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Abstract
While the Arabian population has a high prevalence of metabolic disorders, it has not been included in global studies that 
identify genetic risk loci for metabolic traits. Determining the transferability of such largely Euro-centric established risk 
loci is essential to transfer the research tools/resources, and drug targets generated by global studies to a broad range of 
ethnic populations. Further, consideration of populations such as Arabs, that are characterized by consanguinity and a high 
level of inbreeding, can lead to identification of novel risk loci. We imputed published GWAS data from two Kuwaiti Arab 
cohorts (n = 1434 and 1298) to the 1000 Genomes Project haplotypes and performed meta-analysis for associations with 
13 metabolic traits. We compared the observed association signals with those established for metabolic traits. Our study 
highlighted 70 variants from 9 different genes, some of which have established links to metabolic disorders. By relaxing 
the genome-wide significance threshold, we identified ‘novel’ risk variants from 11 genes for metabolic traits. Many novel 
risk variant association signals were observed at or borderline to genome-wide significance. Furthermore, 349 previously 
established variants from 187 genes were validated in our study. Pleiotropic effect of risk variants on multiple metabolic 
traits were observed. Fine-mapping illuminated rs7838666/CSMD1 rs1864163/CETP and rs112861901/[INTS10,LPL] as 
candidate causal variants influencing fasting plasma glucose and high-density lipoprotein levels. Computational functional 
analysis identified a variety of gene regulatory signals around several variants. This study enlarges the population ancestry 
diversity of available GWAS and elucidates new variants in an ethnic group burdened with metabolic disorders.

Introduction

The post-oil era of the Arabian Peninsula has witnessed a 
substantial increase in the prevalence of metabolic trait-
related disorders, such as obesity, dyslipidemia, hyperten-
sion, and type 2 diabetes mellitus (T2D), in its population. 
Despite the high prevalence of metabolic-related disorders 
in the Arabian Peninsula (Abuyassin and Laher 2015; Al 
Rasadi et al. 2016; Al Sifri et al. 2014; Channanath et al. 
2013; Klautzer et al. 2014; Ng et al. 2014; Tailakh et al. 
2014), there is a lack of convincingly identified genetic 
determinants for metabolic traits in people from this region. 
The global genome-wide association studies (GWAS) per-
formed for metabolic diseases and traits overrepresent peo-
ple of European ancestry (Mills and Rahal 2019). Only a 
few GWAS from the Arabian Peninsula are reported in the 
literature, including those on unrelated individuals from 
Saudi Arabia (Ram et al. 2017; Wakil et al. 2016) and Leba-
non (Ghassibe-Sabbagh et al. 2014), on an extended family 
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from the United Arab Emirates (Al Safar et al. 2013), and 
our own studies from Kuwait (Hebbar et al. 2017a, b, 2018, 
2020). Although these studies identified few novel risk vari-
ants, they achieved virtually no success in replicating risk 
variants that had been discovered in non-Arab populations. 
While the inability to reproduce established genetic risk var-
iants in these studies may possibly be attributed to different 
genetic architectures in terms of gene–environment interac-
tions (Fahed et al. 2012) and a different pattern of metabolic 
disorders (such as dyslipidemia (Al Rasadi et al. 2016)) in 
Arab populations, it is more likely to be caused by technical 
factors, such as insufficient genome coverage provided by 
single nucleotide polymorphism (SNP) arrays that are used 
to genotype the discovery cohorts (Hebbar et al. 2019).

Imputation and meta-analysis have become standard prac-
tices in GWAS delineating genetic risk loci associated with 
complex disorders (Marchini et al. 2007; Pei et al. 2010). The 
imputation of genotypes for genetic variants that are untyped 
in the array increases the information provided by each micro-
array by accurately evaluating the evidence for association 
at genetic markers that are not directly genotyped (Li et al. 
2009). Current publicly available imputation reference pan-
els, many of which are based on haplotypes identified by the 
1000 Genomes (1000G) Project (1000 Genomes Project Con-
sortium et al. 2015), accurately predict genotypes both for 
common variants (minor allele frequency [MAF] ≥ 5%) and 
low-frequency variants (0.5% ≤ MAF < 5%) across diverse 
populations (Mitt et al. 2017; Vergara et al. 2018). For exam-
ple, Ghassibe-Sabbagh et al. (Ghassibe-Sabbagh et al. 2014) 
derived a marker set of > 5 million SNPs (either directly gen-
otyped or imputed using the 1000G Project reference pan-
els), showing an association with two established T2D loci 
(rs7766070/CDKAL1 and rs34872471/TCF7L2) at genome-
wide significance in a Lebanese population sample. Meta-
analysis improves the capability to detect associations (Zeg-
gini and Ioannidis 2009) by combining summary results from 
independent GWAS (usually with imputed genotypes) and has 
helped to markedly enlarge the catalog of GWA-identified risk 
loci from single studies for disorders such as T2D (Mahajan 
et al. 2018; Saxena et al. 2012).

Since the advent of GWAS, many risk loci for metabolic 
traits have been globally identified, concentrating mainly 
on the European population (Bustamante et al. 2011; Need 
and Goldstein 2009). Although there has been an increase 
in the number of GWAS from Asia (mostly East Asia) and 
Africa, the Eurocentricity remains prominent (Popejoy and 
Fullerton 2016). Studies have shown that (i) while a large 
number of Eurocentric risk loci associations replicate in 
one or the other non-European population, novel risk loci 
are often discovered in ethnic populations; and (ii) Euro-
centric associations can have different effect sizes in ethnic 
populations (Carlson et al. 2013). There is a lack of studies 
that evaluate the transferability of established risk loci in 

Arab populations. Furthermore, Arab populations are char-
acterized by a high level of inbreeding due to the practice 
of consanguineous marriages, often between first cousins. 
The consideration of such ethnic populations can lead to the 
identification of novel risk loci.

In the present study, we imputed two genome-wide 
genotype datasets from two independent cohorts of Arab 
ethnicity (from Kuwait) using the 1000G Phase 3 haplo-
type reference panel. We also performed statistical tests for 
associations with well imputed common variants (≥ 5% fre-
quency) of 13 quantitative metabolic traits. We combined 
summary statistics from the imputed datasets using meta-
analysis and compared the resulting associations with those 
reported in global GWAS (as listed in the GWAS Catalog, 
which compiles the results of published GWAS as a curated 
resource of SNP-trait associations (Welter et al. 2014)) or in 
other genetic studies published in the literature. Our study 
identified 70 risk variants from nine genes associated with 
metabolic traits at genome-wide significant p values. Many 
other risk variants were observed at p values borderline to 
genome-wide significance or with suggestive evidence of 
association. Of the identified variants, 349 were established 
variants reported in global GWAS or in the literature. The 
established markers seen replicating in our study cohort 
were characterized in comparison with those that are not 
seen in our study cohort for effect size and projection of the 
required sample size. Identified variants were characterized 
by computational functional analysis. We performed fine-
mapping analysis to identify candidate causal variants.

Results

Characteristics of the study cohorts

Table 1 presents the demographic and clinical character-
istics of the study participants. The quality control (QC) 
procedures resulted in retaining 1434 samples and 118,793 
SNPs using the MetaboChip and 1298 samples and 674,131 
SNPs using the OmniExpress BeadChip. The two cohorts 
were genotyped in different times but at the same site. A 
total of 34,800 SNPs was genotyped in both the BeadChips. 
Only in the case of 15 SNPs, the proportional test p values 
for differences in allele frequencies were significant; how-
ever, the significance vanished when Bonferroni correction 
was applied. We performed principal component analysis 
by merging the SNPs with data from 1000G Project popula-
tions and performing linkage disequilibrium (LD) pruning 
to estimate the heterogeneity of each study cohort. The LD-
pruned dataset included 43,537 SNPs for the cohort geno-
typed using the MetaboChip and 66,645 SNPs for the cohort 
genotyped using the OmniExpress BeadChip. Scatterplots 
presenting the first three principal components derived from 
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a merged dataset of the samples genotyped on each of the 
two BeadChips and representative populations from the 
1000G Project are presented in Supplementary Figure S1 
(A–F). These scatterplots depict similar positioning for the 
individuals from both of the study cohorts.

Flow of data through different analyses tools 
of the study pipeline

Figure 1 presents the flow of data from the two genotyping 
platforms through the imputation, meta-analysis, and QC 
stages to the final choice and characterization of associa-
tion signals.

Imputation and quality score

Our imputation strategy used 1000G Project Phase 3 data 
(1000 Genomes Project Consortium et al. 2015). Utiliz-
ing the Michigan Imputation Server (MIS), we imputed 
48,424,667 markers for the 1298 samples genotyped with 
the OmniExpress BeadChip and 46,597,973 markers for 
the 1434 samples genotyped with the MetaboChip (Sup-
plementary Table S1). Supplementary Figure S2A presents 
a plot of the imputation mean quality score (Rsq) for the 

imputed markers at various MAF values. As expected, the 
Rsq increased as the MAF increased, and at every MAF 
value, the Rsq was higher with the OmniExpress BeadChip 
platform, which has a higher array SNP content than the 
MetaboChip platform.

Final dataset of imputed markers

Supplementary Figure S2B shows the proportion of imputed 
variants falling into different MAF ranges for each of the 
two platforms before and after filtering the variants at 
Rsq > 0.50. We observed that a large proportion of vari-
ants with an MAF < 5% had poor Rsq values, whereas those 
with an MAF ≥ 5%, constituting a smaller proportion of the 
total variants, were confidently imputed with an average 
Rsq > 0.75 on both platforms. Using a threshold of ≥ 0.5 for 
the imputation mean quality score, 12.2 million and 2.16 
million SNPs were imputed for the OmniExpress BeadChip 
and MetaboChip, respectively. To create our final dataset, 
we filtered these for common markers (MAF ≥ 5%), resulting 
in an imputed OmniExpress dataset of 6.08 million markers 
and an imputed MetaboChip dataset of 1.52 million markers 
(mean Rsq = 0.822 and 0.759, respectively) (Supplementary 
Table S1).

Table 1   Demographic and clinical characteristics of the participants in the two GWAS cohorts from Kuwait

$ Significance of difference between the two study cohorts. Student’s T test was used for quantitative traits and Chi-square test was used for 
binary traits

 Trait Participants genotyped using 
OmniExpress (N = 1298) 
(mean ± SD)

Participants genotyped using 
MetaboChip (N = 1434) 
(mean ± SD)

All participants 
(N = 2732) 
(mean ± SD)

p value$

Sex, male:female 658:640 (50.69%) 808:626 1466:1266 0.825
Age, years ± SD 47.15 ± 13.58 45.73 ± 11.20 46.41 ± 12.40 0.003
Weight, Kg ± SD 88.68 ± 21.09 87.48 ± 18.25 88.05 ± 19.65 0.112
Height, cm ± SD 164.94 ± 13.25 166.02 ± 11.76 165.92 ± 9.27 0.009
BMI, Kg/m2 ± SD 32.54 ± 8.52 31.54 ± 6.30 32.00 ± 6.75 0.001
WC, cm ± SD 102.29 ± 16.29 101.56 ± 13.28 101.91 ± 14.78 0.201
LDL, mmol/dl ± SD 3.08 ± 0.98 3.34 ± 1.01 3.22 ± 1.00 3.78E−15
HDL, mmol/dl ± SD 1.13 ± 0.37 1.13 ± 0.33 1.13 ± 0.35 0.459
TC, mmol /dl ± SD 4.95 ± 1.10 5.22 ± 1.06 5.09 ± 1.09 6.72E−11
TG, mmol /dl ± SD 1.73 ± 1.21 1.58 ± 1.04 1.65 ± 1.12 0.0028
HbA1c, mmol/L ± SD 7.11 ± 2.08 6.23 ± 1.67 6.55 ± 1.87 < 2.2E−16
FPG, mmol/L ± SD 7.34 ± 3.55 6.20 ± 2.63 6.74 ± 3.14 < 2.2E−16
SBP, mmHg ± SD 127.72 ± 17.69 129.65 ± 17.38 128.75 ± 17.55 0.004
DBP, mmHg ± SD 77.94 ± 10.65 78.59 ± 11.17 78.29 ± 10.93 0.825
Obesity (BMI ≥ 30 kg/m2) (yes:no) 778:520 (59.9%) 808:626 (56.35%) 1586:1146 (58.05%) 0.057
Diabetic (yes:no) 601:697 (46.3%) 471:963 (32.8%) 1072:1660 (39.23%) 6.31E−13
Hypertensive (yes:no) 424:874 (32.66%) 375:1059 (26.15%) 799:1933 (29.20%) 1.85E−04
Lipid lowering medication (yes:no) 151:1147 (11.63%) 103:1331 254:2478 6.32E−05
Glucose lowering medication (yes:no) 303:995 (23.34%) 117:1317 320:2412 4.34E−28
Anti-hypertensive medication 

(yes:no)
155:1143 (11.94%) 138:1296 293:2439 0.051
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Concordance of imputed genotypes

In an attempt to examine the quality of imputation using 
1000G in our study, we validated the genotypes imputed in 
our study by way of comparing the genotype frequencies at 
the imputed markers with those genotyped in populations 
from the region as reported in either our in-house Kuwaiti 
Arab Exome Variant database (John et al. 2018) or in the 
Greater Middle East (GME) Variome Project (Scott et al. 
2016) (which presents GME genetic variations). Our in-
house exome variant database, derived from 291 samples, 
contained 5864 imputed markers (with a frequency ≥ 5% 
and Rsq ≥ 0.5), of which only five (0.09%) showed signifi-
cantly different genotype frequencies (Fisher’s exact test, p 
adjusted ≤ 0.05). All five variants were either multiallelic 
or indels. Similarly, the GME database contained 8550 
imputed markers (with a frequency ≥ 5% and imputation 
quality of Rsq ≥ 0.5). Of them, only 62 imputed variants 
(0.73%) showed significantly different genotype frequencies 

(Fisher’s exact test, p adjusted ≤ 0.05). Interestingly, these 
included 33 variants located in the major histocompatibility 
complex region, which is known to exhibit poor imputation 
quality (Matzaraki et al. 2017). The remaining 29 variants 
were either multiallelic or indels. It is also possible that the 
higher fraction of inconsistency observed with GME can 
be attributed to population differences within the Greater 
Middle Eastern region. These observations indicate that the 
quality of imputation using 1000G is good and is in agree-
ment with genotyped data from Kuwait and the region. We 
removed all variants that showed significant differences in 
genotype distribution from further analyses.

Summary of associations observed 
between metabolic traits and imputed variants

Statistical analyses of the associations between the variants 
(genotyped and imputed) and the 13 metabolic traits identi-
fied 978 unique associations involving 821 unique variants 

Fig. 1   Flow of data from the two genotyping platforms to the steps of 
imputation, meta-analysis and to the characterization of the resultant 
association signals. Characterization of the signals was carried out by 

way of comparing to association signals published in GWAS Catalog 
for the 313 search terms relating to metabolic traits
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from 251 gene loci (Supplementary Dataset S1). Variants 
from 237 of the 798 association signals reported in Supple-
mentary Dataset S1 exhibited higher effect allele frequencies 
in Arabs as compared in Europeans and the difference was 
statistically significant as per proportional test for comparison; 
of these 237 signals, 172 (73%) were not seen replicated in 
global GWA studies. When the association signals were not 
at a level of genome-wide significance or at least borderline to 
genome-wide significance, they only involved the established 
variants (annotated in the GWAS Catalog for traits relating to 
metabolic processes). Of these 821 variants, (i) 70 variants 
(from nine genes) formed 72 associations at genome-wide 
significance (p value < 5.0 × 10−08), (ii) 440 variants (from 
76 genes) formed 455 associations of borderline to genome-
wide significance (p value < 1.0 × 10−06 and > 5.0 × 10−08), and 
(iii) 319 variants (from 181 genes) formed 451 established 
associations (reported in the GWAS Catalog for the 313 traits 
relating to the 13 study-specific metabolic traits) at p values 
of suggestive evidence of association (> 1 × 10−06 and ≤ 0.05). 
LD pruning at r2 = 0.10 suggested nine LD-independent vari-
ants (two variants of genome-wide, two variants of border-
line, and five variants of suggestive associations) among 821 
variants. Table 2 presents the overall summary statistics of 
the extent of associations observed between variants and the 
tested metabolic traits, along with comparisons with the estab-
lished 7668 SNP associations from the GWAS Catalog (see 
“Methods” for the protocols used to search the GWAS Catalog 
with search terms relating to metabolic traits and disorders, as 
listed in Supplementary Table S2).

Associations observed at genome‑wide significance 
in meta‑analysis

As mentioned above, 70 unique variants (15 established 
risk variants and 55 novel risk variants) from nine gene loci 
(seven genomic regions) were found to be associated at a 
genome-wide significant p value. Of them, 63 were associ-
ated with high-density lipoprotein (HDL), one with triglyc-
erides (TGs), one with low-density lipoprotein (LDL), three 
with systolic blood pressure (SBP), and two with each of 
fasting plasma glucose (FPG) and diastolic blood pressure 
(DBP). The associated gene loci are listed in the footnote 
to Table 2. SNP quality information of these top variants 
is presented in Supplementary Table S3. These 70 variants 
contributed to 72 associations with the traits (Supplemen-
tary Table S4). The quantile–quantile plots depicting the 
expected and observed − log10 (p values) of all variant asso-
ciations for all the 13 traits for the two cohorts and for the 
meta-analysis along with the values for genomic inflation (λ) 
are presented in Supplementary Figure S3. Manhattan plots 
depicting the − log10(p values) from the GWAS for all the 
traits in our meta-analysis are presented in Supplementary 
Figure S4. Regional association plots for regions of 500 Kb 

centered at the risk variants associating with the metabolic 
traits at genome-wide significance are presented in Supple-
mentary Figure S5.

Fine‑mapping analysis

Fine-mapping analysis of the seven identified genomic 
regions revealed 95% credible causal variants for nine SNP-
trait association signals, corresponding to eight lead SNPs. 
Table 3 presents a detailed list of 95% credible causal vari-
ants along with their association statistics. Among these 
eight lead SNPs giving credible sets, three (rs1864163-HDL, 
rs7838666-FPG, and rs2835788-SBP) showed a posterior 
inclusion probability (PIP) ≥ 0.5, another three (rs112861901 
for HDL, rs66505542 for TG, and rs2920844 for SBP and 
DBP), showed PIP > 0.3 to < 0.5; and the remaining two lead 
SNPs (rs76018028-HDL and rs10635970-LDL) showed a 
very low PIP.

SNP heritability analysis

Regional SNP heritability analysis explained an estimated 
variance of 2.5% in HDL for the 1-Mb region compris-
ing rs1864163, 1.7% in TGs for the region compris-
ing rs66505542, 1.4% in HDL for the region comprising 
rs76018028, and 1.1% in SBP for the region comprising 
rs2835788. All the remaining top signals showed ≤ 1% trait 
variance (Table 3).

Association of novel variants in our meta‑analysis 
with metabolic traits

The meta-analysis identified 472 unique novel SNP vari-
ants (from 76 genes) in our study cohort that were asso-
ciated with one or more of the tested 13 metabolic traits, 
either at genome-wide or borderline to genome-wide sig-
nificance. While none of these 472 variants were associated 
with any of the 313 traits relating to metabolic processes 
in the GWAS Catalog, polymorphisms from 57/76 genes 
were associated with metabolic traits (see Supplementary 
Dataset S1). Literature evidence supported the involvement 
of eight additional genes in metabolic processes (see Supple-
mentary Dataset S1). Thus, the evidence supported a role in 
metabolic processes for 65/76 genes, while 11 genes (mostly 
uncharacterized) showed no apparent link to metabolic traits.

Observed association signals and consistency 
in traits associated in GWAS Catalog

Trait consistency in association signals with the GWAS 
Catalog was demonstrated in 83 variants (from 42 genes), 
comprising the direct category (see “Methods”). Such vari-
ants were associated with 11 traits (namely, height, fasting 
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plasma glucose (FPG), glycated hemoglobin (HbA1c), DBP, 
weight, waist circumference [WC], total cholesterol [TC], 
TG, LDL, body mass index [BMI], and HDL). For the traits 

of non-HDL and SBP, we did not find any direct match in the 
GWAS Catalog, but we did find indirect matches (Fig. 2). 
However, a vast majority of these signals were only at 

Fig. 2   Bubble plots illustrating the distributions of observed estab-
lished variants (a)  and gene loci (b)  associated with the study-spe-
cific metabolic traits onto types (direct, indirect or broad) of relation-
ships with observed traits in GWAS Catalog (as accessed in February 
2019). (c) Presents the count of global studies (publications) report-
ing the observed associations in GWAS Catalog for each of the 
‘direct’, ‘indirect’, and ‘broad’ categories. 83 variants (from 42 genes) 
formed the ‘direct’ category; such variants were associated with 11 
traits (namely Weight, height, WC, BMI, TC, TG, LDL, HDL, FPG, 
HbA1C and DBP). The count of unique variants per each of these 11 

traits were: weight:2 (both at suggestive p values); height:13 (1 vari-
ant at borderline p value and 12 at suggestive p value); WC:4 (all at 
suggestive p values); BMI:5 (all at suggestive p values); TC:12 (1 
variant at borderline p value and 11 at suggestive p value); TG:28 (9 
at borderline p value and 19 at suggestive p value); LDL:8 (8 at sug-
gestive p value); HDL:13 (9 variants at genome-wide significant p 
values, 2 at borderline p value and 2 at suggestive p value); DBP:1 (at 
suggestive p values); FPG:1 (at suggestive p value); and HbA1C:1 (at 
suggestive p value)
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suggestive p values in our cohort (only nine signals were at a 
genome-wide significance and 12 at a borderline to genome-
wide significance).

Discovered association signals and overlap 
with broad classes of metabolic traits in GWAS 
Catalog

Interestingly, many of the variants that were found associ-
ated with the 13 study-specific metabolic traits in our cohort 
exhibited associations with members of the broad metabolic 
trait classes in the GWAS Catalog (see Fig. 2). The complete 
dataset of all the variant associations, with grouping and 
trait classes, is provided in Supplementary Dataset S2. The 
extent of the overlap in trait associations among the different 
classes of metabolic traits were as follows: (i) Among the 
variants that were associated with anthropometric traits in 
our cohort, 9 variants (7 genes) were also associated with 
lipid traits, 11 variants (eight genes) with cardiometabolic 
phenotypes, 11 variants (10 genes) with blood pressure 
traits, and 7 variants (6 genes with glycemic traits in the 
GWAS Catalog. (ii) Among the variants associated with 
lipid traits in our cohort, 48 variants (32 genes) were also 
associated with anthropometric traits, 22 variants (18 genes) 
with blood pressure traits, 48 variants (25 genes) with car-
diometabolic phenotypes, and 31 variants (26 genes) with 
glycemic traits in the GWAS Catalog. (iii) Among the vari-
ants associated with glycemic traits in our cohort, 11 vari-
ants (9 genes) were associated with anthropometric traits, 2 
variants (2 genes) with blood pressure traits, four variants (4 
genes) with lipid traits, and 5 variants (5 genes) with cardio-
metabolic phenotypes in the GWAS Catalog. (iv) Among the 
variants associated with blood pressure traits in our cohort, 
17 variants (14 genes) were associated with anthropometric 
traits, 2 variants (2 genes) with lipid traits, 2 variants (2 
genes) with glycemic traits, and 7 variants (5 genes) with 
cardiometabolic phenotypes. The associated variants and 
genes shared with the different classes of metabolic traits 
are illustrated as Venn diagrams in Supplementary Figure S6 
(for variants) and Supplementary Figure S7 (for genes). The 
associations comprising the broad category may illustrate 
that rather than trait inconsistency, pleiotropy and a com-
mon genetic basis exists among different classes of meta-
bolic traits.

Transferability of established association signals 
for metabolic traits to the Arab population

We observed 349 unique SNPs (from 187 genes) established 
in global populations as associated with metabolic traits 
replicated in the Arab population through direct, indirect, 
or broad relationships. Of these unique variants, 83 (from 
42 genes) were replicated through a relationship of direct 

association, 164 (from 77 genes) through indirect associa-
tion, and 203 (from 131 genes) through broad association. 
The counts of transferable association signals at such vari-
ants from each global population to the Arab population 
are presented in Fig. 3, and similar counts at the gene level 
are presented in Supplementary Figure S8. The presented 
association signals were generally well illustrated in vari-
ous studies (see Fig. 2) and in multiple global populations. 
Table 4 shows populations illustrating the replicability of 
associations from the direct relationship class. For example, 
the replicability of associations from the direct class for the 
traits of BMI, TG, and height has been observed in many 
populations, with BMI associations in Northern and Western 
European (CEU), East Asian (EAS), South Asian (SAS), 
Hispanic, Filipino, and Seychellois populations; TG asso-
ciations in CEU, EAS, and Han Chinese in Beijing, China 
(CHB), populations; and height associations in CEU and 
EAS populations.

Effect size and replicability of established variants

Figure 4 presents the trend in effect sizes against increas-
ing MAF values of the established variants that were seen 
replicating in our study cohort (Fig. 4a) and those that were 
not replicating in our study cohort (Fig. 4b). Study variants, 
replicating the established variants, showed a high effect 
size. On the other hand, non-replicating variants showed a 
low effect size.

Estimation of sample size for replicating 
and non‑replicating variants

The estimated power and sample size (see “Methods” for 
power calculation) for the variants of different effect sizes 
and MAFs for different traits are presented in Supplementary 
Figure S9 (the left panel presents the results of established 
variants that were replicated in our study, and the right panel 
presents the results of established variants that were not rep-
licated in our study). The figure illustrates that most of the 
established variants that were seen replicating in our study 
would attain genome-wide significant p values (5.0 × 10−8) 
for most of the traits at 80% and even more power with a 
sample size of 10,000, while non-replicated markers would 
be less likely to replicate at genome-wide significant p val-
ues, even at a sample size of 20,000.

List of gene loci implicated in metabolic processes 
by our meta‑analysis

This study established the association of 66 genes with 
anthropometric traits, 42 genes with blood pressure traits, 
25 genes with glycemic traits, and 133 genes with lipid traits 
(Fig. 5) at different p value thresholds for the SNP-trait 
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Fig. 3   Ethnic transferability of SNP association signals for metabolic traits among populations. The figure presents the counts of transferable 
association signals (at the level of variants) from each global population to Arab population through ‘Direct’  (a) or ‘Indirect’  (b) relationships
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associations (genome-wide significance of < 5.0 × 10−8, 
borderline to genome-wide significance of < 1.0 × 10−6 
and > 5.0 × 10−8, and suggestive p values of > 1.0 × 10−6). 
An association at a suggestive p value was only considered 
if the variant was also listed as associated with metabolic 
traits in the GWAS Catalog. There were 24 genes associated 
with multiple anthropometric traits, five with both SBP and 
DBP, one with both FPG and HbA1c, and 28 with multi-
ple lipid traits. Many of these genes (9/66 associated with 
anthropometric traits, 25/42 associated with blood pressure 
traits, 20/25 associated with glycemic traits, and 101/133 
associated with lipid traits) were also found associated with 
metabolic traits in the GWAS Catalog.

Functional consequences of discovered variants

The distribution of the variants as per their functional con-
sequences on gene structures as gathered (see “Methods”) 
is presented in Supplementary Figure S10A. Up to 52% of 
the variants were intronic, and up to 30% were intergenic. 
Up to 6% were located upstream of a gene. Approximately 
3% of the variants were seen in regulatory regions, and 
approximately 1.5% of variants led to amino acid changes 
in the encoded proteins. The distribution of the variants as 
per their proximity to the transcription start sites (TSSs) is 
presented in Supplementary Figure S10B. The majority of 
the 821 study variants were situated close to the TSS, with 
56 variants within a 1-Kb region from the TSS, and 107 
variants within a 2-Kb region from the TSS.

Functional prioritization of discovered variants

Analysis for functional prioritization of the variants led 
to valuable knowledge regarding the potential functional 
signatures around the study variants, and such signatures 
plausibly drive the course of downstream gene expression. 
As many as 752/821 variants could be ranked based on the 
functional niches. These 752 variants, along with their func-
tional niches, are presented in Supplementary Dataset S3. 
Our study identified 33 of the top 100 ranked variants as 
novel risk variants. The top-ranked variants included the 
following: (i) the rs12740374 variant of the CELSR2 gene 
(associating with non-HDL, LDL, and TC at p values bor-
derline to genome-wide significance), which carried a high 
score for DNase hypersensitive sites (HSs), DNase footprint, 
and transcription factor binding sites (TFBS) and was ranked 
1; (ii) the variant rs3749147 of GPN1,ZNF512 (associating 
with TG at a suggestive p value), which overlapped with 
the promoter, located very close to the TSS, carried a high 
score for DNase HSs and TFBS, and was ranked 2; (iii) the 
variants rs7670 and rs4705745 of the DCP2 gene (associat-
ing with WC at p values borderline to genome-wide sig-
nificance), which carried high scores for DNase HSs and 

were ranked 3 and 62, respectively; and (iv) the variants 
rs62355943 and rs72758038 of the MAP3K1 gene (associ-
ating with TG at p values borderline to genome-wide sig-
nificance), which overlapped with the promoter and CpG 
shore, carried high scores for DNase HSs and TFBS, and 
were ranked 5 and 6, respectively.

The discovered risk variants and their ability 
to regulate expression of genes

A functional assessment of the variants (and the genes har-
boring the variants) in terms of their ability to up- and/or 
downregulate genes (as deduced by examining eQTL’s from 
GTEx) is illustrated in Supplementary Figure S11 (A and 
B). Of the 821 identified study variants, 510 differentially 
regulated the expression of 464 genes across 49 tissues: 385 
variants upregulated 291 genes, and 402 variants downregu-
lated 294 genes (Supplementary Dataset S4). Among the 
472 novel risk variants identified in the study, 283 altered the 
gene expression. Upon using the stringent criteria of consid-
ering only those eQTL’s with q value ≤ 0.05, 62 of the study 
variants were seen to differentially regulate the expression of 
39 genes across 38 tissues; 34 variants upregulated 22 genes 
and 33 variants downregulated 19 genes (see sheet 2 of Sup-
plementary Dataset S4 and Supplementary Figure S12).

Discussion

Arabian Peninsula is at the nexus of Africa, Europe, and 
Asia and has been implied in early human migration 
route out of Africa and in early inter-continental trade 
routes. The post-oil rich era has seen a drastic shift from 
nomadic style of living to more sedentary lifestyle and 
rapid nutrition transition resulting in a dramatic increase 
in the prevalence of metabolic-related disorders. How-
ever, the global genetic studies for metabolic studies were 
mostly performed on European populations followed by 
African American, East Asian, and South Asian popula-
tions. Populations from Arabian Peninsula have not been 
included in these global studies and there is limited genetic 
association data for metabolic traits in Arab population. 
Close-kin marriage and large families are cultural factors 
in the region. The practice of consanguineous marriages 
and living in isolation by community expectedly leads to 
increased endogamy, homozygosity, and accumulation of 
deleterious recessive alleles in the gene pool. The Arab 
population has been vulnerable to a plague of recessive 
genetic disorders. Consanguinity and inbreeding can also 
play an important role in the etiology of complex disorders 
(Rudan et al. 2006). Given such a unique genetic profile, 
studying such an Arab population is expected to augment 
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Fig. 4   Trends in the mean of effect sizes of the established vari-
ants replicating   (a) in our study and those that are not replicat-
ing   (b). For every 5% incremental MAF of replicating variants (at 
borderline and suggestive p values) and non-replicating variants, we 

formed bins of effect size (beta) and then calculated summary statis-
tics (mean ± standard deviation [SD]) for each bin for each of the 13 
traits. Note the differences in the scaling of Y axis

Fig. 5   Venn diagrams showing genes associated with members of each of the four classes of tested 13 metabolic traits among the Kuwaiti popu-
lation



519Human Genetics (2021) 140:505–528	

1 3

international efforts to identify genetic regulation of meta-
bolic traits.

Although published GWAS have reported several thou-
sand genotype associations with metabolic traits, they have 
mostly focused on people of European ancestry and, to an 
extent, East Asian ancestry, and it has remained unclear 
whether these findings could generalize to every other pop-
ulation. The frequencies of risk alleles associated with a 
range of traits in GWAS can differ substantially between 
continental populations (Adeyemo and Rotimi 2010). Thus, 
it is crucial to assess how well these associations can be 
extended to populations with different continental ancestry. 
An increasing number of studies aimed at generalizing these 
associations to various ethnic populations are being pursued 
globally (Adeyemo et al. 2012; Langlois et al. 2016; Liu 
et al. 2012; Lu and Loos 2013). Fine-mapping of the repli-
cating risk gene loci is performed to identify the true causal 
variants (Liu et al. 2012; Mahajan et al. 2018; Wu et al. 
2013). Determining the transferability of established risk 
loci and variants to different ethnic populations is essential 
for generalizing and reconfirming the findings from previous 
global collaborative studies as well as for enabling the suc-
cessful transfer of the knowledge, research tools, resources, 
and drug targets generated by the global studies to a broad 
range of populations with different ethnicities.

This study performed genome-wide imputation of geno-
types for variants that were untyped in the bead chips used 
in our previous GWAS, namely, the high-density OmniEx-
press BeadChip array (Hebbar et al. 2017a, 2018) and low-
density Cardio-MetaboChip array (Hebbar et al. 2017b). 
An assessment of the imputation quality obtained in this 
study (based on the imputation quality score and the propor-
tion of variants above the threshold for the quality score at 
every bin of MAF, incremented by 5%), suggested that the 
imputation quality was unprecedentedly good with common 
variants compared to low-frequency variants (MAF < 5%). 
Furthermore, it was observed that even using the low-density 
SNP array (Cardio-Metabo BeadChip), a mean Rsq of 0.75 
could be obtained for common variants. Although the 1000G 
ALL panel was used as the reference panel for imputation, a 
high concordance was observed between the genotype fre-
quencies of the imputed markers and their frequencies as 
obtained from the GME Variome Project (Scott et al. 2016) 
or from our in-house Arab Exome Variant database (John 
et al. 2018). This suggests that the imputation of both high-
density and low-density SNP data using 1000G haplotypes 
as the reference panel successfully imputes common variants 
in the Arab population.

Our study identified 978 association signals (involving 
821 variants from 251 genes) for the selected metabolic 
traits. Up to 95% of the 251 identified gene loci are sup-
ported by evidence from either annotation in the GWAS Cat-
alog or from experimental studies reported in the literature 

(see Supplementary Dataset 1). We found 70 variants from 
nine gene loci associated with metabolic traits at a genome-
wide significance; these gene loci include BUD13, CETP, 
CSMD1, DYRK1A, HERPUD1, INTS10, LPL, and RTN4, 
which are known to be involved in metabolic processes. 
Of them, 17/70 variants were established risk variants for 
metabolic traits and are listed in the GWAS Catalog. The 
genes harboring the remaining variants were associated with 
metabolic processes as seen in the GWAS Catalog or from 
the literature.

Our study inferred three of the observed risk vari-
ants (rs112861901/[INTS10, LPL] associated with 
HDL, rs1864163/CETP associated with HDL, and 
rs7838666/CSMD1 associated with FPG) as causally impli-
cated. Furthermore, the regional SNP heritability analysis 
demonstrated that the regions corresponding to the top sig-
nals showed low values, typically < 2%, except for the cho-
lesteryl ester transfer protein (CETP) region (2.5%). These 
low values indicate that the proportion of metabolic trait var-
iance that is attributable to these identified genetic variations 
is low among the study population. Although studies report-
ing a higher explained variance due to genetic variation in 
CETP exist [for example, Blauw et al. (2018) reported a high 
value of 16% for the explained variance in CETP concentra-
tion due to a set of 3 CETP variants], we cannot rule out the 
possibility of environmental interactions being responsible 
for larger relative contributions (Visscher et al. 2008) to the 
variance of traits in our study cohort.

The GWAS era has successfully associated thousands of 
genetic variants with risk for complex disorders and traits; 
for example, examination of the GWAS Catalog (accessed 
Feb 2019) found 7668 associated genetic variants for the 13 
metabolic traits considered in this study. However, it still 
remains a challenge to translate these statistical associations 
to knowledge on how they functionally manifest to alter the 
biology underlying the disease risk (Edwards et al. 2013). A 
large part of this difficulty results from the fact that > 90% of 
disease-associated variants are located in non-protein cod-
ing regions of the genome (such as introns and intergenic 
regions) and not within the 1.5% coding part of the human 
genome (Hindorff et al. 2009; Maurano et al. 2012; Schaub 
et al. 2012). In line with these reports, we observed that up 
to 88% of the 821 study variants were located in introns 
or intergenic regions or upstream of genes as opposed to a 
mere 1.5% of the variants leading to amino acid changes in 
the encoded proteins. It has been proposed that many such 
variants located in non-protein coding regions might influ-
ence disease risk by way of altering the regulation of the 
target genes and they might form part of regulatory motifs 
(Gallagher and Chen-Plotkin 2018; Maurano et al. 2012; 
Schaub et al. 2012). The analysis of regulatory elements 
that we present in this study demonstrates that only around 
3% of the 821 study variants were seen in regulatory motifs 
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and that at the most 13% of the 821 study variants were seen 
within a 2-Kb region of TSSs. Variant prioritization based 
on the observed functional niches could uncover in our study 
a variety of regulatory signals around novel variants from 
genes such as DCP2, MAP3K1, HHIP, KANK2, DAGLA, 
MAFF, CETP, LOC646576, and APOA5. It is now estab-
lished that GWAS hits for common diseases are enriched for 
eQTLs and that disease-associated risk variants are likely 
to regulate expression levels of target genes than would be 
expected by chance (Albert and Kruglyak 2015). In line with 
these reports, we found that up to 510 (62%) of the 821 study 
variants were annotated in GTeX as regulating 464 genes 
in 49 tissues; further use of the criteria of q value ≤ 0.05 (a 
measure of significance in terms of false discovery rate) to 
filter the eQTL variants, reduced the number of such variants 
to 62 (7.6% of the 821 study variants) which differentially 
regulated expression of 39 genes in 38 tissues. Deciphering 
the functional role of the GWAS-associated risk variants is 
a challenge and requires comprehensive computational and 
experimental functional analysis studies.

It is well recognized that several genes have pleiotropic 
effects on multiple disorders, such as among T2D, obesity, 
and dyslipidemia (Chen et al. 2018); among obesity, car-
diovascular disease outcomes, and cardiovascular risk fac-
tors (Rankinen et al. 2015); and among lipid metabolism 
and metabolic syndrome (Park et al. 2011). Our approach 
of using 7668 established variant associations for meta-
bolic traits to classify the associations identified in our 
study aided in the identification of genetic loci with shared 
impacts on different metabolic processes. Some examples 
of such exemplary variants and genes include the follow-
ing: (i) rs780093 of GCKR associated with TG shares 
associations with all five broad classes of metabolic traits 
(anthropometric, blood pressure, cardiometabolic, glyce-
mic, and lipid traits); (ii) rs1260326 (GCKR), rs780094 
(GCKR), and rs2925979 (CMIP) share associations with 
four broad classes of metabolic traits (anthropometric, car-
diometabolic, glycemic, and lipid traits); and (iii) ten vari-
ants share associations with three broad classes of meta-
bolic traits, including (a) rs6795735 (ADAMTS9-AS2) and 
rs6857 (PVRL2) with anthropometric, glycemic, and lipid 
classes; (b) rs15285 (LPL) with blood pressure, cardiometa-
bolic, and lipid classes; (c) rs11977526 (LOC102723446) 
and rs198846 (HIST1H1T) with blood pressure, glycemic, 
and lipid classes; (d) rs2820315 (LMOD1) and rs564398 
(CDKN2B-AS1) with anthropometric, cardiometabolic, 
and glycemic classes; (e) rs645040 (RPL31P23-PCCB) 
with anthropometric, cardiometabolic, and lipid classes; (f) 
rs11556924 (ZC3HC1) with anthropometric, blood pressure, 
and cardiometabolic classes; and (g) rs7248104 (INSR) with 
anthropometric, blood pressure, and lipid classes.

The replicability of GWAS-identified signals for consist-
ency in allele frequencies and effect sizes has been assessed 

in different major continental populations (Haiman et al. 
2012; Kraft et al. 2009; Li and Keating 2014; Marigorta 
and Navarro 2013; Marigorta et al. 2018; Ntzani et al. 2012). 
We, for the first time, evaluated the impact of effect sizes on 
the replicability of established risk variants in ethnic Arab 
populations. Our results confirm the common notion that 
large effect associations usually replicate well. Our estima-
tion of the sample size for an Arab cohort required to rep-
licate established associations at genome-wide significance 
revealed that even with a sample size of 10,000, the estab-
lished variants that we found replicating in our study (at 
different p values) would attain genome-wide significance. 
Furthermore, even with a sample size of 20,000, the estab-
lished variants that we found as non-replicating in our study 
were less likely to replicate at genome-wide significance.

Our previous publications using one or the other of the 
two study cohorts could identify risk variants at genome-
wide significance only under genetic models based on reces-
sive mode of inheritance. Examples include: the studies 
using the OmniExpress cohort identified a recessive marker 
from RPS6KA1 associated with FPG (Hebbar et al. 2020) 
and 6 recessive markers from RPS6KA1, LAD1, Or5v1, 
CTTNBP2-LSM8, PGAP3 and RP11-191L9.4-CERK asso-
ciated with TG (Hebbar et al. 2018); and the study using 
the CardioMetabo cohort identified a recessive marker from 
ZNF106 associated with HbA1c (Hebbar et al. 2017b). The 
only exception to identifying recessive markers is the study 
wherein we identified an additive marker from TCN2 associ-
ated with WC using the OmniExpress cohort (Hebbar et al. 
2017a). Adopting the approach used in the current study to 
perform meta-analysis on the summary statistics from both 
the cohorts led to identification of several additive mark-
ers as opposed to recessive markers at genome-wide sig-
nificance—such as those from LPL (LDL), CETP (HDL), 
BUD13 (TG), CSMD1 (FPG), RTN4 (DNP, SBP), DYRK1A 
(SBP). It is further the case that some of the additive mark-
ers that we identified at suggestive p values in our previous 
studies (Hebbar et al. 2017b) appeared in the current study 
at genome-wide significance as in the case of markers from 
CETP (HDL) and BUD13 (TG). The ability to detect addi-
tive risk variants enabled us to explore the transferability 
of established markers (which are often identified through 
additive genetic model) to Arab population.

Ours study has certain limitations. (i) The association 
analysis considered only common variants (MAF ≥ 5%), 
and we set this criterion upon considering the small sizes of 
the datasets and the rapid degradation in imputation accu-
racy when low-frequency variants are considered. Thus, 
the transferability of low-frequency variants could not be 
examined in this study. However, we are considering “ROH-
region-based multi-marker association tests in an attempt to 
improve analysis power” as follow-up to the current work. 
(ii) Because the two cohorts used in our study included both 
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diabetic patients and healthy participants, the identified asso-
ciations retained significance when the models were adjusted 
for the covariate of diabetes status. It is often the case that 
quantitative trait associations are performed on entirely 
non-diabetic participants or on entirely diabetic patients. 
In our earlier study (Hebbar et al. 2020), using one of the 
two cohorts mentioned here, we showed that 3/4 markers 
identified from the full cohort performed better in terms of 
retaining significance in the sub-cohort of entirely diabetic 
patients, and the fourth marker performed better in terms of 
retaining significance in the sub-cohort of participants free 
of diabetes. (iii) Although the Haplotype Reference Consor-
tium (HRC) panel is more recent, we used the 1000G Project 
panel for imputation. There is no gain in HRC imputation in 
our study cohort as the HRC Release 1 (https​://www.haplo​
type-refer​ence-conso​rtium​.org/parti​cipat​ing-cohor​ts) used 
by the MIS server does not contain Middle Eastern samples. 
The 1000G panel has been used more often in the litera-
ture, and it includes comparatively more diverse parental 
populations. However, the choice between HRC and 1000G 
panels does not matter, since our study considers only com-
mon variants. Furthermore, it has been demonstrated that 
in individuals of African ancestry, the 1000G panel also 
showed higher performance compared with the HRC panel 
in terms of the number of imputed variants with high accu-
racy (Vergara et al. 2018), and in Estonian individuals, the 
accuracy and sensitivity of imputation for common variants 
seemed to be similar between the 1000G and HRC panels 
(Mitt et al. 2017). Arab-specific haplotype reference panels 
are still under development in the region. (iv) The Cardio-
Metabo BeadChip used to genotype one of the two cohorts 
is a fine-mapping array with much fewer markers as opposed 
to the OmniExpress BeadChip used to genotype the second 
cohort. As a result, there are much fewer genotyped and 
imputed SNPs resulting for the cohort using the Cardio-
Metabo chip (at 1.52 million as opposed to 6.08 million 
obtained for the other cohort with OmniExpress BeadChip) 
leading to spotty coverage of the genome. (v) The study 
lacks formal pathway and gene-set analyses—it is our inten-
tion to perform these analyses as part of our future studies to 
translate the identified statistical associations to functional 
manifestations. (vi) While the values for genomic inflation 
factor (λ) were consistently close to 1.0 in the GWAS sum-
mary statistics from each of the two cohorts for each of the 
13 traits, summary statistics from the meta-analysis exhib-
ited slight inflation to the order of λ = 1.09 in the cases of 
HDL, SBP and Height. This can be a concern because of 
the moderate sample size of 2732. Considering that we have 
taken care of cryptic relatedness among samples in each of 
the two cohorts as well as between the cohorts, it is pos-
sible to attribute that these traits are probably associated 
with elevated polygenicity. (vii) The sample size was small. 
However, our study has succeeded in achieving its aim of 

finding causal variants and identifying potential novel hits 
specific to the Arab population.

In conclusion, this is the first presented study using an 
Arab population to perform genome-wide imputation and 
meta-analysis. We identified novel variants from seven 
established genes and two novel gene loci at genome-wide 
significance in the Kuwaiti population. We further identified 
83 established SNP-metabolic trait association signals from 
the GWAS Catalog in their exact forms (the same variant 
associated with the same trait as in the GWAS Catalog) in 
the Kuwaiti population. We observed that of the identified 
association signals (for the four classes of anthropometric, 
blood pressure, lipid, and glycemic traits), a set of 330 SNPs 
(from 182 genes) were annotated in the GWAS Catalog as 
associated with other traits from the same class or from dif-
ferent classes of metabolic traits. These gene loci are indica-
tive of a common genetic basis across the different metabolic 
processes. The replication of such established association 
signals provides further external validation and demonstrates 
the transethnic translatability of the risk loci associated with 
metabolic traits. The report conveys the following overall 
messages: the study (i) examined an understudied population 
characterized by inbreeding; (ii) demonstrated imputation 
from low density arrays to 1000 genomes haplotype refer-
ence panel; (iii) identified significant risk loci for metabolic 
traits, albeit previously known, in this novel population of 
Arabs; and (iv) indicated important metabolic pathways and 
genes.

Methods

Study participants

The study participants were selected from two independ-
ent cohorts recruited in our previous studies as part of two 
approved research projects at Dasman Diabetes Institute, 
Kuwait: (i) a cohort of 1965 samples resulting after QC 
steps based on genotype data (Hebbar et al. 2017b) and (ii) 
a cohort of 1913 samples resulting after QC steps (Heb-
bar et al. 2018). The participants were randomly recruited 
under protocols that were approved by the scientific and eth-
ics advisory boards at Dasman Diabetes Institute. The study 
consists of two participant groups. The first group included 
a random representative sample of adults (> 18 years of age) 
of Arab ethnicity across the six governorates of the State of 
Kuwait. A stratified random sampling technique was used 
to select native Kuwaiti participants from the computerized 
register of the Public Authority of Civil Information, a gov-
ernment body that keeps and maintains personal information 
records of both Kuwaiti citizens and expatriates (including 
citizens of other Arab countries from the region). The sec-
ond participant group comprised patients with diabetes or 

https://www.haplotype-reference-consortium.org/participating-cohorts
https://www.haplotype-reference-consortium.org/participating-cohorts
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prediabetes seeking tertiary medical care in clinics at the 
Dasman Diabetes Institute, visitors to our nutrition programs 
and fitness center, visitors to our open day events (where 
various diagnostic screening services are offered), and visi-
tors to our campaigns at primary health centers and blood 
banks in each of the six governorates of the State of Kuwait. 
As previously mentioned in our studies (Hebbar et al. 2017b, 
2018), upon confirming that the participants had fasted over-
night, they signed consent forms, blood samples were col-
lected, vital signs were measured, and the nationality and 
ethnicity of each participant were confirmed via a rigorous 
questionnaire that addressed parental lineages up to three 
generations. Details of medications taken by the participants 
for lowering lipid levels, diabetes, and hypertension were 
collected and used in correction procedures with the associa-
tion statistics. Data on illnesses (e.g., diabetes and cardiovas-
cular complications) were also recorded. The guidelines of 
the Institutional Ethical Review Committee were followed 
for the proper collection of blood samples and the measure-
ment of vital signs. All clinical assays for measurements of 
trait outcomes for both the cohorts were performed at a CAP 
(College of American Pathologists) accredited laboratory at 
Dasman Diabetes Institute.

Genome‑wide genotyping

We previously genotyped 1965 individuals of Arab ethnic-
ity using the Illumina Human Cardio-Metabo BeadChip 
(MetaboChip) (Hebbar et al. 2017b) and 1913 individuals 
of Arab ethnicity using the Illumina Human OmniExpress 
BeadChip (OmniExpress) (Hebbar et  al. 2017a, 2018). 
The protocols that were followed to perform genome-wide 
genotyping and QC are also described in these studies. We 
used PLINK 1.9 tools (Purcell et al. 2007) for data manage-
ment and QC. Genotypes were converted to the National 
Center for Biotechnology Information’s Genome Reference 
Consortium Human Build 37 (hg19) to ensure consistent 
SNP phasing for each genotyping array. The genotyping QC 
procedures included the following: (i) samples with a call 
rate > 95% were retained; (ii) samples were checked against 
relatedness (both within each of the two cohorts and between 
the cohorts) and ancestry mismatch: one randomly selected 
representative of each set of related samples was retained, 
and samples with ancestry mismatch were removed; (iii) 
samples with heterozygosity > median + 3* interquartile 
range were excluded; and (iv) SNPs with a call rate > 98%, 
Hardy–Weinberg equilibrium (HWE) > 10−6, and MAF > 1% 
were retained. In a further QC step, samples that were com-
mon to both the study cohorts were removed from one of 
the sample sets.

Phenotyping study participants for metabolic traits

For each participant, measurements were available for 13 
quantitative metabolic traits from four classes: (i) anthro-
pometry: height, weight, BMI, and WC; (ii) blood pressure: 
SBP and DBP; (iii) glycemia: FPG and HbA1c; and (iv) 
serum lipids: LDL, HDL, TC, TG, and non-HDL cholesterol 
(obtained by subtracting the HDL from the TC level).

Imputation

Genotype imputation was performed on the MIS (Das et al. 
2016) using the 1000G ALL reference panel from 1000G 
Project Phase 3 V5 for imputation, Eagle v2.3 for phasing, 
and Minimac3 as the algorithm for imputation (Loh et al. 
2016). Prior to data submission to the MIS, the input data 
was checked against the 1000G reference SNP list using the 
HRC or 1000G Imputation Preparation and Checking Tool 
(https​://www.well.ox.ac.uk/~wrayn​er/tools​/HRC-1000G​
-check​-bim.v4.2.5.zip). Strand designations were cor-
rected to the forward strand, and reference/alternate (REF/
ALT) allele designations were corrected using PLINK2 and 
the design files for OmniExpress and MetaboChip. Vari-
ants from chromosome X were excluded from imputation 
because the MetaboChip had very few SNPs from this chro-
mosome. The imputation quality was quantified using the 
Rsq score (which estimates the squared correlation between 
imputed and true genotypes). Imputation was separately per-
formed for genotypes from OmniExpress (1298 samples) 
and MetaboChip (1434 samples).

Validating imputed genotypes

To evaluate the quality of imputation we evaluated whether 
genotype distribution at imputed variants in our study are 
consistent with distribution at the same variants genotyped 
in other studies. We examined consistency in genotype dis-
tribution at imputed variants versus genotype distribution 
at the same variants in our in- house Kuwaiti Arab Exome 
Variant database (John et al. 2018), and in genotype distribu-
tion at imputed variants versus genotype distribution at the 
same variants in GME Variome dataset (Scott et al. 2016). 
We used Fisher’s exact test to check the genotype distribu-
tion consistency for the above comparisons, and then we 
adjusted the derived p values using the Benjamini–Hoch-
berg procedure. Adjusted p values < 0.05 were considered 
as genotype proportion inconsistency.

https://www.well.ox.ac.uk/~wrayner/tools/HRC-1000G-check-bim.v4.2.5.zip
https://www.well.ox.ac.uk/~wrayner/tools/HRC-1000G-check-bim.v4.2.5.zip
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Sensitivity analysis and transformations performed 
on the trait measurements

There was a concern that the glycemic, lipid, and blood 
pressure trait values that were determined in individuals 
who were receiving medication would not represent the 
naturally observed values in the population. We addressed 
this by applying adjustments to the measurements of the 
phenotypes by adding an average effect size to the pheno-
types in the subjects under drug treatment. For FPG and 
HbA1c, we examined the in-house Knowledge-Based Health 
Records, an electronic health record system maintained at 
our institute, to calculate the average effect sizes among 
the native Kuwaiti T2D patients taking glucose-lowering 
medication who had improved their glucose levels (average 
reduction, − 2.59 mmol/L; p < 0.001). For lipid corrections, 
we used the recommendations of the Global Lipids Genetics 
Consortium and the Genetic Investigation of Anthropomet-
ric Traits Consortium (Willer et al. 2013). For antihyper-
tensive medication, we used data reported in the literature 
(Tobin et al. 2005). The corrections implemented were as 
follows: (i) for participants taking lipid-lowering medica-
tion, we preadjusted TC to TC/0.8 and LDL to LDL/0.7, 
and non-HDL was determined by subtracting HDL from the 
preadjusted TC; (b) for participants taking antihypertensive 
drugs, we preadjusted SBP and DBP by adding 15 mmHg 
and 10 mmHg, respectively; and (c) for participants tak-
ing glucose-lowering medication, we preadjusted FPG and 
HbA1c values by adding 2.59 mmol/dl and 1%, respectively. 
Before generating the residuals, all the traits were adjusted 
(regular correction) for age, age2, and sex and for popula-
tion stratification using the first four principal components 
(derived for each of the two study cohorts). Quantitative trait 
association tests require that the residual is normally distrib-
uted. Hence, we performed an inverse normal transformation 
on the raw residuals for the traits (except for TG, FPG, and 
HbA1c, for which log inverse transformation was performed, 
as it yielded a better Gaussian distribution). Association tests 
were performed with these inverse trait distributions.

Association tests and meta‑analysis

Genotype associations for the 13 quantitative metabolic 
traits were separately tested for each array platform using 
all genotyped and imputed SNPs that passed the QC thresh-
old metrics (Rsq > 0.05 and MAF ≥ 5%). RVTESTS soft-
ware (Zhan et al. 2016) was used to perform association 
tests using linear regression analysis for an additive genetic 
model. The imputed markers that were passed to the subse-
quent meta-analysis stage were required to meet the follow-
ing QC criteria: (i) consistency in the allele and genotype 
frequencies of the markers between the cohorts genotyped 
with the two BeadChips; (ii) HWE < 10−6; (iii) p value for 

association < 0.05 in each of the two datasets; and (iv) con-
sistency in the direction of association between the two data-
sets. Meta-analysis was performed using METAL software 
(Willer et al. 2010).

p value thresholds for associations

The p value threshold was set at 5.0 × 10−8 for genome-wide 
significance, < 1.0 × 10−6 and > 5.0 × 10−8 for borderline to 
genome-wide significance, and > 1.0 × 10−6 and < 0.05 for 
suggestive evidence of association. Associations at sugges-
tive p values were only considered if they were listed in the 
GWAS Catalog.

Examining the NHGRI‑EBI GWAS Catalog 
for reported association signals and variants

Reported traits for metabolic processes in the GWAS Cata-
log are highly diverse. The search terms relating to the 13 
metabolic traits tested in our study belonged to five broad 
classes of curated trait search terms relating to anthropom-
etry and obesity, blood pressure and hypertension, glycemia 
and diabetes, lipid profiles, and cardiometabolic phenotypes. 
We extracted 313 search terms (Supplementary Table S2) 
relating to the 13 study-specific metabolic traits from the 
NHGRI-EBI GWAS Catalog v1.0 (Buniello et al. 2019) (as 
accessed in February 2019): 99 search terms for the trait 
class of anthropometry and obesity, 46 for blood pressure 
and hypertension, 75 for glycemia and diabetes, 55 for lipid 
profiles, and 38 for cardiometabolic phenotypes. The GWAS 
Catalog contained 7668 SNP association signals for these 
terms. We compared the results of our meta-analysis to the 
known association signals from the GWAS Catalog and fur-
ther removed any association that showed an inconsistent 
direction of effect from our subsequent analysis.

Classifying variants associated with the tested 13 
metabolic traits

Every variant that was associated with one or the other of 
the 13 metabolic traits (from the classes of anthropometry, 
glycemia, lipid, and blood pressure) in our meta-analysis 
was classified as either established or novel, depending on 
whether they appeared in the list of the 7668 known SNP 
association signals.

Classifying the meta‑analysis associations involving 
established variants

We classified meta-analysis associations involving estab-
lished variants as direct, indirect, or broad, by comparing 
the associated metabolic traits in our study with known SNP 
association signals from the GWAS Catalog (as accessed in 
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February 2019) as follows: (i) direct: the same trait was asso-
ciated with the variant in the study cohort and the GWAS 
Catalog (e.g., a variant associated with BMI in our study 
cohort that was associated with BMI in the GWAS Catalog); 
(ii) indirect: the associated trait in the GWAS Catalog was a 
member of the class of traits related to the associated trait in 
our meta-analysis (see Supplementary Table S2 for classes 
of search terms relating to the groups of the 13 tested traits) 
(e.g., a variant associated with BMI in the study cohort that 
was associated with any trait described by the 99 search 
terms listed under the anthropometry and obesity class); 
or (iii) broad: the trait associated with the variant in our 
meta-analysis was related to any of the 313 metabolic traits 
(listed under the classes of anthropometry and obesity, blood 
pressure and hypertension, glycemia and diabetes, lipids, or 
cardiometabolic phenotypes) in the GWAS Catalog (e.g., 
a variant associated with BMI in the study cohort that was 
associated with adiponectin levels in the GWAS Catalog).

Prioritizing variants based on a fine‑mapping 
approach

In this study, we explored the identified top-associating sig-
nals (p value ≤ 5 × 10−08) using FINEMAP software to iden-
tify the plausible causal variants and regional heritability 
(Benner et al. 2016). FINEMAP efficiently explores sets of 
the most plausible causal variant configurations from a given 
genomic region using a shotgun stochastic search algorithm 
based on summary statistics from the meta-analysis and 
pairwise LD correlation statistics between the variants. 
We included variants within a ± 500 Kb region around the 
lead SNP with inverse-variance weighted summary statis-
tics, computed the LD correlation matrix for both datasets 
independently using LDstore software (Benner et al. 2017), 
and then averaged them according to the following formula: 
meta_LD_matrix = (n1 × R1 + n2 × R2)/(n1 + n2), where 
R1 and n1 are the LD matrix and sample size of imputed 
data from OmniExpress, respectively, and R2 and n2 are the 
LD matrix and sample size of imputed data from Metabo-
Chip, respectively. We created 95% credible causal variant 
sets by ranking the variants from the region based on their 
decreasing posterior probability of association and estimated 
regional heritability to understand the proportion of pheno-
typic variance of the complex trait attributable to a credible 
set of SNPs.

Estimation of power for replicating 
and not replicating variants at genome‑wide 
significance

We performed power calculation for replicating and not-rep-
licating variants to estimate power required to expect them 
at p value ≤ 5E−08 using R scripts (available at https​://githu​

b.com/kaust​ubhad​/gwas-power​) that were developed using 
formulas as per Visscher et al. (2008). The power_beta_maf 
function from the script was used to calculate power based 
on a range of values of beta and MAFs (while values for 
sample size (n) and pval were fixed).

Functional variant prioritization

We used the Ensembl Variant Effect Predictor tool (McLaren 
et al. 2016) to annotate the functional consequences of vari-
ants. We assessed the proximity of the variants to the TSS 
using ChIPpeakAnno (Zhu et al. 2010) and TSS.human.
GRCh38 data (available from the Bioconductor software 
suite at https​://bioco​nduct​or.org/packa​ges/). We used the 
tools of SuRFR (Ryan et al. 2014) (SNP Ranking by Func-
tion R package), which interacts with SAILR (SNP Annota-
tion Information List R package) to prioritize variants based 
on the likelihood of their function using features such as 
promoter, CpG, CpG shore, DNase HSs, DNase footprints, 
TFBS, TSS, chromatin states (histone acetylation and meth-
ylation), conserved sequences, and enhancers. To aid in the 
variant prioritization, we used background variants from 
European populations and used a pre-trained weighting 
model for complex disease variants, with default parameter 
values (Ryan et al. 2014).

Expression quantitative trait loci analysis

We examined genotype-tissue expression data using GTeX 
v8 (https​://www.gtexp​ortal​.org) to assess the involvement of 
the discovered variants in the regulation of gene expression. 
Two levels of analysis were carried out: (i) all eQTL’s with 
p value ≤ 0.05 were considered; and (ii) only those eQTL’s 
with p value ≤ 0.05 AND q value ≤ 0.05 were considered. 
The q value is similar to the well known p value, except it 
is a measure of significance in terms of the false discovery 
rate rather than the false positive rate (Storey and Tibshirani 
2003). Beta distribution-adjusted empirical p values from 
FastQTL were used to calculate q-values.
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