Skip to main content
2021 Feb 18;29(5):715–726. doi: 10.1007/s41324-021-00387-5

Table 2.

Variables and modeling results

Variables Classical regression model (CRM) Spatial lag model (SLM) Spatial error model (SEM)
Constant Coefficient 0.626072 − 18.3936 − 13.5801
Probability 0.9782 0.3751 0.5933
Population Coefficient − 0.0775117 − 0.0392796 − 0.0648459
Probability 0.4506 0.6582 0.4236
Population density Coefficient 0.016737 0.0159396 0.0171707
Probability 0.0000 0.0000 0.0000
People age ≥ 60 Coefficient − 0.0356168 − 0.039213 − 0.0461551
Probability 0.0949 0.0303 0.0549
No. of urban people Coefficient 0.0029676 0.00264053 5.99E−05
Probability 0.1312 0.1159 0.9745
No. of working age people Coefficient 0.000895814 0.00406054 0.00481118
Probability 0.8330 0.2821 0.2972
No. of industrial workers Coefficient − 0.000259399 − 0.00575691 − 0.00254137
Probability 0.9538 0.1824 0.5808
No. of poor people Coefficient − 0.00103537 − 0.000795051 − 0.00125877
Probability 0.3094 0.3677 0.1914
Access to television Coefficient − 0.00215033 − 0.00246411 − 0.00112741
Probability 0.0930 0.0260 0.2994
Literacy rate Coefficient 0.252333 0.270138 0.209675
Probability 0.1788 0.0918 0.2793
Lag coeff. (Rho\ρ) Coefficient 0.284915
Probability 0.0060
Lambda (λ) Coefficient 0.519562
Probability 0.0001