung injury. MMPs are known to
mediate RAGE shedding and release of soluble RAGE (sRAGE), which can act as a decoy receptor by competitively inhibiting
the binding of RAGE ligands to RAGE. Therefore, this study is aimed at clarifying whether and how pulmonary knockdown of
MMP-9 affected sepsis-induced acute lung injury as well as the release of sRAGE in a murine cecal ligation and puncture (CLP)
model. The analysis of GEO mouse sepsis datasets GSE15379, GSE52474, and GSE60088 revealed that the mRNA expression of
MMP-9 was significantly upregulated in septic mouse lung tissues. Elevation of pulmonary MMP-9 mRNA and protein
expressions was confirmed in CLP-induced mouse sepsis model. Intratracheal injection of MMP-9 siRNA resulted in an
approximately 60% decrease in pulmonary MMP-9 expression. It was found that pulmonary knockdown of MMP-9
significantly increased mortality of sepsis and exacerbated sepsis-associated acute lung injury. Pulmonary MMP-9 knockdown
also decreased sRAGE release and enhanced sepsis-induced activation of the RAGE/nuclear factor-κB (NF-κB) signaling
pathway, meanwhile aggravating sepsis-induced oxidative stress and inflammation in lung tissues. In addition, administration of
recombinant sRAGE protein suppressed the activation of the RAGE/NF-κB signaling pathway and ameliorated pulmonary
oxidative stress, inflammation, and lung injury in CLP-induced septic mice. In conclusion, our data indicate that MMP-9-
mediated RAGE shedding limits the severity of sepsis-associated pulmonary edema, inflammation, oxidative stress, and lung
injury by suppressing the RAGE/NF-κB signaling pathway via the decoy receptor activities of sRAGE. MMP-9-mediated sRAGE
production may serve as a self-limiting mechanism to control and resolve excessive inflammation and oxidative stress in the
lung during sepsis.

1. Introduction

Sepsis, which is defined as a syndrome of systemic inflamma-
tion in response to infection, often leads to life-threatening

multiorgan dysfunction [1]. In particular, the lungs are sus-
ceptible to sepsis and more than 50% septic patients develop
acute lung injury (ALI) or acute respiratory distress syn-
drome (ARDS) [2, 3]. However, despite the development of

Hindawi
Oxidative Medicine and Cellular Longevity
Volume 2021, Article ID 8889313, 19 pages
https://doi.org/10.1155/2021/8889313

https://orcid.org/0000-0001-7778-2336
https://orcid.org/0000-0002-1920-6653
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/8889313


clinical practices in critical care medicine for the treatment of
ALI/ARDS, there still remains a mortality rate as high as
45%, and the prognosis of ALI/ARDS in patients with sepsis
is still poor [4, 5]. It is requisite to understand the precise
mechanisms underlying sepsis-induced lung injuries and dis-
cover effective new therapeutic methods to improve survival
in ARDS patients, especially those with sepsis.

Matrix metalloproteinases (MMPs) are a family of zinc-
dependent endoproteases that are involved in degradation
and remodeling of the extracellular matrix (ECM) [6].
Among MMPs, MMP-9 is of particular interest, because it
is elevated in patients with ALI and ARDS and correlates
positively with lung injury severity [7–10]. However, it
remains controversial whether MMP-9 improves or deterio-
rates acute lung injury of different etiologies. For example,
inhibition of MMP-9 attenuates neutrophilic inflammation
and pulmonary injury in ventilator-induced lung injury
model [11] and improves survival in rodent models of cecal
ligation and puncture- (CLP-) induced sepsis [12]. In con-
trast, MMP-9 deficiency is found to worsen the inflammatory
responses induced by abdominal sepsis, mechanical ventila-
tion, and allergen challenge, suggesting that MMP-9 protects
against inflammatory lung injury [13–15]. Hence, further
investigations are warranted to explore whether and how
MMP-9 is involved in the pathophysiology of sepsis-
induced ALI/ARDS.

The receptor for advanced glycation end products
(RAGE) is a cell-surface membrane protein of the immuno-
globulin superfamily expressed by many cell types including
endothelial cells, macrophages/monocytes, and epithelium
[16, 17]. RAGE plays a critical role in inflammation and oxi-
dative stress processes and has been implicated in the patho-
genesis of various lung diseases including pulmonary fibrosis,
asthma, pneumonia, and acute lung injury [18]. For example,
RAGE/nuclear factor-κB (NF-κB) signaling mediates lipo-
polysaccharide- (LPS-) induced ALI in neonate rat model
[19]. Anti-RAGE antibodies protect mice from lethality in a
CLP model of polymicrobial sepsis [20].

Soluble receptor for advanced glycation end product
(sRAGE), the isoform of RAGE found in human serum, is
formed by proteolytic cleavage of RAGE on cell surfaces
[21, 22]. Because this isoform lacks a transmembrane
domain, sRAGE is secreted and acts as a decoy receptor
[23]. A previous study has shown that MMPs mediate RAGE
shedding and release of sRAGE from lung epithelial cells
after LPS challenge [24]. In addition, sRAGE has been proved
to significantly attenuate lung inflammation in LPS-induced
lung injury model [25]. Notably, MMP-9 has been demon-
strated to be involved in PMA and TNF-α-induced RAGE
shedding [23, 26]. These findings raise an intriguing possibil-
ity that MMP-9 may exert protective effects against sepsis-
induced ALI via promoting the release of sRAGE.

Therefore, this study first clarified whether and how pul-
monary knockdown of MMP-9 affected sepsis-induced acute
lung injury as well as the release of sRAGE in a murine CLP
model. It has been well recognized that RAGE mediates
inflammation and oxidative stress mainly by activating the
NF-κB-dependent signaling pathways. We then examined
the effects of MMP-9 knockdown and sRAGE on sepsis-

induced pulmonary inflammation, oxidative stress, and the
related signaling pathways.

2. Materials and Methods

2.1. Microarray Data Collection. The Gene Expression Omni-
bus (GEO) databases GSE15379, GSE52474, and GSE60088
(http://www.ncbi.nlm.nih.gov/geo/) were used to analyze
the expression of MMP-9 in sepsis-induced lung injury.
The search terms used were sepsis and lung.

2.2. Animals. Male Institute of Cancer Research (ICR) mice
weighing approximately 25-30 g were used in this study. Ani-
mals were housed in cages and given access to food and water
ad libitum at a constant ambient temperature and humidity
with 12h day-night cycling. All experimental procedures
were approved by the Animal Ethics Committee of Xinhua
Hospital, Shanghai Jiaotong University School of Medicine.

2.3. Cecal Ligation and Puncture-Induced Sepsis Model and
sRAGE Treatment. The CLPmodel is widely used and known
to closely mimic septic human patients. We performed the
CLP model primarily based on procedures of Rittirsch et al.
[27]. Briefly, mice were anesthetized by intraperitoneal
administration of mixed ketamine (70mg/kg) and xylazine
(10mg/kg). Then, a 1 cm midline incision was made in the
lower abdomen. Cecum was identified and ligated at half dis-
tance between the distal pole and base of the cecum; cecal
puncture involves a through and through puncture (two
holes) with a 21-gauge needle. Be careful when extruding a
droplet of feces through each puncture site to ensure patency.
Then, the cecum was returned to the abdominal cavity; the
peritoneum and skins were closed by simple sutures. Animals
were rewarmed until fully conscious and then returned to
free food and water. The sham group received exactly the
same procedures except for the CLP. Anesthesia and analge-
sics were used for all surgical experiments to avoid unneces-
sary suffering of the mice. The response of mice during
experiments was monitored carefully to maintain adequate
depth of anesthesia. Mice were humanely sacrificed by CO2
inhalation when they met the following humane-endpoint
criteria: prostration, significant body weight loss, breathing
difficulty, rotational motion, and body temperature drop
[28]. Recombinant sRAGE protein (Adio Bo Biological Ltd.,
Beijing, China) was administrated intratracheally 10 minutes
before the initiation of CLP, and lung tissues were collected
24 h after CLP.

2.4. Histopathological Evaluation of the Lung Tissue. The
lungs were fixed with 4% formalin, embedded in paraffin,
and cut into 4μm slices. After hematoxylin and eosin
(H&E) staining, pathological changes of lung tissues were
observed under a light microscope. Lung injury score was
assessed by two blinded pathologists who are expert in lung
pathology. To examine the extent of lung injury, we consid-
ered its five pathological features: (1) presence of exudates,
(2) infiltration of neutrophils, (3) intra-alveolar hemorrha-
ge/debris, (4) cellular infiltration, and (5) cellular hyperpla-
sia. The severity of each of these pathological features was
evaluated by a score indicating 0 as absent/none, 1 as slight,
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2 as to show mild, 3 for moderate, 4 as moderate to severe,
and finally 5 for severe injury [29, 30].

2.5. Immunofluorescence. Paraffin sections (4μm) of lung tis-
sues were rehydrated and microwaved in citric acid buffer to
retrieve antigens. After incubation with 10% BSA for 1 h, the
sections were incubated with primary antibodies against
F4/80 (cat. no. GB11027, 1 : 300; Servicebio Technology,
Wuhan, China) and 8-hydroxy-2′-deoxyguanosine (8-
OHdG) (cat. no. ab48508, 1 : 200; Abcam, Cambridge, MA,
USA) overnight. Subsequently, tissue slices were incubated
with secondary antibody corresponding to each primary
antibodies (CY3: goat anti-rabbit, cat. no. GB21303, 1 : 300;
Servicebio; Alexa Fluor 488: goat anti-mouse, cat. no.
GB25301, 1 : 400; Servicebio) in dark for 1 h and counter-
stained with 4′,6-diamidino-2-phenylindole (DAPI) (cat.
no. C1005, Beyotime Institute of Biotechnology, Shanghai,
China). Stained slices were observed using an Olympus fluo-
rescence microscope.

2.6. Quantitative Real-Time Polymerase Chain Reaction
(PCR) Analysis. Total RNA was extracted from lung tissues
using RNAiso Plus reagent (Takara Biotechnology, Dalian,
China) and processed into cDNA according to the manufac-
turer’s protocol. Quantitative real-time PCR was performed
by monitoring the increase in fluorescence using 2×One Step
SYBR® Green Mixa (Vazyme Biotech, Nanjing, Jiangsu,
China) with the use of StepOnePlus system (Applied Biosys-
tems, Foster City, CA). The comparative threshold cycle (Ct)
method with arithmetic formulae (2-ΔΔCt) was used to deter-
mine the relative quantization of gene expression. The
primer sequences of related genes are shown in Supplemental
Table 1.

2.7. Western Blotting. Proteins were extracted from lung tis-
sues (25mg) using RIPA (Beyotime) containing protease
and phosphatase inhibitor cocktail (Beyotime) according to
the manufacturer’s instructions. Protein concentrations were
determined by the BCA protein assay kit (Beyotime). Equal
amounts of proteins (40μg) were separated with 10% SDS-
PAGE, transferred to PVDF membrane (Millipore, Billerica,
MA, USA), and blocked with 5% nonfat milk. Membranes
were incubated overnight with specific primary antibody
against MMP-9 (Abcam), RAGE (Abcam), NF-κB p65 (Cell
Signaling Technology, Danvers, MA, USA), phosphorylated
p65 (Cell Signaling Technology), inhibitor of κB-α (IκB-α)
(Cell Signaling Technology), and β-actin (Sigma-Aldrich,
Mo, USA).

2.8. In Vivo MMP-9 siRNA Transfection. The small inter-
fering RNA (siRNA) sequences directed against mouse
MMP-9 were constructed by GenePharma Corp (Shanghai,
China). To locally knockdown pulmonary MMP-9 expres-
sion, 1mg/kg MMP-9 siRNA or control siRNA was diluted
in vivo jetPEI® (Polyplus, NY, USA). Aliquots of 30μl siR-
NA/jetPEI mixture were injected intratracheally into the lung
48 hours before the onset of sepsis. The siRNA sequences
used in this study were provided in Supplemental Table 2.

2.9. Bronchoalveolar Lavage. Bronchoalveolar lavage (BAL)
fluid was collected via tracheal catheter using three sequential
1ml aliquots of sterile saline. Cell pellets were collected by
centrifugation (4°C, 1500 rpm, 10min) and then resuspended
in PBS for total cell counting. Protein concentration was
determined by BCA protein assay kit.

2.10. ELISA. The concentrations of IL-6 (Cusabio Biotech,
Wuhan, China), MCP-1 (Cusabio Biotech), MDA
(Elabscience Biotechnology, Wuhan, China), and sRAGE
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Figure 1: Pulmonary level of MMP-9 is upregulated in the CLP-induced sepsis model. (a) mRNA expression levels of MMP-9 in septic mouse
lung tissues. Data were obtained from the following Gene Expression Omnibus datasets: GSE15379, GSE52474, and GSE60088. (b) Mice were
subjected to CLP or sham surgery. mRNA and protein expression levels of MMP-9 were verified by RT-PCR and western blotting in lung
tissues (n = 7). Representative protein bands were presented on the top of the histograms. Data are presented as the mean ± SEM. ∗p <
0:05 and ∗∗p < 0:01 vs. the control or sham group. MMP-9: matrix metalloproteinase-9; CLP: cecal ligation and puncture.
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Figure 2: Continued.
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Figure 2: Pulmonary knockdown of MMP-9 increases mortality of sepsis and exacerbates sepsis-associated acute lung injury. Mice were
intratracheally injected with MMP-9 siRNA or control siRNA (1mg/kg). Forty-eight hours later, mice were subjected to CLP or sham
surgery. (a) Mice were carefully monitored for 24 h after CLP or sham surgery, and survival rates at the indicated times were recorded. (b)
Cell count and (c) protein concentration in BAL fluid. Histopathological examination using hematoxylin and eosin staining (d). Original
magnification, ×200. Scale bars correspond to 50 μm. The severity of lung injury was scored by a pathologist blinded to group allocation
(e). Data are presented as the mean ± SEM (n = 7). ∗p < 0:05 and ∗∗p < 0:01 vs. the sham+control siRNA group. ##p < 0:01 vs. the CLP
+control siRNA group. BAL: bronchoalveolar lavage.
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Figure 3: Pulmonary knockdown of MMP-9 decreases sRAGE release and enhances sepsis-induced activation of the RAGE/NF-κB signaling
pathway in lung tissues. Mice were intratracheally injected with MMP-9 siRNA or control siRNA (1mg/kg). Forty-eight hours later, mice
were subjected to CLP or sham surgery. (a) sRAGE concentrations in BAL fluid. (b) Protein levels of RAGE, phosphorylated NF-κB p65
subunit (p-p65), and IκB-α were determined by western blot analysis. p-p65 levels were normalized to total p65 expression. Representative
protein bands were presented on the left of the histograms. Data are presented as the mean ± SEM (n = 7). ∗p < 0:05 and ∗∗p < 0:01 vs. the
sham+control siRNA group. ##p < 0:01 vs. the CLP+control siRNA group. BAL: bronchoalveolar lavage.
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(R&D Systems, Minneapolis, MN, USA) in the lung tissues
and BAL fluid were measured by ELISA kits according to
the instruction recommended by the manufacturers.

2.11. Statistical Analysis. The results are expressed as mean
± SEM. Statistical significance in experiments comparing
only two groups was determined by two-tailed Student’s
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Figure 4: Pulmonary knockdown of MMP-9 aggravates sepsis-induced oxidative stress in lung tissues. Mice were intratracheally injected
with MMP-9 siRNA or control siRNA (1mg/kg). Forty-eight hours later, mice were subjected to CLP or sham surgery. (a) MDA levels in
lung tissues. (b, c) 8-OHdG immunoreactivity (green) was measured as the index of oxidative DNA damage. Nuclei were counterstained
with 4′,6-diamidino-2-phenylindole (DAPI) (blue). Areas in white boxes were shown enlarged (b). Original magnification, ×200. Scale
bars correspond to 50μm. (c) The ratio of 8-OHdG-positive cells to the total cell number (%). Data are presented as the mean ± SEM
(n = 7). ∗p < 0:05 and ∗∗p < 0:01 vs. the sham+control siRNA group. ##p < 0:01 vs. the CLP+control siRNA group. 8-OHdG: 8-hydroxy-2′
-deoxyguanosine.
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Figure 5: Continued.
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t-test. The comparison among multiple groups was esti-
mated by one-way analysis of variance followed by post hoc
analysis using Student-Newman-Keuls test. To determine
statistical significance between survival curves, the Kaplan–
Meier test was used. A p value of <0.05 was considered signif-
icant. All statistical analyses were done with SPSS 22.0 (SPSS
Inc., Chicago, USA).

3. Results

3.1. Pulmonary Level of MMP-9 Is Upregulated in the CLP-
Induced Sepsis Model. To evaluate the MMP-9 expression
in the lung of septic mice, we analyzed the gene expression
profiles of mouse sepsis-induced lung injury datasets
GSE15379 [31], GSE52474 [32], and GSE60088 [33]. Infor-
mation regarding the mouse sepsis datasets is presented in
Supplementary Table 3. Collectively, the analysis of these
data revealed that MMP-9 mRNA expression was
significantly upregulated in lung tissues of septic mice
(Figure 1(a)). To verify these results, pulmonary MMP-9
expression was determined by RT-PCR and western
blotting in the CLP-induced mouse sepsis model. As shown
in Figure 1(b), both mRNA and protein levels of MMP-9
were significantly increased in the CLP group compared
with those in the sham group.

3.2. Pulmonary Knockdown of MMP-9 Increases Mortality of
Sepsis and Exacerbates Sepsis-Associated Acute Lung Injury.
We then investigated whether MMP-9 upregulation was
involved in sepsis-induced lung injury. As shown in Supple-
mentary Figure 1, intratracheal injection of MMP-9 siRNA
(1mg/kg) resulted in an approximately 60% decrease in
pulmonary MMP-9 expression. We found that survival of
MMP-9 siRNA-treated mice that underwent CLP operation
was significantly lower than survival of control siRNA-
treated mice that underwent CLP operation (Figure 2(a)).

The lung injury was evaluated at 24 h after challenge with
CLP or a sham operation. As shown in Figures 2(b) and
2(c), mice subjected to CLP operation exhibited significant
lung injury as indicated by increases in cell count and
protein content in BAL fluid. MMP-9 siRNA-treated mice
had a significantly higher BAL cell count and protein levels
than control siRNA-treated mice after CLP challenge.
Histological characteristics showed that CLP challenge led
to obvious interstitial tissue edema and inflammatory cell
infiltration both in control siRNA-treated and MMP-9
siRNA-treated mice. Pulmonary knockdown of MMP-9 led
to more severe lung damage than control siRNA-treated
mice after CLP challenge, which was also demonstrated by
quantitative analysis of lung injury score (Figures 2(d) and
2(e)). Notably, we found that pulmonary knockdown of
MMP-9 per se led to a mild but significant lung injury as
illustrated by elevated BAL cell count and protein levels, as
well as increased lung injury score.

3.3. Pulmonary Knockdown of MMP-9 Decreases sRAGE
Release and Enhances Sepsis-Induced Activation of the
RAGE/NF-κB Signaling Pathway in Lung Tissues. Previous
studies have shown that sheddase MMP-9 can cleave trans-
membrane RAGE to produce a soluble form of RAGE [23,
26]. As shown in Figure 3(a), we found that sRAGE release
in BAL fluid was obviously enhanced in the CLP group com-
pared with that in the sham group. Pulmonary knockdown of
MMP-9 significantly decreased sRAGE release in the sham
group. Moreover, CLP-induced increase of sRAGE release
in BAL fluid was largely prevented by MMP-9 knockdown.

Accumulating studies have shown the activation of
RAGE and the downstream NF-κB signaling pathway during
the development of sepsis-induced acute lung injury [34–36].
We found that protein levels of RAGE and phosphorylated
NF-κB p65 subunit in lung tissues were increased, whereas
IκB-α was decreased in the CLP group compared with the
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Figure 5: Pulmonary knockdown of MMP-9 aggravates sepsis-induced inflammation in lung tissues. Mice were intratracheally injected with
MMP-9 siRNA or control siRNA (1mg/kg). Forty-eight hours later, mice were subjected to CLP or sham surgery. Levels of (a) IL-6 mRNA,
(b) IL-6 protein, (c) MCP-1 mRNA, and (d) MCP-1 protein in lung tissues. (e, f) Lung tissues were stained with fluorophore-labeled
antibodies against macrophage marker F4/80 (red). Nuclei were counterstained with 4′,6-diamidino-2-phenylindole (DAPI) (blue).
Original magnification, ×200. Scale bars correspond to 50μm (e). (f) The proportion of F4/80-positive cells in total cells (%). Data are
presented as the mean ± SEM (n = 7). ∗p < 0:05 and ∗∗p < 0:01 vs. the sham+control siRNA group. #p < 0:05 and ##p < 0:01 vs. the CLP
+control siRNA group.
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Figure 6: Continued.
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sham group. Notably, pulmonary knockdown of MMP-9 sig-
nificantly aggravated the CLP-induced RAGE/NF-κB activa-
tion as indicated by augmented RAGE and phosphorylated
p65 levels and decreased IκB-α expression in lung tissues of
septic mice (Figures 3(b) and 3(c)).

3.4. Pulmonary Knockdown of MMP-9 Aggravates Sepsis-
Induced Oxidative Stress and Inflammation in Lung Tissues.
Activation of the NF-κB signaling pathway plays a critical
role in RAGE-mediated oxidative stress and inflammation
[37, 38]. We then investigated the effect of pulmonary knock-
down of MMP-9 on sepsis-induced oxidative stress and
inflammation. MDA content and 8-OHdG immunoreactiv-
ity were measured as the index of membrane lipid peroxida-
tion activity and oxidative DNA damage, respectively. As
shown in Figure 4, significant increases in lung MDA level
and 8-OHdG-positive cells were observed in the CLP group
compared with the sham group. Pulmonary knockdown of

MMP-9 significantly aggravated the CLP-induced pulmo-
nary oxidative stress as indicated by augmented MDA levels
and 8-OHdG immunoreactivity in lung tissues of septic mice.
In addition, it was found that pulmonary knockdown of
MMP-9 per se led to mild but significant increases in lung
MDA level and 8-OHdG immunoreactivity.

We then investigated the effect of pulmonary knockdown
of MMP-9 on the proinflammatory cytokine IL-6, chemo-
kine MCP-1, and macrophage infiltration in lung tissues.
As shown in Figure 5, CLP operation caused significant
increases in mRNA and protein levels of IL-6 (Figure 5(a))
and MCP-1 (Figure 5(b)), which were significantly aggra-
vated by MMP-9 knockdown. There were very few F4/80-
positive staining cells in the lung tissues of the sham group.
Mice that underwent CLP operation developed severe infil-
tration of F4/80+ macrophages. The quantification analysis
showed that the percentage of F4/80+ macrophages in lung
tissues was further augmented by MMP-9 knockdown
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Figure 6: Administration of sRAGE attenuated oxidative stress and inflammatory response induced by intrapulmonary knockdown of
MMP-9. Mice were intratracheally injected with MMP-9 siRNA or control siRNA (1mg/kg). Forty-eight hours later, mice were
administrated with recombinant sRAGE protein. (a) MDA levels in lung tissues. (b) 8-OHdG immunoreactivity (green) was measured as
the index of oxidative DNA damage. (c) The ratio of 8-OHdG-positive cells to the total cell number (%). (d) MCP-1 levels in lung tissues.
(e) Lung tissues were stained with fluorophore-labeled antibodies against macrophage marker F4/80 (red). (f) The proportion of F4/80-
positive cells in total cells (%). Nuclei were counterstained with 4′,6-diamidino-2-phenylindole (DAPI) (blue). Areas in white boxes were
shown enlarged. Original magnification, ×200. Scale bars correspond to 50μm. Data are presented as the mean ± SEM (n = 7). ∗∗p < 0:01
vs. the control siRNA group. ##p < 0:01 vs. the MMP-9 siRNA group.
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(Figure 5(f)). Moreover, pulmonary knockdown of MMP-9
per se led to mild but significant increases in lung MCP-1
protein level and macrophage infiltration.

Taken together, these results indicate that pulmonary
knockdown of MMP-9 aggravates sepsis-induced oxidative
stress and inflammation in lung tissues.

3.5. Administration of sRAGE Attenuates Oxidative Stress,
Inflammatory Response, and Lung Injury Induced by
Intrapulmonary Knockdown of MMP-9. There is growing

evidence that sRAGE acts as a decoy receptor and exerts pro-
tective effects against acute lung injuries [25, 39]. In the pres-
ent study, we found that administration of recombinant
sRAGE protein significantly attenuated oxidative stress and
inflammatory responses induced by intrapulmonary knock-
down of MMP-9, as evidenced by the reduction inMDA level
(Figure 6(a)), 8-OHdG-positive cells (Figures 6(b) and 6(c)),
MCP-1 level (Figure 6(d)), and macrophage infiltration
(Figures 6(e) and 6(f)) in lung tissues. Furthermore, intrapul-
monary knockdown of MMP-9-induced increases in BAL
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Figure 7: Administration of sRAGE attenuated lung injury induced by intrapulmonary knockdown of MMP-9. Mice were intratracheally
injected with MMP-9 siRNA or control siRNA (1mg/kg). Forty-eight hours later, mice were administrated with recombinant sRAGE
protein. (a) Cell count and (b) protein concentration in BAL fluid. (c) Representative hematoxylin- and eosin-stained sections of lung
tissue were shown. (d) The severity of lung injury from different groups was scored by a pathologist blinded to group allocation. Original
magnification, ×200. Scale bar indicates 50 μm. Data are presented as the mean ± SEM (n = 7). ∗∗p < 0:01 vs. the control siRNA group.
##p < 0:01 vs. the MMP-9 siRNA group.
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cell count (Figure 7(a)) and protein levels (Figure 7(b)) as
well as lung injury score (Figures 7(c) and 7(d)) was also
markedly alleviated by administration of sRAGE.

3.6. Administration of sRAGE Suppresses the Activation of the
RAGE/NF-κB Signaling Pathway and Ameliorates Oxidative
Stress and Inflammation in Lung Tissues of CLP-Induced
Septic Mice. It has been well recognized that sRAGE can act
as a decoy receptor by competitively inhibiting the binding
of RAGE ligands to RAGE, accordingly attenuating the
downstream signaling pathways [25, 40]. As shown in
Figure 8(a), the present study found that the CLP-induced
increase of phosphorylated NF-κB p65 subunit was largely
reduced, whereas the inhibition of IκB-αwas profoundly pre-
vented by intratracheal instillation of recombinant sRAGE
protein (200μg/kg). These findings indicate that administra-
tion of sRAGE can suppress the activation of the RAGE/NF-
κB signaling pathway in lung tissues of CLP-induced septic
mice.

Intratracheal instillation of recombinant sRAGE protein
significantly ameliorated oxidative stress in lung tissues of
CLP-induced septic mice, as indicated by reduced lung
MDA level and 8-OHdG-positive cells (Figures 8(b)–8(d)).
Moreover, CLP-induced increases in pulmonary levels of
IL-6 and MCP-1 as well as macrophage infiltration were also
significantly attenuated by intratracheal instillation of
sRAGE (Figure 9).

3.7. Administration of sRAGE Attenuates Sepsis-Associated
Acute Lung Injury. As shown in Figures 10(a) and 10(b), we
found that intratracheal instillation of recombinant sRAGE
protein significantly reduced cell count and protein content
levels in BAL fluid of CLP-induced septic mice. Histological
analysis of lung sections revealed that CLP-induced lung
injury was significantly attenuated by intratracheal instilla-

tion of sRAGE, as indicated by improved interstitial edema,
enlarged alveolar air space, and decreased infiltration of
inflammatory cells. As shown in Figure 10(c), the lung injury
score was reduced from 3:29 ± 0:53 (CLP only) to 1:86 ± 0:38
(CLP plus sRAGE). However, administration of recombinant
sRAGE resulted in a slight but not significant improvement
in survival of CLP-induced septic mice (Supplementary
Figure 2), although it attenuated sepsis-associated acute
lung injury.

4. Discussion

Dysregulation of MMP-9 has been reported during the path-
ogenesis of acute lung injury [41]. In the present study, the
gene expression profiles from three datasets generated in
lung tissues obtained from septic mice were analyzed and
exhibited elevated mRNA expression levels of MMP-9. Using
a CLP-induced sepsis model, it was observed that both
mRNA and protein expression levels of MMP-9 in lung tis-
sues were increased in the CLP group compared to the sham
group. Consistent with our results, it has been demonstrated
that pulmonary MMP-9 is upregulated in experimental ALI
animal models induced by cardiopulmonary bypass (CPB)
[42] and in patients with sepsis [9, 43].

There are conflicting data regarding the roles of MMP-9
in the development and full manifestation of acute lung
injury of diverse etiologies. For example, MMP-9 knockout
mice develop more severe distant organ damage during
infection [13] and enhanced allergen-induced airway inflam-
mation [15]. In contrast, nonspecific inhibition of MMPs
prevents neutrophilic inflammation in ventilator-induced
lung injury model [43] and improves survival in sepsis-
associated lung injury model [12]. Moreover, Rahman et al.
report that pulmonary neutrophil infiltration, edema forma-
tion, and lung injury are markedly decreased in septic mice
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Figure 8: Administration of sRAGE suppresses the activation of the RAGE/NF-κB signaling pathway and ameliorates oxidative stress in lung
tissues of CLP-induced septic mice. Mice were subjected to CLP or sham surgery. Recombinant sRAGE protein (200 μg/kg) was
intratracheally injected immediately before the onset of sepsis, with an equivalent volume of saline intratracheally injected in other groups.
(a) Protein levels of phosphorylated NF-κB p65 subunit (p-p65) and IκB-α were determined by western blot analysis. p-p65 levels were
normalized to total p65 expression. Representative protein bands were presented on the left of the histograms. (b) MDA levels in lung
tissues. (c, d) 8-OHdG immunoreactivity (green) was measured as the index of oxidative DNA damage. Nuclei were counterstained with
4′,6-diamidino-2-phenylindole (DAPI) (blue). Areas in white boxes were shown enlarged (c). Original magnification, ×200. Scale bars
correspond to 50 μm. (d) The ratio of 8-OHdG-positive cells to the total cell number (%). Data are presented as the mean ± SEM (n = 7).
∗∗p < 0:01 vs. the sham group; ##p < 0:01 vs. the CLP group.
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lacking MMP-9 [44]. Considering that MMP-9 is a widely
expressed matrix metalloproteinase, global blockade or
knockout of MMP-9 may not well reflect the local effects of
MMP-9 in the development of acute lung injuries. Thus,
siRNA-based technology was used in the present study to
locally knockdown pulmonary MMP-9 expression. Our
results demonstrated that intrapulmonary knockdown of
MMP-9 significantly aggravated sepsis-associated ALI as
indicated by increased pulmonary edema, inflammation, oxi-
dative stress, and lung injury score. Notably, local suppres-
sion of MMP-9 in the lung led to a significant increase in
sepsis-induced mortality. Taken together, these findings
suggest that pulmonary upregulation of MMP-9 may be
recognized as part of a self-protective response to sepsis-
associated ALI.

MMP-9 belongs to a family of zinc-dependent endopep-
tidases that can cleave a variety of substrates, ranging from
extracellular matrix to cell surface proteins and a number of
cytokines [6, 45]. MMP-9 has been found to cleave IL-1β,
thus negatively regulating the activity of IL-1β [46]. In
abdominal sepsis, MMP-9 controls the shedding of platelet-
derived CD40L, which is known to regulate neutrophil
recruitment and lung damage in sepsis [44]. Furthermore,
MMP-9 is identified to be involved in RAGE shedding stim-
ulated by PMA [26] or TNF-α [23], which leads to a release of
sRAGE, a decoy receptor neutralizing RAGE ligands. In the
present study, we found that intrapulmonary knockdown of
MMP-9 significantly decreased sRAGE release and enhanced
sepsis-induced activation of the RAGE signaling pathway in
lung tissues. In addition, administration of sRAGE sup-
pressed the activation of the RAGE signaling pathway and
attenuated ALI induced by intrapulmonary knockdown of
MMP-9 and CLP-induced sepsis. These findings suggest that
MMP-9-mediated RAGE shedding may contribute to the
self-protective effects of pulmonary MMP-9 upregulation
against lung injuries during sepsis.

Activation of the RAGE-dependent NF-κB signaling
pathway has been implicated in acute lung injury of diverse
etiologies including acid aspiration [47], endotoxin [48],
hyperoxia [49, 50], traumatic brain injury [51], and sepsis
[34, 35]. The NF-κB signaling has been well recognized as a
critical inducer of inflammatory responses [52]. Evidence
from both in vitro and in vivo studies has shown that down-
regulation of RAGE is associated with decreased levels of
proinflammatory cytokines, concomitant with reduced NF-
κB signaling in alveolar type I epithelial cells [53] and lung
tissues [54]. In recent years, accumulating studies report that
activation of RAGE also induces oxidative stress via NF-κB-
dependent pathways [38, 55]. In line with these findings, this
study found that sepsis-associated inflammation and oxida-
tive stress in the lung were accompanied by activation of
the RAGE/NF-κB signaling pathway. In addition, intra-
pulmonary knockdown of MMP-9 aggravated, whereas
administration of recombinant sRAGE attenuated sepsis-
associated activation of the RAGE/NF-κB signaling pathway,
consequently resulting in the exacerbation or improvement
of pulmonary inflammation and oxidative stress, respec-
tively. Our results suggest that MMP-9-mediated RAGE
shedding might limit the severity of sepsis-associated lung
damage by suppressing the RAGE/NF-κB signaling pathway
in the lung via the decoy receptor activities of sRAGE.

sRAGE has been reported to exert potent protection
against lung injuries induced by LPS [56], acid instillation
[39, 54], sepsis [57], and mechanical ventilation [58]. How-
ever, the mechanisms responsible for the pulmonary protec-
tive effects of sRAGE remain largely unknown. sRAGE has
been shown to attenuate LPS-induced inflammation, hyper-
permeability, and apoptosis in the lung by inhibiting NF-κB
activation [25]. In acid-injured lungs, administration of
sRAGE exerts protective effects through a decrease in alveo-
lar type 1 epithelial cell injury as shown by restored alveolar
fluid clearance (AFC) and lung aquaporin- (AQP-) 5
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Figure 9: Administration of sRAGE suppresses inflammation in lung tissues of CLP-induced septic mice. Mice were subjected to CLP or
sham surgery. Recombinant sRAGE protein (200 μg/kg) was intratracheally injected immediately before the onset of sepsis, with an
equivalent volume of saline intratracheally injected in other groups. Levels of (a) IL-6 mRNA, (b) IL-6 protein, (c) MCP-1 mRNA, and (d)
MCP-1 protein in lung tissues. (e, f) Lung tissues were stained with fluorophore-labeled antibodies against macrophage marker F4/80
(red). Nuclei were counterstained with 4′,6-diamidino-2-phenylindole (DAPI) (blue). Original magnification, ×200. Scale bars correspond
to 50μm (e). (f) The proportion of F4/80-positive cells in total cells (%). Data are presented as the mean ± SEM (n = 7). ∗p < 0:05 and ∗∗p
< 0:01 vs. the sham group; #p < 0:05 and ##p < 0:01 vs. the CLP group.
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expression [54]. In this study, we provided the in vivo evi-
dence that sRAGE treatment alleviated CLP-induced RAGE
expression, NF-κB p65 subunit phosphorylation, downregu-
lation of IκBα, macrophage infiltration, production of proin-
flammatory cytokines, and oxidative stress in lung tissues.
Collectively, these findings suggest that inhibition of the
RAGE/NF-κB signaling pathway as well as pulmonary
inflammation and oxidative stress may contribute to the pro-
tection against CLP-induced lung injury afforded by sRAGE.

Notably, administration of recombinant sRAGE had no
significant effect on the mortality of CLP-induced septic
mice, although it suppressed sepsis-induced activation of
RAGE/NF-κB, inflammation, and oxidative stress in lung tis-
sues. There is growing evidence that administration of
recombinant sRAGE can prevent a variety of organ injuries
including myocardial ischemia/reperfusion injury [59, 60],
chronic intermittent hypoxia-induced renal injury [61],

CCl4-induced liver injury [62], and acute lung injuries [39,
54]. On the other hand, recent clinical trials report that
increased levels of sRAGE are associated with higher risks
of mortality in frail older adults [63], hemodialysis and peri-
toneal dialysis patients [64], cardiovascular diseases [65, 66],
and ARDS [67]. Collectively, these findings let us suggest that
increased MMP-9-mediated sRAGE production may repre-
sent a self-protective mechanism in response to sepsis,
whereas exogenous enhancement of sRAGE levels is not suf-
ficient to improve survival.

5. Conclusions

In conclusion, this study demonstrated that pulmonary
upregulation of MMP-9 might be recognized as part of a
self-protective response to sepsis-associated lung injury.
MMP-9-mediated RAGE shedding limited the severity of
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Figure 10: Administration of sRAGE attenuates sepsis-associated acute lung injury. Mice were subjected to CLP or sham surgery.
Recombinant sRAGE protein (200 μg/kg) was intratracheally injected immediately before the onset of sepsis, with an equivalent volume of
saline intratracheally injected in other groups. (a) Cell count and (b) protein concentration in BAL fluid. Histopathological examination
using hematoxylin and eosin staining (c). Original magnification, ×200. Scale bars correspond to 50μm. The severity of lung injury was
scored by a pathologist blinded to group allocation (d). Data are presented as the mean ± SEM (n = 7). ∗p < 0:05 and ∗∗p < 0:01 vs. the
sham group; #p < 0:05 and ##p < 0:01 vs. the CLP group.
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sepsis-associated pulmonary edema, inflammation, oxidative
stress, and lung injury by suppressing the RAGE/NF-κB sig-
naling pathway via the decoy receptor activities of sRAGE.
Our data indicate that MMP-9-mediated sRAGE production
may serve as a self-limiting mechanism to control and resolve
excessive inflammation and oxidative stress in the lung dur-
ing sepsis.
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