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Metabolomic differences 
between critically Ill women 
and men
Sowmya Chary1, Karin Amrein2, Jessica A. Lasky‑Su3, Harald Dobnig4 & 
Kenneth B. Christopher3,5*

Metabolism differs in women and men at homeostasis. Critically ill patients have profound 
dysregulation of homeostasis and metabolism. It is not clear if the metabolic response to critical 
illness differs in women compared to men. Such sex-specific differences in illness response would have 
consequences for personalized medicine. Our aim was to determine the sex-specific metabolomic 
response to early critical illness. We performed a post-hoc metabolomics study of the VITdAL-ICU 
trial where subjects received high dose vitamin D3 or placebo. Using mixed-effects modeling, we 
studied sex-specific changes in metabolites over time adjusted for age, Simplified Acute Physiology 
Score II, admission diagnosis, day 0 25-hydroxyvitamin D level, and 25-hydroxyvitamin D response 
to intervention. In women, multiple members of the sphingomyelin and lysophospholipid metabolite 
classes had significantly positive Bonferroni corrected associations over time compared to men. 
Further, multiple representatives of the acylcarnitine, androgenic steroid, bile acid, nucleotide and 
amino acid metabolite classes had significantly negative Bonferroni corrected associations over time 
compared to men. Gaussian graphical model analyses revealed sex-specific functional modules. Our 
findings show that robust and coordinated sex-specific metabolite differences exist early in critical 
illness.

Though inclusiveness of women subjects in clinical research was mandated by the National Institutes of Health 
(NIH) in 1993, most clinical research studies do not account for sex-specific differences1–3. The research that 
does exist shows that robust differences exist between women and men with respect to disease incidence, disease 
severity, metabolism and pharmacodynamics of interventions4,5. Although firm evidence exists for improved out-
comes for female animals in experimental models of severe illness, such differences are not consistently observed 
in studies on critically ill patients6–9. Mechanistic understanding of sex-specific differences in the response to 
illness is essential if we are to progress to personalized medicine10.

Existing data show that metabolism differences are present in healthy women relative to men. At homeostasis, 
women incorporate free fatty acids into triglycerides whereas men oxidize circulating free fatty acids11. Circulat-
ing acylcarnitines which are reflective of energy metabolism, are generally lower in women12. Women also have 
less free fatty acid-induced insulin resistance13. Healthy women have increases in circulating lipid sphingomyelins 
which act in cell signaling and may reflect glucose metabolism14–17. Sex-specific differences in lipid and choles-
terol metabolism are well established and likely due to sex chromosome and sex-specific hormone action18. The 
overall sex-specific metabolism differences at homeostasis are probably due to variation in metabolism related 
gene expression which contributes to sexual dimorphism12,19.

Metabolomics provides a window into the large number of circulating substrates and products of patient’s 
cellular metabolism20. A few large metabolomics studies on healthy individuals are notable for robust metabolite 
differences related to sex12,19,21–23. Data from healthy subjects has little relevance to critically ill patients where 
metabolic homeostasis is profoundly disturbed24. Heterogenous critical illness is not defined by a precise pheno-
typic framework and studies have provided limited mechanistic insights into pathophysiology25. Metabolomic 
studies performed early in critical illness can reflect illness severity and predict outcomes. But such work does 
not address sex-specific differences in the response to critical illness26–28. Therefore, to see whether sex-specific 
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metabolism differences apply to the critically ill, we studied differences between women and men with regards 
to changes in metabolism during critical illness.

To test the hypothesis that significant sex-specific plasma metabolomic profile differences exist in the response 
to critical illness, we performed a metabolomics analysis of 1215 plasma samples from 428 subjects collected 
during the VITdAL-ICU trial29. The VITdAL-ICU trial randomized 492 critically ill adults (166 of whom were 
women) with 25-hydroxyvitamin D [25(OH)D] levels ≤ 20 ng/ml to high dose oral vitamin D3 or placebo. 
The VITdAL-ICU trial did not find significant differences in length of hospital stay or mortality outcomes. We 
assessed the effect of sex on changes in individual metabolites and plasma metabolite families over three time 
points early in the course of critical illness. Further, with the metabolite change data we determined if regulated 
metabolite modules exist that associate with sex.

Results
In the 428 subject analytic cohort, 35% of subjects were women. Baseline characteristics were balanced between 
subjects stratified by sex for C-reactive protein, Simplified Acute Physiology Score (SAPS) II, day 0 25(OH)D 
levels, intervention status and ICU type. Differences existed by sex with respect to age (see Table 1 and Sup-
plementary Table S1). The overall 28-day mortality of the 428 subject analytic cohort was 22.2%. The 28-day 
mortality in women was 22.5% and in men was 22.0%.

Single time point data.  In day 0 plasma samples (N = 428), significant differences exist in 12 individ-
ual metabolites (all multiple test-corrected threshold of P-value < 8.65 × 10–5, − log10(P) > 4.06) and in metabo-
lomic profiles (CV-ANOVA P-value < 0.001) in female subjects relative to males (see Supplementary Table S2). 
Regarding subject metabolomic profiles, though the multivariable OPLS-DA model had marginal predictability 
(Q2 = 0.42), the permutation test confirmed the stability and robustness of the model (Q2 intercept of − 0.387) 
with a negative permutation Q2 intercept indicating model validity (see Supplementary Table S2)30,31. Day 0 
differences are present with increased individual sphingomyelin species and decreased androgenic steroids in 
women relative to men (see Supplementary Table S3).

In linear regression models of metabolite data from single time points (day 0, 3 or 7), we find significant 
differences exist in 51 individual metabolites at 1 or more time point (all multiple test-corrected threshold of 
P-value < 8.65 × 10–5, − log10(P) > 4.06). The rain plots32 separately show the metabolites that increase (see Fig. 1) 
or decrease (see Fig. 2) in women relative to men, with greater significance shown by an increase in circle size. In 
the data from single time points, significant increases in individual sphingomyelin species and lysophopholipids 
are found in women when compared to men. Decreases in androgenic steroids as well as bile acid and amino 
acid metabolism are found in women relative to men.

Multiple time point data.  In the repeated measures data, mixed-effects modeling of 1215 total day 0, 3 
and 7 plasma samples from the analytic cohort (N = 432) shows 50 metabolites had significantly positive asso-
ciations in women relative to men highlighted by increases in individual sphingomyelin species and lysophos-
pholipids (see Summarized data in Table 2, Full data in Supplementary Table S4). One hundred five metabolites 
had significantly negative associations in women relative to men primarily by decreases in acylcarnitine, andro-
genic steroid, bile acid, nucleotide and amino acid metabolites (see Summarized data in Table 3, Full data in 
Supplementary Table S5). The mixed-effects modeling of only those subjects who received placebo (N = 216), 
though limited in power, showed similar patterns as the analytic cohort (N = 432) with Benjamini–Hochberg 
adjustment33 (Supplementary Data 1). data A bipartite graph34 highlights metabolites of the lysophospholipid, 

Table 1.   Cohort characteristics. Data presented as No. (%) unless otherwise indicated. P-values determined 
by chi-square unless designated by (*) then P-value determined by ANOVA or by (†) determined by Kruskal–
Wallis test.

Characteristic Female Male Total P-value

No 151 277 428

Age years Mean (SD) 68.2 (13.3) 62.0 (15.3) 64.2 (14.9)  < 0.001*

Day 0 25(OH)D ng/ml Mean (SD) 13.2 (5.7) 14.4 (10.1) 13.9 (8.8) 0.17*

SAPS II Mean (SD) 34.6 (14.7) 32.7 (15.8) 33.4 (15.4) 0.24*

Day 0 C-reactive protein μg/mL Mean (SD) 119.9 (96.4) 127.6 (86.0) 124.9 (89.8) 0.40*

Day 0 Procalcitonin ng/ml Median [IQR] 0.45 [0.14, 1.98] 0.77 [0.20, 3.02] 0.66 [0.17, 2.79]  < 0.001†

Vitamin D3 Intervention No. (%) 78 (51.7) 134 (48.4) 212 (49.5) 0.52

Change in 25(OH)D ng/ml Mean (SD) 11.3 (18.0) 10.0 (15.5) 10.4 (16.4) 0.43*

ICU 0.22

Anesthesia ICU No. (%) 24 (15.9) 59 (21.3) 83 (19.4)

Cardiac Surgery ICU No. (%) 42 (27.8) 84 (30.3) 126 (29.4)

Surgical ICU No. (%) 7 (4.6) 16 (5.8) 23 (5.4)

Medicine ICU No. (%) 31 (20.5) 59 (21.3) 90 (21.0)

Neurological ICU No. (%) 47 (31.1) 59 (21.3) 106 (24.8)
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acylcarnitine, androgenic steroid, bile acid, nucleotide and amino acid metabolite sub-pathways and individual 
sphingomyelin species that significantly increase or decrease in women relative to men over days 0, 3 and 7 (see 
Fig. 3).

Next, we explored the sex-specific associations of individual metabolites and 28-day mortality. We compared 
mixed-effects modeling of a total of 441 day 0, 3 and 7 plasma samples from 151 women in the analytic cohort 
to mixed-effects modeling of a total of 814 day 0, 3 and 7 plasma samples from 277 men in the analytic cohort. 
The data show that an increase in short chain acylcarnitines C4–C8 and branched-chain amino acids signifi-
cantly associate with three fold higher 28-day mortality in women but not men (see Supplementary Table S6, 
Supplementary Fig. S1).

Metabolic networks and mediation.  We investigated sex-specific metabolic networks by measuring 
pairwise correlations in metabolites which have similar effects via Gaussian graphical models (GGMs). The 
GGMs analysis revealed seven sex-specific functional modules at day 3 and seven at day 7 (see Supplementary 
Tables S7 & S8). Similar to the mixed-effects analyses, metabolism of branched chain amino acids, bile acids, 
androgenic steroids and lysophospholipids are prominently featured in the sex-specific GGM modules. Metabo-
lites within in each functional module were either increased or decreased in women in unison and had biological 
or functional similarity. Of note, the sex-specific modules do include some individual metabolites that were not 
significantly associated with sex in our mixed-effects analysis (see Supplementary Tables S7 & S8: Modules B 
and E, H, I, K, M).

Finally, we focused on the potential mediation of the relationship between individual metabolite abundance 
and sex by inflammation status. Mediation analyses in day 3 data revealed no influence of Procalcitonin or of 

Figure 1.   Rain Plot of single time point metabolites Increased in Women. Correlations between individual 
metabolites and sex at day 0, 3 or 7 were determined utilizing linear regression models correcting for age, SAPS 
II, admission diagnosis, 25(OH)D at day 0. Day 3 and 7 estimates were also corrected for absolute change in 
25(OH)D level at day 3. The magnitude of beta coefficient estimates (effect size) is shown by a color fill scale 
and the corresponding significance level (− log10(P-value)) is represented by size of the circle. The intensity 
of the red fill color represents an increase in effect size for that metabolite in women compared to men. 
Statistical significance is the multiple test-corrected threshold of − log10(P-value) > 4.06 which is equivalent to 
P-value < 8.65 × 10−5.
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C-reactive protein on the associations between sex and each of the individual 578 metabolites (all P-values 
were > 0.01 using 2000 bootstrap samples).

Discussion
Although previous work suggests that some sex-specific differences exist in the healthy at homeostasis35, our data 
argue that distinct nuanced alterations in metabolism are present in women and men during critical illness. In our 
single time point data and our mixed-effects methods analysis, we consistently find robust increases and decreases 
in groups of metabolites along similar sub-pathways that have conserved function (see Fig. 3, Supplementary 
Tables S4 & S5). Further, we illustrate how groups of metabolites with similar sex-specific effects form GGM 
modules which highlight the same sub-pathways as our single time point data and our mixed-effects methods 
analysis12. These modules serve to focus potential biological interpretation of our sex-specific metabolomics 
observations36. All three analyses highlight the importance of sex-specific metabolism in critical illness related 
to branched chain amino acids, bile acids, androgenic steroids and lysophospholipids.

Critically ill patients preferentially catabolize fatty acids and amino acids for mitochondrial energy produc-
tion. Sex-specific differences exist in the utilization of carbohydrates and lipids as energy. With increased energy 
needs during cell stress, women preferentially oxidize lipids over carbohydrates while men utilize carbohydrates37. 
Firm evidence exists that female mitochondria have higher oxidative capacity, produce less reactive oxygen spe-
cies, and preferentially utilize lipids for bioenergetics38–40. Elevated circulating even-chain C4–C22 acylcarnitines 
are shown to be due to incomplete mitochondrial β‐oxidation of fatty acids41,42. Studies find that increases in 
circulating acylcarnitines are common in severe critical illness and are associated with adverse outcomes27. 
To see whether these findings apply to critically ill women, we analyzed a total of 36 acylcarnitine species. We 
demonstrate that 15 circulating acylcarnitine species are significantly lower in women early in critical illness 

Figure 2.   Rain Plot of single time point metabolites Decreased in Women. Correlations between individual 
metabolites and sex at day 0, 3 or 7 were determined utilizing linear regression models correcting for age, SAPS 
II, admission diagnosis, 25(OH)D at day 0. Day 3 and 7 estimates were also corrected for absolute change in 
25(OH)D level at day 3. The magnitude of beta coefficient estimates (effect size) is shown by a color fill scale 
and the corresponding significance level (− log10(P-value)) is represented by size of the circle. The blue fill color 
represents an decrease in effect size for that metabolite in women compared to men. Statistical significance is the 
multiple test-corrected threshold of − log10(P-value) > 4.06 which is equivalent to P-value < 8.65 × 10–5.
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(see Supplementary Table S5). Our data are consistent with a more efficient fatty acid β-oxidation in critically ill 
women reflective of a sex-specific difference in mitochondrial response to critical illness.

The circulating amino acid pool is supplied by dietary amino acids, endogenous amino acid synthesis and cel-
lular protein turnover43. Increases in circulating amino acids during critical illness are due to protein catabolism44. 
Skeletal muscle protein is rapidly metabolized in response to severity of illness to provide substrate for liver 
gluconeogenesis, immune function support and immunoglobulin synthesis45. Further, amino acid catabolism is 
a source for circulating C3, C4 and C5 acylcarnitines42. Our findings of decreases in C3, C4 and C5 acylcarnitines 
as well as in multiple amino acid metabolite sub-pathways suggest sex-specific protein catabolism and energy 
substrate utilization during critical illness. Of particular interest, are the GGM modules B and H (Supplementary 
Tables S7 & S8) which highlight the importance of decrease in branched chain amino acid metabolites in women. 
In women, we observe a combination of decreases in branch chain amino acid metabolites and in dicarboxylate 
fatty acids generated from fatty acid omega oxidation as well as in short-chain acylcarnitines C3 and C5 derived 
from branch chain amino acids (Supplementary Table S5). Such decreases strongly suggest improved mitochon-
drial function and more complete fatty acid β-oxidation in women relative to men46,47.

Our novel observations suggest that critically ill women have greater abundance of individual sphingo-
myelin species, plasmalogens and lysophospholipids compared to men. Studies show that during cell stress, 
specific sphingomyelin species regulate the initiation of apoptosis and autophagy48. Plasmalogens are known 
to be endogenous antioxidants that protect the endothelium from oxidative stress injury by controlling toxic 
oxidation products49. Lysophospholipids are signaling molecules that have chemoattractant effects and act to 
modulate the innate immune response50,51. Our data are consistent with the hypothesis that the response to cell 
stress differs in women and men.

Table 2.   Metabolites significantly increased in women relative to men over time. Significant results 
presented following mixed-effects modeling of each of the 578 individual metabolites measured at day 0, 3 
and 7. All estimates adjusted for age, SAPS II, admission diagnosis, 25(OH)D at day 0, absolute change in 
25(OH)D level at day 3 and plasma day (as the random-intercept). A multiple test-corrected threshold of 
P-value < 8.65 × 10–5 was used to identify all significant associations. GPC is glycerophosphorylcholine; GPE is 
glycerophosphoethanolamine; GPI is glycosylphosphatidylinositol. Positive β coefficient values indicate higher 
abundance in females relative to males.

Metabolite P-value
Bonferroni corrected 
P-value  − log10p β coefficient Super pathway Sub pathway

1-linoleoyl-GPE (18:2) 3.71 E−15 2.14 E−12 14.43 0.21 Lipid Lysophospholipid

1-palmitoyl-GPA (16:0) 1.77 E−11 1.02 E−08 10.75 0.20 Lipid Lysophospholipid

1-linoleoyl-GPA (18:2) 5.69 E−10 3.29 E−07 9.24 0.20 Lipid Lysophospholipid

1-linolenoyl-GPC (18:3) 1.57 E−11 9.08 E−09 10.80 0.20 Lipid Lysophospholipid

1-stearoyl-GPE (18:0) 6.74 E−16 3.90 E−13 15.17 0.19 Lipid Lysophospholipid

1-palmitoleoyl-GPC (16:1) 5.95 E−11 3.44 E−08 10.23 0.17 Lipid Lysophospholipid

1-arachidonoyl-GPE 
(20:4n6) 2.74 E−10 1.58 E−07 9.56 0.16 Lipid Lysophospholipid

2-stearoyl-GPE (18:0) 2.13 E−09 1.23 E−06 8.67 0.16 Lipid Lysophospholipid

1-oleoyl-GPE (18:1) 5.81 E−10 3.36 E−07 9.24 0.16 Lipid Lysophospholipid

2-palmitoyl-GPC (16:0) 7.59 E−09 4.39 E−06 8.12 0.15 Lipid Lysophospholipid

1-lignoceroyl-GPC (24:0) 3.89 E−06 2.25 E−03 5.41 0.15 Lipid Lysophospholipid

1-linoleoyl-GPI (18:2) 9.30 E−08 5.37 E−05 7.03 0.14 Lipid Lysophospholipid

1-arachidonoyl-GPC (20:4) 8.26 E−07 4.78 E−04 6.08 0.13 Lipid Lysophospholipid

Sphingomyelin (d18:2/14:0, 
d18:1/14:1) 6.93 E-29 4.01 E−26 28.16 0.28 Lipid Sphingomyelin

Sphingomyelin (d17:2/16:0, 
d18:2/15:0) 1.33 E−21 7.70 E−19 20.88 0.26 Lipid Sphingomyelin

Sphingomyelin (d17:1/14:0, 
d16:1/15:0) 1.92 E−18 1.11 E−15 17.72 0.24 Lipid Sphingomyelin

Sphingomyelin (d18:2/21:0, 
d16:2/23:0) 4.11 E−13 2.38 E−10 12.39 0.18 Lipid Sphingomyelin

Sphingomyelin (d18:1/21:0, 
d17:1/22:0, d16:1/23:0) 3.76 E−10 2.17 E−07 9.43 0.17 Lipid Sphingomyelin

Sphingomyelin (d18:1/19:0, 
d19:1/18:0) 1.28 E−09 7.38 E−07 8.89 0.15 Lipid Sphingomyelin

Sphingomyelin (d18:2/23:0, 
d18:1/23:1, d17:1/24:1) 2.74 E−09 1.58 E−06 8.56 0.15 Lipid Sphingomyelin

Tricosanoyl sphingomyelin 
(d18:1/23:0) 5.28 E−08 3.05 E−05 7.28 0.13 Lipid Sphingomyelin

Sphingomyelin (d18:1/25:0, 
d19:0/24:1, d20:1/23:0, 
d19:1/24:0)

4.60 E−05 2.66 E−02 4.34 0.11 Lipid Sphingomyelin
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The liver is the essential organ for glucose, protein, amino acid, lipid and cholesterol metabolism. Sex-specific 
differences in liver metabolism at homeostasis are postulated to be an evolutionary consequence of the metabolic 
flexibility required for reproduction10. Our data argue that bile acid metabolites are decreased in critically ill 
women. Though sex-specific differences in bile acid synthesis are reported52, such differences in bile acid homeo-
stasis are not well characterized53. It is shown that cytochrome P450 enzymes are important for bile synthesis 52 
and regulated in a sex-specific manner54,55. Bile acids activate the nuclear receptors farnesoid X receptor, pregnane 
X receptor and vitamin D receptor as well as the G-protein-coupled receptor TGR5. Such bile acid receptor activa-
tion results in gene expression which alters metabolism of bile acids, glucose, lipids, energy and inflammation56. 
As elevation in blood bile acids are common in critical illness57, and the synthesis and pool composition of bile 
acids are sex-specific, such differences have widespread downstream metabolism pathway effects.

Our novel study approach has several strengths. The use of a large number of plasma samples at multiple 
time points early in critical illness allows for a dynamic overview into sex-specific metabolomics (see Fig. 3). 
Mixed models are extremely useful for metabolomic data measured at multiple time points as they remove con-
founding variables with a fixed-effect (age, SAPS II, etc.) and also those with a random-effect (plasma sampling 
day)58,59. Importantly, by adjusting for the absolute change in 25(OH)D level at day 3, we mitigate the effect of 
the trial intervention on the observed sex-specific metabolomic changes which allow for study of the entire trial 
cohort increasing sample size and study power60,61. Further, our use of clinical trial data allows for modelling 
and normalization of metabolite abundance via adjustment for subject characteristics62. To account for mul-
tiple comparisons we utilized a conservative Bonferroni corrected P-value < 8.65 × 10–5 63. Finally, some of the 
metabolism differences we observe are known to be sex-specific thus increasing the biological plausibility and 
relevance of our work.

Table 3.   Metabolites significantly decreased in Women relative to Men over time. Significant results presented 
following mixed-effects modeling of each of the 578 individual metabolites measured at day 0, 3 and 7. All 
estimates adjusted for age, SAPS II, admission diagnosis, 25(OH)D at day 0, absolute change in 25(OH)D level 
at day 3 and plasma day (as the random-intercept). A multiple test-corrected threshold of P-value < 8.65 × 10–5 
was used to identify all significant associations. Negative β coefficient values indicate lower abundance in 
females relative to males.

Metabolite P-value
Bonferroni corrected 
P-value − log10p β coefficient Super pathway Sub pathway

N-acetylvaline 2.55 E−05 1.47 E−02 4.59 − 0.10 Amino acid Leucine, isoleucine and 
valine metabolism

N-acetylleucine 7.65 E−06 4.42 E−03 5.12 − 0.12 Amino acid Leucine, isoleucine and 
valine metabolism

Alpha-hydroxyiso-
caproate 9.27 E−07 5.36 E−04 6.03 − 0.13 Amino acid Leucine, isoleucine and 

valine metabolism

3-hydroxyisobutyrate 1.37 E−06 7.90 E−04 5.86 − 0.13 amino acid Leucine, isoleucine and 
valine metabolism

3-hydroxy-2-ethylpro-
pionate 2.06 E−09 1.19 E−06 8.69 − 0.15 Amino acid Leucine, isoleucine and 

valine metabolism

2-hydroxy-3-methyl-
valerate 5.00 E−08 2.89 E−05 7.30 − 0.16 Amino acid Leucine, isoleucine and 

valine metabolism

2,3-dihydroxy-2-meth-
ylbutyrate 4.77 E−07 2.76 E−04 6.32 − 0.17 Amino acid Leucine, isoleucine and 

valine metabolism

Beta-hydroxyisovalerate 4.04 E−12 2.33 E−09 11.39 -0.19 Amino acid Leucine, isoleucine and 
valine metabolism

Glycochenodeoxycholate 1.59 E−06 9.18 E−04 5.80 − 0.20 Lipid Primary bile acid 
metabolism

Taurocholate 4.19 E−05 2.42 E−02 4.38 − 0.21 Lipid Primary bile acid 
metabolism

Glycochenodeoxycholate 
glucuronide 2.94 E−12 1.70 E−09 11.53 − 0.28 Lipid Primary bile acid 

metabolism

Taurochenodeoxycholate 2.20 E−08 1.27 E−05 7.66 − 0.28 Lipid Primary bile acid 
metabolism

Glycochenodeoxycholate 
sulfate 4.26 E−11 2.46 E−08 10.37 − 0.32 Lipid Primary bile acid 

metabolism

Glycodeoxycholate 
sulfate 4.01 E−06 2.32 E−03 5.40 − 0.23 Lipid Secondary bile acid 

metabolism

Glycolithocholate sulfate 5.82 E−09 3.36 E−06 8.24 − 0.27 Lipid Secondary bile acid 
metabolism

Glycocholenate sulfate 6.22 E−14 3.59 E−11 13.21 − 0.28 Lipid Secondary bile acid 
metabolism

Taurolithocholate 
3-sulfate 3.11 E−12 1.80 E−09 11.51 − 0.34 Lipid Secondary bile acid 

metabolism

Taurocholenate sulfate 1.03 E−16 5.94 E−14 15.99 − 0.38 Lipid Secondary bile acid 
metabolism
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We do acknowledge potential limitations to our approach. Our VITdAL-ICU trial subject population is 
heterogenous with sex-specific imbalance in some admission diagnosis categories. Despite multivariable adjust-
ment, our approach is subject to bias and confounding. Though our samples are derived from a randomized 
controlled trial, our study design is observational thus causal inference may be limited. Our subjects were all 
white with serum levels of 25(OH)D < 20 ng/ml, thus may not be representative of all critically ill. Our use of 
CRP as an indicator of inflammation is limited in the in the nine reproductive-aged women under study as CRP 
is associated with Progesterone and Estradiol levels64. The single-center setting may limit generalizability of our 
findings. It is important to recognize that although the function and biological relevance of a metabolite may be 
characterized, the clinical significance may not be known. Finally, our study is a hypothesis generating explora-
tory analysis requiring subsequent confirmation and careful interpretation.

The importance of our study is that it offers a nuanced window into the differential metabolic response to 
critical illness between women and men. Beyond the known sex-dependent metabolism differences at homeo-
stasis, we find that women respond to critical illness stressors in a dramatically different fashion than men. Our 
findings on sex-specific differences in metabolism pathways is an essential first step toward understanding how 
to provide patient-centered personalized medicine in the critically ill.

Methods
The details of the VITdAL-ICU trial29 as well as metabolomic processing and analysis are provided in Supple-
mentary Methods. Briefly, the VITdAL-ICU trial randomized 475 critically ill adult patients to vitamin D3 or 
placebo once at a dose of 540,000 IU followed by 90,000 IU monthly29. At VITdAL-ICU trial enrollment, written 
informed consent was obtained and included permission for plasma specimens to be saved for future research 
studies29. The metabolomics study is considered post-hoc as it was designed following initiation completion of the 
of the VITdAL-ICU trial. The post-hoc study research protocol was approved by the Partners Human Research 
Committee Institutional Review Board at the Brigham and Women’s Hospital. All research was performed in 
accordance with the Declaration of Helsinki.

Figure 3.   Circos Plot of metabolites over multiple time points. Bipartite graph of metabolites measured in 
1215 plasma samples from 428 subjects. Metabolites shown are determined by mixed-effects linear regression 
to be significantly increased or decreased in women relative to men over the first seven days following 
trial enrollment. The graph connects the increase or decrease in metabolite on the left side with individual 
metabolites on the right side. Width of curves indicates strength of the significance (− log10(P-value)) as 
determined by mixed-effects regression. Colors differ for each sub-pathway (i.e. all amino acid metabolites are 
red, all lipids are blue). All curves shown have P-value < 8.65 × 10–5 in mixed-effects linear regression analysis.
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To generate metabolomic data, a total of 1215 plasma samples from 428 VITdAL-ICU trial subjects at day 0, 
413 subjects at day 3 and 374 subjects at day 7 were analyzed using four ultra high-performance liquid chroma-
tography/tandem accurate mass spectrometry methods by Metabolon, Inc65. Metabolomic profiling identified 
769 metabolites (Supplementary Data 2). We reduced baseline noise by removing metabolites with the lowest 
interquartile range of variability, leaving 578 metabolites66. Metabolomic data underwent cube root transforma-
tion and Pareto scaling to normalize the distribution67.

For univariate analysis of day 0 data, Student’s t-test was performed to determine if significant sex-specific dif-
ferences exist using MetaboAnalyst68. A Bonferroni multiple testing correction threshold of P-value < 8.65 × 10–5 
was used to identify all significant differences63. Day 0 data were also analyzed using orthogonal partial least 
square-discriminant analysis (OPLS-DA), a supervised method to assess the significance of classification dis-
crimination (SIMCA 15.0 Umetrics, Umea, Sweden). Permutation testing was performed for OPLS-DA model 
validation30,31. Sevenfold cross-validation analysis of variance (CV-ANOVA) was utilized to determine OPLS-DA 
model significance31.

For single time point data, correlations between individual metabolites and sex at day 0, 3 or 7 were separately 
determined utilizing linear regression models correcting for age, SAPS II, admission diagnosis, 25(OH)D at day 
0 and absolute change in 25(OH)D level at day 3. A multiple test-corrected threshold of P-value < 8.65 × 10–5 
was used to identify all significant associations in the single time point data63. All linear regression models were 
analyzed using STATA 14.1MP69. Rain plots were produced based on hierarchical clustering in R-3.6.2 adapted 
from source code published by Henglin et al.32.

For repeated measures data, correlations between individual metabolites and sex over time (day 0, 3 and 7) 
were determined utilizing linear mixed-effects models correcting for age, SAPS II, admission diagnosis, 25(OH)
D at day 0, absolute change in 25(OH)D level at day 3 and plasma day (as the random-intercept). This analysis 
was performed in the analytic cohort (N = 428) with multiple test-corrected threshold of P-value < 8.65 × 10–5 was 
used to identify all significant associations. We repeated the analysis in only those subjects who received placebo 
(N = 216) with Benjamini–Hochberg adjustment of P-values33. All mixed-effects models were analyzed using 
STATA 14.1MP69. For data visualization purposes, a bipartite graph34 utilizing the Circos application (http://
circo​s.ca/) in Perl was generated of metabolites which were significantly changed (increased or decreased) in 
females relative to males.

Mixed effects logistic regression was used separately in 151 women and in 277 men to estimate the odds of 
28-day mortality of individual metabolites adjusted for age, SAPS II, admission diagnosis, 25(OH)D at day 0, 
absolute change in 25(OH)D level at day 3 and plasma day (as the random-intercept). A multiple test-corrected 
threshold of P-value < 8.65 × 10–5 was used to identify all significant associations in the repeated measures data63. 
All mixed-effects models were analyzed using STATA 14.1MP69. We used rain plots32 to separately visualize the 
mortality-dependent effect size and significance of individual metabolites in women and men.

As inflammation is important in response to critical illness, we evaluated a potential mediating effect of Pro-
calcitonin or C-reactive protein on the association between sex and individual metabolite abundance adjusted 
for age, SAPS II, admission diagnosis, 25(OH)D at day 0, absolute change in 25(OH)D level at day 3. Analyses 
were performed on each of the 578 metabolites at day 3 using the R package mediation70 to obtain bootstrap 
P-values (N = 2000 samples)71,72. Significant mediation was present if the P-value was < 0.01 and 10% or more of 
the association was mediated through Procalcitonin or C-reactive protein levels71,72.

To identify sex-specific modules from metabolomics data, we estimated Gaussian graphical models (GGMs) 
for day 3 and 7. Modules serve to reconstruct pathway reactions from metabolomics data. GGMs are deter-
mined utilizing partial pairwise Pearson correlation coefficients following the removal of the effects of all other 
metabolites and covariates73. We inferred a sex-specific network for relative metabolite abundance. We included 
age, SAPS II, admission diagnosis, 25(OH)D at day 0, absolute change in 25(OH)D level at day 3 and plasma 
day as covariates into the model74. Edges between metabolites were allotted if both their Pearson correlations 
and partial correlations remained statistically significant at P-value < 0.05 following Bonferroni correction for 
578 metabolites74. GGMs were produced using the GeneNet R package, version 1.2.13 in R-3.6.2 adapted from 
published source code74.
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