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Abstract

The extant literature supports the involvement of the thalamus in the cognitive and motor 

impairment associated with chronic alcohol consumption, but clear structure/function relationships 

remain elusive. Alcohol effects on specific nuclei rather than the entire thalamus may provide the 

basis for differential cognitive and motor decline in Alcohol Use Disorder (AUD). This functional 

MRI (fMRI) study was conducted in 23 abstinent individuals with AUD and 27 healthy controls to 

test the hypothesis that functional connectivity between anterior thalamus and hippocampus would 

be compromised in those with an AUD diagnosis and related to mnemonic deficits. Functional 

connectivity between 7 thalamic structures [5 thalamic nuclei: anterior ventral (AV), mediodorsal 

(MD), pulvinar (Pul), ventral lateral posterior (VLP), and ventral posterior lateral (VPL); ventral 

thalamus; the entire thalamus] and 14 “functional regions” was evaluated. Relative to controls, the 

AUD group exhibited different VPL-based functional connectivity: an anticorrelation between 

VPL and a bilateral middle temporal lobe region observed in controls became a positive 

correlation in the AUD group; an anticorrelation between the VPL and the cerebellum was 

stronger in the AUD than control group. AUD-associated altered connectivity between anterior 

thalamus and hippocampus as a substrate of memory compromise was not supported; instead, 

connectivity differences from controls selective to VPL and cerebellum demonstrated a 

relationship with impaired balance. These preliminary findings support substructure-level 
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evaluation in future studies focused on discerning the role of the thalamus in AUD-associated 

cognitive and motor deficits.

Keywords

Human; Alcohol Use Disorders (AUD); Thalamic Nuclei; Functional Connectivity

1. Introduction

The thalamus is a significant node in neural circuits compromised by Alcohol Use Disorder 

(AUD) (Pitel et al., 2015; Segobin et al., 2019). Global thalamic volume shrinkage in AUD 

(Cardenas et al., 2007; Chanraud et al., 2007; Mechtcheriakov et al., 2007; Pitel et al., 2012; 

Sullivan, 2003) is associated with deficits in episodic (Fama et al., 2014; Sullivan et al., 

2003) and working (Chanraud et al., 2010) memory. Clinical (e.g., stroke) and preclinical 

(e.g., lesion) studies implicate the anterior thalamus as part of a corticolimbic (Papez) circuit 

comprising hippocampus, fornix, and mamillary bodies and as a substrate of episodic and 

working memory (Aggleton and Brown, 1999; Bubb et al., 2017; Fama and Sullivan, 2015; 

Tanaka et al., 2020). Postmortem neuropathological studies suggest that the anterior 

thalamus is preferentially compromised in AUD with (Harding et al., 2000) or without 

(Belzunegui et al., 1995) amnesia. The aim of the current study was to use resting-state 

functional Magnetic Resonance Imaging (rs-fMRI) [i.e., fluctuations of low frequency blood 

oxygenation level-dependent (BOLD) signals synchronized among functionally related brain 

regions] data to evaluate whether altered functional connectivity between the anterior 

thalamus and hippocampus underlies AUD-associated deficits in working memory.

fMRI studies in AUD support a role for the thalamus in measures of craving and AUD 

severity (e.g., George et al., 2001), but not working memory. For example, an fMRI study in 

alcoholic-dependent relative to healthy control individuals showed higher working memory-

related activation of the dorsal anterior cingulate cortex; activation of the thalamus, however, 

was associated with higher scores on the Obsessive-Compulsive Drinking Scale (Vollstadt-

Klein et al., 2010). Similarly, during exposure to alcohol or neutral cues, bilateral thalamic 

responses to cues in nondependent drinkers correlated with scores on the Alcohol Use 

Disorders Identification Test (AUDIT) (Zhornitsky et al., 2019) (also see Ide et al., 2018; 

Zhornitsky et al., 2018). By contrast, non-dependent binge drinkers relative to matched 

controls showed greater activation in cerebellum, thalamus, and insula while performing a 

working-memory task (Campanella et al., 2013)

Alcohol effects on specific nuclei rather than the entire thalamus may explain a lack of 

consensus on the role of the thalamus in AUD. The thalamus has been parcellated using 

high-resolution structural MRI (Iglesias et al., 2018; Liu et al., 2019; Su et al., 2019), 

diffusion tensor imaging (DTI) (Behrens et al., 2003; Duan et al., 2007; Jakab et al., 2012; 

Johansen-Berg et al., 2005; Kumar et al., 2015; Mang et al., 2012; O’Muircheartaigh et al., 

2015; Stough et al., 2014; Wiegell et al., 2003; Ziyan et al., 2006), and functional 

connectivity measures derived from rs-fMRI. Small, in vivo rs-fMRI studies in healthy 

human subjects have demonstrated functional connectivity between thalamus and subcortical 
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structures such as hippocampus (Stein et al., 2000) and basal ganglia (Lenglet et al., 2012). 

To date, however, functional connectivity strength between anterior thalamus and 

hippocampus as a substrate for working memory in AUD has not been evaluated. We 

therefore hypothesized that functional connectivity between anterior thalamus and 

hippocampus would be compromised in AUD relative to healthy controls and related to 

performance on tests of working memory.

2. Materials and Methods

2.1 Participants

The Institutional Review Boards of Stanford University and SRI International approved this 

study. In accordance with the Declaration of Helsinki, all participants provided written 

informed consent by signing relevant documents in the presence of appropriately trained 

staff. Study participants were 23 individuals diagnosed with AUD (6 women) and 27 healthy 

controls (12 women) (Table 1). Individuals with AUD were referred from local treatment 

centers or, like the healthy control participants, were recruited from the local community by 

referrals and flyers. Specifically, of 23 AUD participants, 9 were recruited from treatment 

centers or shelters (e.g., Free at Last, East Palo Alto; Project 90, San Mateo; WeHOPE 

shelter, East Palo Alto), 6 were referred by community members (e.g., friend or other study 

participant), 4 were referred by Palo Alto VA physicians, 1 responded to a flyer, and 3 were 

recruited via unknown sources. AUD and excluding diagnoses were determined using the 

Structured Clinical Interview for DSM-5 (American Psychiatric Association, 2013); a semi-

structured timeline follow-back interview quantified lifetime alcohol consumption (Skinner 

and Sheu, 1982); the Clinical Institute Withdrawal Assessment of Alcohol (CIWA) scale was 

also administered. Upon initial assessment, subjects were excluded if they had a significant 

history of medical (e.g., epilepsy, stroke, multiple sclerosis, uncontrolled diabetes, or loss of 

consciousness >30 minutes), psychiatric (i.e., schizophrenia or bipolar I disorder), or 

neurological (e.g., Parkinson’s) disease. Table 1 summarizes the demographic information of 

the two groups. The AUD group had drunk an average of 34.5±43.9kg of ethanol in the past 

year. Of 23, 2 AUD subjects had moderate and 20 had severe DSM-5 symptoms (data 

unavailable for 1 AUD participant); 4 AUD individuals had been to urgent care at least once 

for detoxification and 18 had been arrested at least twice. Liver enzymes were all in normal 

range [mean±SD U/L (Quest reference range): alkaline phosphatase (ALP) 90.4±37.6 (40–

115); alanine aminotransferase (ALT) 22.7±15.0 (9–46); aspartate aminotransferase (AST) 

25.0±14.8 (10–35); and gamma-glutamyl transferase (GGT) 55.8±108.2 (3–70).

2.2 Cognitive and Motor Testing

Participants completed a comprehensive neuropsychological battery to assess working 

memory, memory & learning, visuospatial abilities, and executive functions (cf., Zahr et al., 

2019). Raw scores on individual neuropsychological tests (listed below) were statistically 

corrected for age of the control group [mean and standard deviation for control group = 0 ± 

1], allowing averaging across tests. Composite scores were then calculated as the mean of Z-

scores of tests comprising each of the functional domains. Working Memory: Wechsler 

Memory Scale-Revised (WMS-R) block forward total; WMS-R block forward span. 

Memory & Learning: Wechsler Adult Intelligence Scale (WAIS) digit symbol incidental 
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recall of symbols; WAIS digit symbol incidental recall of numbers; California Verbal 

Learning Test (CVLT) short delay free recall; CVLT long delay free recall; Montreal 

Cognitive Assessment (MOCA) delayed recall; WMS-R logical memory story A raw score; 

WMS-R logical memory story B raw score. Visuospatial Abilities: Rey-Osterrieth copy raw 

score; WMS-R visual reproduction item 1 raw score; WMS-R visual reproduction item 2 

raw score. Executive Functions: Controlled Oral Word Association Test (F+A+S total); 

Semantic fluency (inanimate objects, animals); WAIS digit symbol total time to complete 

set; WAIS digit symbol standard score at 90s; MOCA abstraction score.

Additionally, standing balance was assessed using an ataxia battery (stand heel to toe, walk 

10 steps on a line, balance on one leg) in eyes open and closed conditions (Fregly, 1968). 

Age-corrected Z-scores were summed for the eyes open and closed conditions separately 

(Sullivan et al., 2000).

2.3 MRI Acquisition

Scanning was performed on a 3.0 Tesla MRI scanner [MR750, General Electric (GE) 

Healthcare, Waukesha, WI] with a 32-channel receive array head coil. A T1-weighted 

inversion-recovery prepared spoiled gradient-recalled (SPGR) sequence [repetition time 

(TR) = 5.904 – 6.148ms, echo time (TE) = 1.932 – 1.984ms, inversion time (TI) = 300 – 

400ms, matrix = 256×256, thickness = 1.25mm, skip = 0mm, 124 slices, spatial resolution 

0.7 mm × 0.7 mm × 1.0 mm] was used for structural scans. Resting-state functional MRI (rs-

fMRI) scans (eyes open, 8:55min acquisition time, 1.71×1.71×3mm spatial resolution, 200 

time points, TE = 30ms, dwell time 0.28ms) used different TRs ranging from 2.4 to 2.86s 

[2.4s n=1 control; 2.648s n=23 control + n=16 AUD participants; 2.754s for n=2 control + 

n=2 AUD participants; 2.86s n=1 control + 5 AUD participants]. As the proportion of scans 

acquired using the four different TRs was similar between control and AUD groups (χ2=4.6, 

p = 0.20) and as preliminary statistical analysis showed no significant effects of differing 

relaxation times, this variable was not further considered in analysis.

2.4 Structural MRI Processing

Structural T1-weighted MRI images were denoised and skull stripped (Coupe et al., 2008). 

The skull-stripping brain mask was generated by performing majority voting across 

segmentations generated by FSL (v5.0.6) BET (Smith, 2002), AFNI (v16.1.15) 3dSkullStrip 

(Cox, 1996), and Robust Brain Extraction (ROBEX v1.2)(Iglesias et al., 2011). T1-weighted 

images were corrected for field inhomogeneity using ANTS (v2.1.0) N4ITK (Avants et al., 

2014; Tustison et al., 2010). The brain mask was further refined by applying the described 

segmentation methods and FreeSurfer (v5.3.0) mri_gcut (Sadananthan et al., 2010) to the 

inhomogeneity-corrected images and performing majority voting (Rohlfing et al., 2004). 

After skull stripping, images were segmented into 3 tissue types [grey matter, white matter, 

and cerebrospinal fluid (CSF)] using ANTS atropos (Avants et al., 2014; Avants et al., 

2011).

2.5 Functional MRI Processing

Each acquired rs-fMRI brain volume was up-sampled to 2.5mm isotropic spatial resolution 

via ITK-SNAP (v1.0.0) C3D (Yushkevich et al., 2006) and motion-corrected using FSL 

Honnorat et al. Page 4

Drug Alcohol Depend. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



MCFLIRT (Jenkinson et al., 2002; Jenkinson et al., 2012). Volumes were rejected from 

further analysis if their average frame-to-frame, in-scanner motion was greater than 0.75mm 

or if their scan duration (after removing volumes corrupted by frame-to-frame motion 

greater than 0.3mm) was below 180s (average duration = 6:24min). Mean blood oxygen 

level dependent (BOLD) images were non-rigidly registered to SRI24 atlas space (1.5mm 

isotropic resolution)(Rohlfing et al., 2010) using ANTS symmetric diffeomorphic non-rigid 

registration (Avants et al., 2008) as suggested (Calhoun et al., 2017; Dohmatob et al., 2018). 

BOLD images passing quality control were further processed using Nipype (v11.0) resting-

state specific analysis (Gorgolewski et al., 2011). Specifically, a linear regressor was 

constructed that combined the motion outliers detected by Nipype rapidart with detrending 

parameters (normalized threshold=0.3; intensity Z-threshold=5). To interpolate the removed 

frames (i.e., motion outliers), the regressor was defined as a general linear model (GLM) via 

FSL. The pipeline then estimated and corrected for physiological noise via Nipype 

CompCor (Behzadi et al., 2007) and FSL GLM. The series were processed by a discrete 

Fourier transform bandpass filter [low pass frequency: 0.1, high pass frequency: 0.01; 

Numpy v1.16.2 (http://www.numpy.org/)] for temporal smoothing. The corrected BOLD 

images were non-rigidly aligned to SRI24 atlas space (Rohlfing et al., 2010) by applying the 

previously-computed transformation between the mean BOLD images and atlas space. 

Finally, the aligned BOLD images were spatially smoothed with a Gaussian filter of 5.0mm 

full-width half maximum (FWHM, (Mikl et al., 2008) implemented by FSL fslmaths 

(Jenkinson et al., 2012).

2.6 Thalamus Atlas

A high-resolution atlas of the thalamus (Saranathan et al., 2019; Saranathan et al., 2020) was 

converted from Montreal Neurological Institute (MNI) to SRI24 (Rohlfing et al., 2010) atlas 

space using ANTS symmetric diffeomorphic non-rigid registration (Avants et al., 2008; 

Avants et al., 2014). For the whole thalamus, the ventral thalamus, and 5 thalamic nuclei 

[anterior ventral (AV), mediodorsal (MD), pulvinar (Pul), ventral lateral posterior (VLP), 

ventral posterior lateral (VPL)], the functional connectivity to the other brain regions were 

determined. The 5 nuclei are shown in Figure 1.

2.7 Functional Connectivity

The SRI24 atlas defines 111 cortical and subcortical (54 in each hemisphere and three 

bilateral cerebellar) gray matter regions of interest (ROIs) (Rohlfing et al., 2010). For each 

ROI, the average BOLD signal across the entire brain was regressed out from the average 

regional BOLD signal and the resulting time series was normalized with a mean=0 and a 

standard deviation=1. The functional connectivity of each participant was then encoded by a 

correlation matrix, whose entries were defined by inner products between the normalized 

time series of two regions, refined by Oracle Approximating Shrinkage (Chen et al., 2010) 

and Fisher z-transformed (Fisher, 1915). Given that the study consisted of just 50 

participants, evaluation of functional connectivity between 7 thalamic regions and 111 ROIs 

with appropriate statistical corrections for multiple comparisons would mask potentially 

significant AUD effects. Thus, the 111 ROIs were aggregated into larger “functional 

regions” by combining ROIs with strong functional correlations. Specifically, the average 

functional connectivity matrix (across the 111 ROIs) across all participants was computed. 
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The positive entries of this average matrix were considered similarity measures and used as 

inputs to the Louvain method for community detection to determine “functional regions”. 

The Louvain method for community detection is a greedy graph clustering method that 

aggregates network nodes according to their connectivity to create a partition of the network 

into densely connected communities. The output of this algorithm depends on a single 

parameter that influences the size (and therefore the number) of communities determined by 

the method (Blondel et al., 2008; Yeo et al., 2011). For each “functional region” and subject, 

the average BOLD time series was calculated, then correlated to the average bold signal of 

each thalamic structure; correlations were then Fisher z-transformed (Fisher, 1915).

2.8 Statistical Analysis

For each thalamic structure and “functional region” pair, a linear model predicting 

connectivity based on AUD diagnosis, age, or sex was fit using python (v6.1) statsmodels 

api (Seabold and Perktold, 2010). Coefficients with p<0.00357 after correcting for multiple 

comparisons [i.e., false discovery rate (FDR), p=.05/14 regions, see Results for details] were 

considered significant (Benjamini and Hochberg, 1995). Post-hoc analysis – considering 

only connectivity measures significantly affected by AUD – used connectivity corrected for 

age and sex [i.e., residuals with effects removed via the robust linear regression function of 

the MASS library in R v3.3.0 (R Core Team, 2013) and the MM estimation method 

(Hampel, 1986)]. Variables distinguishing the two groups were evaluated for their 

contribution to residual connectivity values using AIC stepwise regressions. Follow up 

analyses also included multiple regressions.

3. Results

3.1 Functional Connectivity

Louvain-based aggregation of the 111 SRI24 ROIs resulted in 10 parcellations with a 

varying number of regions included in each parcellation (Supplementary Tables 1 and 2, 

Supplementary Figure 1). The parcellation including 14 regions optimized connectivity 

measures affected by AUD (Supplementary Table 1); too few regions resulted in noise in the 

connectivity measures, too many required strict FDR-corrected p-values. Subsequent 

analyses are thus based on 14 “functional regions”. Population (across all 50 participants) 

average connectivity between the 7 thalamic structures and 14 functional regions are 

presented in Figure 2A. An AUD diagnosis was significantly associated with three 

connectivity changes. Specifically, an AUD diagnosis changed a weak and non-significant 

anticorrelation among the population average to a positive correlation between the entire 

thalamus and a bilateral middle temporal lobe region (i.e., area 13: middle temporal left and 

right, inferior temporal left) and between VPL thalamus and the same bilateral middle 

temporal lobe region (Figure 2B–C, 3, 4). An AUD diagnosis also altered connectivity 

between VPL and the cerebellum (i.e., area 14: left and right cerebellar crus 1; left and right 

cerebellar crus 2; left and right cerebellar regions 3–10, cerebellar vermis 1–3; Figure 2B–C, 

3, 4) but in this case strengthened the existing (non-significant) anticorrelation among the 

population average. Connectivity of the remaining thalamic structures were not significantly 

affected by an AUD diagnosis. Functional connections were also not significantly affected 

by age or sex (Figure 2D–E).
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Support for these findings comes from a comprehensive functional connectivity analysis 

across the Louvain-based parcellations. Significant AUD effects on the functional 

connectivity between the entire thalamus and a “functional region” including bilateral 

middle temporal lobes was evident among 3 of the 10 Louvain-based parcellations. 

Similarly, AUD altered the connectivity between VPL and a bilateral middle temporal lobe 

region among 4 of the parcellations and between VPL and the cerebellum among 9 of the 10 

parcellations. These findings are summarized in Supplementary Figure 2 and Supplementary 

Table 3.

3.2 Functional Connectivity: Relationships with Relevant Variables

Further analyses were conducted in the AUD group only and evaluated relationships 

between variables differentiating the two diagnostic groups and connectivity measures 

corrected for age and sex (i.e., residuals). Of the 7 thalamic volumes evaluated, VLP volume 

was uniquely sensitive to alcoholism (smaller in AUD, t=3.1, p=.004). The entire thalamus 

(t=−2.1, p=.04) and VPL (t=−2.2, p=.03) were also smaller in AUD relative to healthy 

controls, but neither comparison survived a Bonferroni correction (i.e., 0.05/7 regions would 

require p=.007). Nevertheless, a follow-up AIC stepwise regression to determine whether 

functional connectivity measures were related to structural volumes included volumes of the 

VLP, VPL, and entire thalamus. Neither of the VPL connectivity measures correlated with 

volume (all p-values >.23); connectivity strength between the entire thalamus and temporal 

regions, however, was correlated with VLP volume (r=−0.34, p=.11; ρ=−0.42, p=.05).

Next, a stepwise regression was conducted for each of the 3 connectivity measures 

considering demographic variables that distinguished the 2 groups (from Table 1: BMI, 

Education, SES, WTAR IQ, BDI scores, smoking status, and GAF). Connectivity of the 

entire thalamus with temporal regions was not modulated by these variables. VPL 

connectivity measures were only affected by SES: VPL and temporal regions (r=.42, p=.05; 

ρ=.43, p=.04); VPL and cerebellar regions (r=−.40, p=.06; ρ=−0.48, p=.02). Follow-up 

stepwise regressions demonstrated that diagnosis (but not age, sex, or SES) consistently 

predicted strength of the VPL connections [i.e., VPL thalamus and temporal region 

(F2,48=7.3, p=.009); VPL and cerebellum (F2,48=9.5, p=.003)]. In a multiple regression, age, 

sex, diagnosis, and SES explained 14.2% of the variance in the connectivity strength 

between VPL and temporal regions (F4,49=1.9, p=.13). Although none of the variables 

significantly contributed, diagnosis (p=.14) had the lowest p-value. Removing diagnosis 

reduced the variance explained by the model (F3,49=1.7, p=.18) to 10.0% and SES became 

significant (p=.03); removing SES reduced the variance explained by the remaining 3 

variables to only 13.4% and diagnosis became significant (p=.01). Similarly, the 4 variables 

explained 18.3% of the variance in connectivity between VPL and cerebellum (F4,49=2.5, 

p=.06); removing diagnosis reduced the variability explained by the model (F3,49=2.1, 

p=.11) to 12.1% and SES became significant (p=.02); removing SES from model (F3,49=3.2, 

p=.03) reduced the variance explained by the remaining 3 variables to only 17.5% and 

diagnosis became significant (p=.003).

Finally, relationships with behavioral measures were evaluated using AIC stepwise 

regressions. Connectivity between the entire thalamus and temporal regions was related to 
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performance on the working memory composite (r=−.41, p=.06; ρ=−.43, p=.04, Figure 5a); 

between VPL and cerebellar regions to ataxia with eyes closed (r=.37, p=.10; ρ=.43, p=.05, 

Figure 5b).

4. Discussion

Imaging methods including DTI (Behrens et al., 2003; Duan et al., 2007; Jakab et al., 2012; 

Johansen-Berg et al., 2005; Kumar et al., 2015; Mang et al., 2012; O’Muircheartaigh et al., 

2015; Wiegell et al., 2003; Ziyan et al., 2006) and fMRI (Hale et al., 2015; Kim et al., 2013; 

Kumar et al., 2017; Zhang et al., 2008; Zhang and Li, 2017; Zou et al.) have been used to 

parcellate the thalamus and assess thalamocortical connectivity patterns. Of the various 

thalamic nuclei, the anterior thalamus has been implicated by postmortem neuropathological 

studies as preferentially compromised in AUD (Belzunegui et al., 1995; Harding et al., 

2000). Based on the extant literature in AUD including DTI reports (e.g., Harris et al., 2008; 

Pfefferbaum et al., 2009; Schulte et al., 2012; Trivedi et al., 2013), we expected altered 

connectivity between the anterior thalamus and Papez-related regions such as the 

hippocampus. Alternatively, because the MD is strongly and reliably connected with the 

prefrontal cortex (He et al., 2014; Metzger et al., 2010; Pergola et al., 2013; Walter et al., 

2008), which is particularly vulnerable to alcoholism (Jung et al., 2012; Pfefferbaum et al., 

2001; Pfefferbaum et al., 1998), we might also have expected that MD to prefrontal cortex 

connectivity strength would be altered in individuals with AUD relative to controls. 

However, our previous in vivo work comprising a larger sample (49 healthy controls; 41 

individuals with AUD) and using a high resolution structural MRI based parcellation 

technique (Thomas et al., 2017) identified only the ventral lateral posterior (VLP) nucleus as 

showing volume deficits in AUD relative to healthy controls (Zahr et al., 2020) – a finding 

that was replicated in this smaller sample. Our findings that AUD is associated with volume 

deficits (VLP) and altered connectivity (VPL) in ventral thalamus are consistent with recent 

claims that alcoholics demonstrate cognitive and motor deficits related to corticocerebellar 

circuit dysfunction that involves the ventral thalamus (Ide and Li, 2011; Ide et al., 2018; 

Pitel et al., 2015). Thalamic nuclei AV and MD may have been preserved (both structurally 

and functionally) in this sample of alcoholics because they are thiamine replete; AV and MD 

pathology may be related to thiamine depletion (cf., Harding et al., 2000).

The current results demonstrate that an AUD diagnosis disrupts an anticorrelation between 

the entire thalamus or VPL with bilateral middle temporal lobe regions (changed to a 

positive correlation) and strengthened an anticorrelation between the VPL and the 

cerebellum. Statistics demonstrated that these relationships were modulated by SES. 

However, comparisons between models with and without SES indicated that diagnosis better 

explains functional connectivity variability than SES, and that most of the variability 

explained by SES overlaps with the variability explained by diagnosis. This comports with 

epidemiological data demonstrating a strong correlation between alcohol abuse and low SES 

(World Health Organization, 2018); conversely, high SES is protective against AUD (Calling 

et al., 2019).

AUD-altered connectivity between the entire thalamus and bilateral middle temporal regions 

was associated with worse performance on the working memory composite score. Worse 
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connectivity between the VPL and cerebellar regions was related to worse performance on 

ataxia with eyes closed. The ventral posterior (VP) thalamus processes sensory information 

and supports alertness and arousal (Diamond et al., 1992; Krause et al., 2012; Nicolelis and 

Chapin, 1994). The VPL – part of the somatosensory thalamus – receives neuronal input 

from the medial lemniscus and spinothalamic tracts and projects to the somatosensory cortex 

(Behrens et al., 2003; Johansen-Berg et al., 2005; Mai and Forutan, 2012; Schmidt and 

Willis, 2007); functions include perception of touch, pain, temperature, itch, body position, 

taste, and arousal.

Previous functional connectivity studies often report correlations between VPL and 

somatosensory cortices (Fan et al., 2015; Hale et al., 2015; Ji et al., 2016; Kumar et al., 

2017; Zhang et al., 2008; Zhang and Li, 2017) confirming rodent histology tracing studies 

(e.g., Kumar et al., 2017; but see Lenglet et al., 2012); a few studies also report VPL to 

motor cortex connections (e.g., Hale et al., 2015; Zhornitsky et al., 2018). In vivo results, 

however, can depend on the analysis methods used (e.g., Hale et al., 2015). Indeed, the 

current results instead comport with a rs-fMRI study using independent component analysis 

that reported for VPL positive correlations with temporal lobe regions including the 

hippocampus and negative connections to regions such as the cerebellum (Zhang and Li, 

2017). Connectivity between the entire thalamus and temporal lobe region subserving 

working memory has a relatively strong basis in the literature including results from fMRI 

studies in temporal lobe epilepsy (Chen et al., 2015; Englot et al., 2017; González et al., 

2019). There is only indirect support for a multisensory connection between VPL and 

temporal lobes (Campi et al., 2010; Hackett et al., 2007). With respect to the cerebellum, a 

task-based, finger tapping fMRI study showed activity in cerebellum, ventrolateral thalamus, 

and sensorimotor cortex (Lutz et al., 2000). Connections between the ventral thalamus and 

the cerebellum have also been reported in histology studies conducted in rats (Aumann et al., 

1994) and macaques (Darian-Smith et al., 1990; Sakai et al., 1999, 2002), though questions 

remain with respect to the precise destination of cerebellar afferents to the thalamus (i.e., 

motor or sensory thalamus Aumann et al., 1996; Mackel and Miyashita, 1992).

Limitations of this study include a small sample size, which may have precluded identifying 

alterations to circuitry involving anterior thalamus. Another limitation is that our previous 

thalamic subregion study identified the VLP as sensitive to volume deficits in AUD (cf., 

Zahr et al., 2020), while the current functional study found altered connectivity in AUD 

unique to VPL. One possible explanation for these differences is that the previous study 

included a larger sample (n=49 healthy controls and n=41 individuals with AUD) because 

both 8-channel and 32-channel structural images were adequate for thalamic substructural 

volume determination (Zahr et al., 2020). Further, the previous structural study used 1mm 

isotropic resolution while the current work on functional images required 2.5mm smoothing, 

effectively reducing contrast and resolution (cf., Caparelli et al., 2019) which may have 

blurred the boundaries between ventral nuclei. This interpretation is supported by the fact 

that although these 2 datasets (i.e., structural and functional) were analyzed independently, 

they both revealed vulnerability of the ventral thalamus to AUD. Another explanation is that 

structural atrophy and connectivity changes do not necessarily manifest simultaneously (cf., 

Hafkemeijer et al., 2013; He et al., 2012; Li et al., 2017). Alternatively, motor structures 

such as the VLP may have more compensation to maintain connectivity than somatosensory 
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structures such as the VPL. Another potential limitation is that the Louvain method is a 

greedy algorithm attempting to solve a NP-hard optimization program: as a result, the 

method can sometimes produce suboptimal communities (cf., Traag et al., 2019). The great 

inter-hemispheric symmetry displayed by the parcellations generated in this work suggests, 

however, that they were at least plausible and meaningful, if not mathematically optimal. In 

conclusion, the present results demonstrated that AUD is associated with altered 

connectivity between the entire thalamus and middle temporal regions that was predictive of 

working memory performance and between VPL and the cerebellum that was predictive of 

postural instability.
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Highlights

• High-resolution functional connectivity achieved using a 32-channel coil.

• Thalamic nuclei connectivity evaluated in alcoholics relative to controls.

• Altered connectivity in AUD unique to ventral posterior lateral thalamus.

• Compromised connectivity with cerebellum associated with worse ataxia 

performance.
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Figure 1. 
Thalamus atlas registered to SRI24 atlas at 1.5mm isotropic resolution showing 5 thalamic 

nuclei: anteroventral (AV, total volume: 525 mm3), mediodorsal (MD, total volume: 1933 

mm3), pulvinar (Pul, total volume: 3826 mm3), ventral lateral posterior (VLP, total volume: 

2519 mm3), ventral posterior lateral (VPL, total volume: 857 mm3).
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Figure 2. 
A) Population average (AUD + control participants) connectivity between thalamic 

structures and 14 functional regions; red=correlated, blue=anticorrelated. B) Coefficients of 

linear regression accounting for AUD effects on connectivity between thalamic structures 

and 14 functional regions; significant AUD effects surviving FDR correction requiring 
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p=.00357 (p=.05/14 regions) are highlighted in C) presenting only AUD effects passing 

FDR correction for 14 regions. Population average (AUD + control participants) 

connectivity between thalamic structures and 14 functional regions as a function of D) age 

and E) sex. Neither age nor sex significantly affected connectivity.
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Figure 3. 
Altered connectivity between control and AUD groups demonstrating a disrupted 

anticorrelation between entire thalamus (A) and VPL thalamus (B) to area 13 (middle 

temporal lobes); and (C) a strengthened anticorrelation between VPL and area 14 

(cerebellum).
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Figure 4. 
Regions affected: A) entire thalamus (dark green) and middle temporal regions (orange, area 

13); B) VPL thalamus (green) and middle temporal regions (orange, area 13) and cerebellum 

(yellow, area 14).
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Figure 5. 
Among the AUD group only, relations between connectivity (i.e., residuals after removing 

age and sex) A) for the entire thalamus and middle temporal regions and the working 

memory composite score; B) the VPL and the cerebellum and ataxia with eyes closed 

scores.
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Table 1.

Characteristics of the study groups: mean±SD / frequency count

Control (n=27) AUD (n=23) p-value*

N (men/women) 15/12 17/6 n.s.

Age (years) 50.6±10.1 52.8±7.9 n.s.

Handedness (Right/Left) 26/1 18/5 n.s.

Ethnicity
1 15/5/7 13/7/3 n.s.

Body Mass Index (BMI) 24.8±3.4 28.8±5.5 0.005

Education (years) 16.2±2.4 12.5±1.5 <.0001

Socioeconomic Status (SES)
2 21.9±17.7 45.5±12.6 <.0001

WTAR IQ (predicted full scale) 104.7±9.9^ 94.6±10.0
+ 0.002

Beck Depression Index (BDI) scores 3.8±4.1^ 12.9±9.6 0.0003

Smoker (never/past/current) 24 / 1 / 2 5 / 4 / 14 <.0001

Global Assessment of Functioning (GAF) 87.6±5.3^ 65.2±9.3 <.0001

Hepatitis C Virus (HCV, positive/negative) 2/25 4/19 n.s.

Lifetime alcohol consumption (kg) 54.0±80.7
# 1842.5±1662.4 <.0001

AUD onset age - 21.7±6.7 n.a.

days since last drink - 111.7±93.0 n.a.

CIWA
3
 scale - 6.2±16.7 n.a.

*
t-tests used on continuous variables (e.g., age);

χ2 used on nominal variables (e.g., handedness);

1
self-defined: Caucasian / African American / Other (Asian, Native American, Islander);

2
lower score = higher status;

3
Clinical Institute Withdrawal Assessment of Alcohol;

#
n=19,

^
n=18,

+
n=21
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