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Introduction

Since John McCarthy introduced the term ‘artificial intelligence (AI)’ in 19551, AI research 

has been growing. ‘AI’ is an umbrella term that encompasses a vast degree of computer 

technologies (e.g., expert systems, computer vision, robotics, and machine learning) (Figure 

1A) as well as a concept of a machine imitating human intelligence2,3 (Table 1). Modern AI 

is defined as a system’s ability to 1) perceive the current world, i.e., data; 2) to employ and 

compare different approaches to achieve specific goals based on given data; 3) to tune their 

performance and apply to unseen data, and; 4) to repeat the previous processes multiple 

times and update the previous learning4. When reviewing results from AI models, it is 

therefore critical to understand whether they are appropriately developed and validated 

(Figure 1B).

The Quality and Quantity of Input data

Like conventional parametric and semi-parametric diagnostic or prognostic models, the 

quality of the conclusions drawn from the AI-based algorithms relies on the characteristics 

of the dataset, which is used to train the model. If the model is trained on/based on a biased 

dataset, the model itself is likely to be biased5. AI might assume that probabilities are static 

or outcomes within the dataset are optimized, which might not be the case. Hence, similar to 

conventional methods, it is essential to look at the exclusion and inclusion criteria of the 

study. For example, a model for post-liver transplant (LT) graft survival, which focuses on 

matching LT donor and recipient pairs, might not be accurate for recipients with 

hepatocellular carcinoma (HCC) if the input dataset did not include enough HCC patients. 

Also, an imbalanced distribution of covariates (e.g., race) or outcomes (e.g., rejection) 

within a dataset, can affect the usefulness of the algorithm. If black patients are under-

represented in the dataset, the model might not accurately provide a diagnostic or prognostic 

prediction for black patients. The input dataset for a disease diagnostic model needs to have 

a representative epidemiological spectrum of disease to be predictive6. A recent report on the 

overall accuracy of diagnosing kidney allograft rejection was reported to be 92.9%7. The 

authors used a deep learning-based computer-aided diagnostic system using diffusion-

weighted magnetic resonance imaging combined with creatinine clearance and serum 

creatinine7. But the grades of rejection and how rejection was confirmed, was not reported. 

Thus, for instance, if the input dataset mainly included Banff II or III rejection, the model 

may not accurately detect Banff I rejection. Similarly, if the outcome variable is not 

balanced, it is unlikely that the model, which is trained on an imbalanced dataset, truly 

represents the performance of the outcome of interest.

Model development and validation

Appropriate reference standard and outcomes of interest

There are two broad divisions of machine learning (ML) which have different objectives: 

supervised and unsupervised learning. Supervised learning trains a model to predict a known 

status or group5. The outcomes of interest need to be very clearly defined. Many algorithms 

are readily available such as decision tree, K-nearest neighbor, and Naïve Bayes (Table 1)8. 

For example, for kidney allograft rejection, the precise definition of rejection is paramount, 
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which many papers have failed to do7,9. Reeves et al. used outcomes confirmed by three 

pathologists as the reference standard to verify the diagnosis of kidney allograft T cell-

mediated rejection and antibody-mediated rejection reliablly10. In contrast, unsupervised 

learning models do not require clearly defined outcomes5, and the computer will identify 

similar patterns within the dataset, such as the clustering of subgroups with similar 

characteristics, e.g., K-means clustering8 (see Table 1). This method can be useful for 

hypothesis generation and to identify clusters of patients (phenotyping) or events that are 

more similar to each other.

Model development

We will focus mainly on supervised learning from this point on since most literature in 

transplantation is based on supervised learning. Many ML models divide data into a training 

set and a test set during the model development5. After the initial training of the model, the 

model undergoes internal validation to assess its performance. Sensitivity and regularization 

parameters can be fine-tuned at this stage to help optimize prediction without overfitting the 

data. For internal validation, K-fold cross-validation and bootstrapping are commonly used 

methods5,6. For example, in 10-fold cross-validation, the dataset is split into 10 sets, and 

then one set is used for validation, and 9 sets are used for training. This provides an average 

performance of 10 sets to reduce selection bias and to obtain more stable error estimates11. 

Bootstrapping is a method of random sampling, and it is commonly used for very small 

datasets to get inferences about the dataset, such as standard error, confidence interval11. If 

manuscripts about AI or ML models do not describe the internal validation or cross-

validation process, the readers should view the results with caution5. Overfitting refers to a 

condition where the model fits too well to the training set, but then the results likely do not 

apply/fit well to an external validation set6. For example, a model could simply ‘memorize’ 

the labels of the input dataset, which would cause the accuracy to be 100%. However, this 

model would have very poor generalizability when predicting new data5. This can be 

mitigated partially by regularization or reducing the ‘flexibility’ of the algorithm11, 

paradoxically reducing the ‘learning’ ability but increasing the potential generalizability to 

unseen data. Given that the chief benefit of AI is flexibility above traditional models, 

comparing the final model to traditional methods with an appropriate statistical test is very 

important.

Discrimination and Calibration—Discrimination is defined as a model’s ability to 

distinguish different conditions12, such as rejection or not. The C-statistic or the area under 

the receiver operating characteristic (AUROC) is the most commonly reported model 

performance metrics for classification problems. The AUROC curve indicates the 

relationship between false-positive rate (1-specificity) and true positive rate 

(sensitivity)6(Figure 1–C). A greater AUROC indicates that the model has higher sensitivity 

with the same false-positive rate and therefore possesses better discriminatory power. In 

general, an AUROC <0.60 discriminates poorly, an AUROC 0.60 – 0.75 is regarded as 

possibly helpful discrimination, and an AUROC >0.75 is considered useful12. The AUROC 

can also assist in choosing optimal cut-off values depending on the desire to optimize 

sensitivity, specificity, disease prevalence, clinical setting, and cost of misclassification6. 

However, the use of AUROC does not reflect a model’s performance well when the 
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proportion of negative outcomes is very high13. For example, data in which 95% have no 

rejection will give the same AUROC as with a balanced data set even though the false 

positive rate using the unbalance data will be high.

Calibration or goodness of fit refers to how accurately a model can predict the absolute risk 

estimates12. Hence, to adequately interpret the results, discrimination and calibration need to 

be assessed at the same time12. For example, if a model predicts the risk of dying much 

lower or higher than the actual risk of dying, then the calibration of that model is poor. The 

calibration curve and the Hosmer-Lemeshow test are commonly used to assess the degree 

calibration6.

Other measures—Accuracy, precision (or positive predictive value), recall (or 

sensitivity), specificity, negative predictive value, and F1 scores are also commonly used to 

report on model performance. These measures can be easily obtained from a confusion 

matrix and should all be evaluated (Table 2). The confusion matrix, or error matrix, is a table 

summarizing the model performance14.

Accuracy refers to the total fraction of correct predictions14. Model A correctly predicted 

170 true rejections and 50 true non-rejections in a cohort of 300, leading to an accuracy of 

0.73 (Table 2). While Model A and Model B have similar accuracy (0.73, 0.77), their 

abilities to detect rejection vary. For example, Model A can predict 170 cases as rejection 

out of 180 total rejection, while Model B predicted only 120 cases (sensitivity 94% vs. 

67%). Hence, accuracy alone can give a false impression of a model, especially if the dataset 

is imbalanced. In datasets with very high true negatives rejection (and therefore low true 

positives rejection), accuracy can be high, yet it is not useful to detect rejection.

Positive predictive value (PPV) or Precision (true positives/ [true positives + false positives]) 
refers to the ratio of correctly predicted positive cases to all predicted positive cases. It 

estimates the probability that a positive result implies the actual presence of the disease or 

outcomes15. When a model has a high PPV, the positive result indicates the patient almost 

certainly has the disease. Unlike sensitivity, PPV is affected by the prevalence of the disease 

or the outcome15. For example, the PPV in Model A and B is 0.71 and 0.92, respectively 

(Table 2). If the prevalence of rejection is very high, Model B is useful to detect a disease 

even with low sensitivity due to the high PPV15.

Negative predictive value (true negatives / [false negatives + true negatives])14 is defined as 

the correct negative predictions from the total of negative predictions (Table 2). Similar to 

PPV, a high negative predictive value (NPV) indicates that the patient with a negative 

predicted outcome is highly likely not to have a disease. Unlike specificity, NPV is 

influenced by the prevalence15.

F1 score accounts for both precision and recall (or sensitivity) but is not influence by true 

negative rates14,16.

F1 Score = 2 ⋅ PPV ⋅ TPR
PPV + TPR = 2 ⋅ TP

2 ⋅ TP + FP + FN
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Therefore the F1 score is a more suitable performance metric when the data is imbalanced 

with a large number of true negatives16. As mentioned above, high accuracy does not reflect 

the model’s performance adequately if the input dataset is imbalanced. An F1 score ranges 

from 0 to 1 and a higher value denotes better classification performance14(Table 2).

Imbalanced data should be accounted for in model development. When the positive 

(rejection) and negative (no rejection) outcomes are not properly balanced (usually less than 

10% positive outcomes) in training data, the model performance may suffer. This can be 

mitigated by synthetically balancing the data using algorithms such as Synthetic Minority 

Over-Sampling Technique, using measures such as balanced accuracy which is defined as an 

average of sensitivity and specificity17, or a Bayesian modeling approach (i.e., adding 

weight to the smaller subset to balance out the dominant subset)18. In any case, the 

algorithm trained and then tested on an imbalanced dataset needs to be re-trained and re-

tested after balancing.

External Validation/Generalization—Ideally, AI or ML models should be validated in a 

different patient population, at another site or in prospective cohorts, much like in traditional 

statistical models. Because the model performance could drop in a new data environment 

such as different computed tomography (CT) image resolution with different CT scanner, 

different electronic medical health records system. It is, therefore, essential to pay attention 

to whether a model is externally validated.

AI in transplantation

The impact of AI in transplantation has not been extensively studied but has gained more 

attention in recent years. We will introduce some recently published AI-related papers in 

transplantation and use the above-mentioned quality tests to describe the papers.

One-year post-heart transplant survival was investigated using the United Network of Organ 

Sharing data from 1987 to 201419. The authors tested multiple ML algorithms (e.g., neural 

network) and traditional statistical models (e.g., logistic regression)19. Overall, the study was 

well designed and followed proper methodology. For example, 80% of the data was used for 

training, and 20% was used for validation. Serial bootstrapping was performed to examine 

the stability of the C statistics. Calibration was assessed with calibration curves and the 

Hosmer - Lemeshow goodness of fit. The neural network showed similar C statistics (0.66) 

compared with logistic regression C statistics (0.65). However, the calibration of the neural 

network was lower than the traditional statistical models. The authors concluded that the ML 

algorithms trained on this dataset did not outperform traditional methods. However, they 

suggested that ML might outperform traditional statistical methods if augmented by data 

from electronic health records.

Reeve et al. reported on ensembles ML models providing automated kidney biopsy reports 

in conjunction with molecular measurement for allograft rejection10. Their random forest-

based algorithms demonstrated a similar level of balanced accuracy compared to 

pathologists (92% for T cell-mediated rejection and 94% antibody-mediated rejection). The 

study has multiple strengths: a very large dataset with a diverse population and a gold-

standard reference such as confirmed rejection by pathologists. Also, the paper reported on 
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the accuracy, sensitivity, specificity, PPV, NPV, and balanced accuracy for the readers to 

understand the model’s performance. This study would be strengthened by external 

validation.

Bertsimas et al. developed an optimized prediction of mortality model (OPOM) to predict 

LT candidate’s 3-month waitlist mortality or removal from the waitlist20. During the model 

development, the authors used a very large dataset (1,618,966 observations) from the 

Standard Transplant Analysis dataset in patients 12 years or older. The impact of OPOM was 

assessed with the Liver Simulated Allocation Model and compared with the Model for End-

Stage Liver Disease (MELD). Allocation based on the OPOM model showed 417.96 fewer 

deaths per year compared to MELD, and more LT in female patients. The AUROC of 

OPOM was highest at 0.859 (0.841 MELD-Na). Overall, the study was well designed and 

improved on the current system, such as MELD. Interestingly, the authors included the 

pediatric population, which might impact the prediction results for adults. The authors 

carefully designed the study to be useful for HCC and non-HCC patients. The OPOM should 

be tested in a new patient group for external validation.

Conclusion

The use of AI in transplantation to answer pertinent questions is increasing and undoubtedly 

will continue to provide valuable information. As with any method or tool, it is essential to 

understand its limits and to be able to evaluate its application critically. Is the input dataset 

appropriate to answer the question? Is the internal and external validation of the model 

appropriate? How well did the algorithm perform discrimination, accuracy, calibration, F1 

score, NPV, precision? Users should know the strength and limitations of the AI to avoid 

overreliance, which can lead to spurious conclusions or neglect clinical warning signs. Since 

AI algorithms may struggle to detect very rare diseases or unusual cases, clinicians’ 

discretion is important for those cases. Therefore, having a basic understanding of how to 

evaluate AI/ML papers will ensure that this promising methodology is appropriately applied.
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AI artificial intelligence
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AUROC the area under the receiver operating characteristic

CT computed tomography

FN false negative

FP false positive

HCC hepatocellular carcinoma

LT liver transplant

MELD the Model for End-Stage Liver Disease

ML machine learning

NLP natural language processing

NPV negative predictive value

OPOM an optimized prediction of mortality model

PPV positive predictive value

TN true negative

TP true positive

TPR true positive rate
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Figure 1A. 
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Figure 1B. 
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Figure 1C. 
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Table 1.

Definition of Artificial Intelligence and Its Subfields

Artificial 
intelligence (AI)

 • An umbrella term that encompasses a vast degree of computer technologies (e.g., expert systems, computer vision, 
robotics, and machine learning) as well as the concept of a machine imitating human intelligence
• A system with the ability to perceive data, to employ and compare different algorithms to achieve specific goals, to 
analyze their performance and tune them, and then apply to unseen data, and repeat the previous process and update the 
previous learning

Expert system  • Subset of AI
• Rule-based systems built with explicit coding of decision rules

Machine learning  • Subset of AI
• Training a computer model to solve problems (e.g., prediction) by using statistical theories or identifying specific 
patterns in the data (e.g., phenotyping)

Deep learning  • Subset of machine learning
• Algorithms to process multiple layers of information to model intricate relationships among data

Decision tree  • Supervised machine learning algorithm
• Flowchart structure like a tree that has internal nodes, branches, and leaves
 ○ Internal nodes contain questions such as whether a patient has a fever >100.4F
 ○ Branches represent the answer (i.e., yes or no)
 ○ Leaves represent final class labels
• Random forest is an ensemble of decision trees

K-nearest 
neighbor

 • Supervised machine learning algorithm
• Is used for classification and regression tasks based on similarities (i.e., proximity or distance) between available data 
and new data

Naïve Bayes  • Supervised machine learning algorithm
• Probabilistic classifiers based on Bayes’ theorem with an assumption of independence among predictor variables

K-means 
clustering

 • Unsupervised machine learning algorithm
• Identify similar characteristics in the dataset and partition into subgroups

AI; artificial intelligence

Transplantation. Author manuscript; available in PMC 2022 April 01.
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Table 2)
Examples of a Confusion Matrix

In a set of 300 biopsy results there are 180 cases of “rejection” and 120 cases of “no rejection”. Two machine 

learning models were trained and produced these predictions.

Actual “rejection” Actual “no rejection”

Model A
Predicted “rejection” 170 (TP) 70 (FP)

Predicted “no rejection” 10 (FN) 50 (TN)

Model B
Predicted “rejection” 120 (TP) 10 (FP)

Predicted “no rejection” 60 (FN) 110 (TN)

Results for Models A and B

Model A Model B

Sensitivity 0.94 0.67

Specificity 0.42 0.92

Accuracy 0.73 0.77

PPV 0.71 0.92

NPV 0.83 0.65

F1 Score 0.81 0.77

False negative ~ FN, False positive ~ FP, Negative predictive value ~ NPV, Positive predictive value ~ PPV, True positive ~ TR, True positive rate ~ 
TPR, True negative ~ TN

Equations and calculations for Model A:

Sensitivity (or recall) = 
TP

TP + FN = 170
170 + 10 = 0.94  Specificity = 

TN
FP + TN = 50

70 + 50 = 0.42

Accuracy = 
TP + TN

TP + FP + FN + TN = 170 + 50
170 + 70 + 10 + 50 = 0.73

Precision (or positive predictive value) = 
TP

TP + FP = 170
170 + 70 = 0.71

Negative predictive value = 
TN

FN + TN = 50
10 + 50 = 0.83

F1 Score = 
2 ⋅ PPV ⋅ TPR
PPV + TPR = 2 ⋅ TP

2 ⋅ TP + FP + FN = 2 ⋅ 170
2 ⋅ 170 + 70 + 10 = 0.81
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