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Determinants of genome-wide distribution and
evolution of uORFs in eukaryotes
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Upstream open reading frames (uORFs) play widespread regulatory functions in modulating

mRNA translation in eukaryotes, but the principles underlying the genomic distribution and

evolution of uORFs remain poorly understood. Here, we analyze ~17 million putative canonical

uORFs in 478 eukaryotic species that span most of the extant taxa of eukaryotes. We

demonstrate how positive and purifying selection, coupled with differences in effective

population size (Ne), has shaped the contents of uORFs in eukaryotes. Besides, gene

expression level is important in influencing uORF occurrences across genes in a species. Our

analyses suggest that most uORFs might play regulatory roles rather than encode functional

peptides. We also show that the Kozak sequence context of uORFs has evolved across

eukaryotic clades, and that noncanonical uORFs tend to have weaker suppressive effects than

canonical uORFs in translation regulation. This study provides insights into the driving forces

underlying uORF evolution in eukaryotes.
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Upstream open reading frames (uORFs) are short open
reading frames (ORFs) that have start codons located in
the 5′ untranslated regions (UTRs) of eukaryotic mRNAs.

uORFs can attenuate the translational initiation of downstream
coding sequences (CDSs) by sequestering or competing for
ribosomes1–10. For an AUG triplet in the 5′ UTR (defined as
“uAUG” hereafter), it can function as the start codon of a uORF
that has a stop codon either preceding the start codon of the
downstream CDS (nonoverlapping uORF, nORF) or residing in
the body of the downstream CDS (out-of-frame overlapping
uORF, oORF)4,11–18. Less frequently, an uAUG can function as the
start codon of an ORF whose stop codon overlaps with the stop
codon of the downstream CDS (N-terminal extension, NTE)4,19–21.
The advent of ribosome profiling22–26, a method that determines the
ribosome occupancy on mRNAs at the codon level, has enabled the
genome-wide characterization of uORFs and NTEs that showed
evidence of translation in various species with high sensitivity and
accuracy12,16,17,27–36. Besides the canonical uORFs (beginning with
an AUG start codon and ending with a UAA/UAG/UGA stop
codon), the modified ribosome profiling methods4,37, which detect
initiating ribosomes in cells treated with harringtonine32,34 or lac-
timidomycin38–40, have provided further evidence showing that
many noncanonical uORFs (beginning with a non-AUG codon and
ending with a UAA/UAG/UGA stop codon) might be prevalent and
functionally important. Collectively, recent studies have demon-
strated that uORFs are prevalently translated in eukaryotic cells and
that uORF-mediated regulation plays important roles in tuning the
translational program during development32,41–45 or stress
responses10,27,46–55.

It is well accepted that canonical uORFs are generally
deleterious and are depleted in the 5′ UTRs of eukaryotic gen-
omes56–60, and mutations that generate polymorphic uORFs are
also usually deleterious and selected against in humans19,61–66

and flies32. Nevertheless, our recent study indicated that many
uAUGs recently fixed in Drosophila melanogaster were driven by
positive Darwinian selection32, which suggests that some uORFs
and NTEs might be adaptive. Despite these exciting progress, the
principles underlying the genomic distribution and evolution of
uORFs and NTEs are poorly understood. For example, the fol-
lowing questions remained unanswered: (1) What is the role of
natural selection in shaping the genome-wide contents of uORFs
and NTEs in eukaryotes at the micro- and macroevolutionary
scales? (2) Can we detect signatures of positive selection on
uORFs and NTEs in clades other than Drosophila? (3) Are the
sequence characteristics that influence the efficacy of uORF-
mediated translational repression conserved between different
eukaryotic species? Answers to these questions will not only help
elucidate the role of translational regulation in adaptation, but
also advance our understanding of the mechanisms underlying
protein homeostasis in health and disease.

Here, we systematically characterize 16,907,129 uAUGs in 478
eukaryotic species and explore various factors and forces that
determine the genome-wide distributions of uORFs and NTEs
across genes and species. Our results suggest that differences in
uORF occurrences across genes are mainly influenced by gene
expression levels, while the interspecific variability of uORFs is
shaped by the effective population size (Ne). We also compare the
conservation patterns of start codons versus coding regions of the
canonical uORFs in different clades, disentangled the relationship
between the Kozak sequence context and the translational effi-
ciency of uORFs, and explore the evolution of Kozak contextual
characteristics across eukaryotes. Our analyses present a broad
overview of the interspecies variability of uAUGs in eukaryotes
and provide insights into the general principles underlying the
distribution and sequence evolution of uORFs and NTEs in
eukaryotes.

Results
Characterization of putative canonical uORFs and NTEs in 478
eukaryotes. We developed a bioinformatic pipeline and char-
acterized uAUGs in the genomes of 478 eukaryotic species,
including 242 fungi, 20 protists, and 216 multicellular eukaryotes
that comprise plants and animals. As most species surveyed in
this study currently have no ribosome profiling data, and it is very
challenging to predict the noncanonical uORFs in silico reliably,
we only focused on the putative canonical uORFs that start with
the AUG start codon. In what follows, the uORFs analyzed in this
study are restricted to the putative canonical uORFs unless
explicitly stated otherwise (all the annotated uORFs and NTEs are
presented in figshare67).

The number of annotated protein-coding genes in the 242 fungi
ranged from 3623 (Pneumocystis murina) to 32,847 (Fibularhizoc-
tonia sp.). A total of 3,469,095 uAUGs were identified in these fungal
genomes, with the number ranging from 1233 (Malassezia
sympodialis) to 94,695 (Verticillium longisporum) (Supplementary
Data 1). Since many protists use alternative nuclear genetic codes
involving stop-codon reassignments68–73 or obligatory frameshifting
at internal stop codons74, here we only focused on 20 protists that
use the standard genetic code (Supplementary Data 1). Among the
20 protists, the number of annotated protein-coding genes ranged
from 5389 (Plasmodium vivax) to 38,544 (Emiliania huxleyi), and
the number of uAUGs ranging from 1903 (Plasmodium falciparum)
to 99,859 (Cystoisospora suis), which resulted in a total of 391,565
uAUGs in these protist genomes (Supplementary Data 1).

The 216 multicellular plants and animals, whose last common
ancestor was dated to 1.5 billion years ago75, span the following
taxa: (1) 41 plants, including mosses, eudicotyledons, and
monocotyledons; (2) 38 invertebrates, including sponges, cteno-
phores, flatworms, cephalopods, mites, centipedes, crustaceans,
springtails, insects, and tunicates; and (3) 137 vertebrates,
including hagfishes, fishes, coelacanths, toads, lizards, turtles,
crocodiles, birds, and mammals (Fig. 1). Among these species,
mammals, including monotremes (n= 1), marsupials (n= 3), an
armadillo (n= 1), laurasiatherians (n= 17), a rabbit (n= 1),
rodents (n= 21), and primates (n= 24), constituted the largest
clade (n= 68 species). Nematodes were excluded from the
analyses because trans-splicing alters the 5′ UTR sequences of
many mRNAs in their transcriptomes45,76.

The number of annotated protein-coding genes in the 216
multicellular plants and animals ranged from 10,581 (Bombus
terrestris) to 107,545 (Triticum aestivum), and 3388 (Schistosoma
mansoni) to 68,741 (T. aestivum) of these genes exhibited
annotated 5′ UTRs for at least one transcript (Fig. 1a and
Supplementary Data 1). In these species, the annotated 5′ UTRs
were usually shorter than 500 nt (the median length of the
annotated 5′ UTRs ranged from 22 nt in Arabidopsis lyrata to 477
nt in Physcomitrella patens; Supplementary Fig. S1 and
Supplementary Data 1). The number of uAUGs ranged from
3249 (Drosophila willistoni) to 798,433 (Theobroma cacao).
Altogether, we identified a total of 13,046,469 uAUGs in the
216 multicellular plants and animals, although the number varied
greatly across species.

The vast majority (>97%) of the uAUGs identified in the 478
eukaryotic species were start codons of putative canonical uORFs.
Specifically, in a species, the percentage (mean ± s.e.) of nORFs,
oORFs, and NTEs was 83.45 ± 0.41%, 14.24 ± 0.34%, and 2.31 ±
0.15%, respectively. The detailed information for the uORFs
(nORFs and oORFs) and NTEs is presented in Supplementary
Data 1.

Purifying selection is the major force shaping the prevalence of
uAUGs in eukaryotic genomes. The number of uAUGs varied
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Fig. 1 Variability of upstream AUG (uAUG) prevalence among eukaryotes and evolutionary driving forces. a Overview of the 216 eukaryotes analyzed in
this study. The left panel is the cladogram of the 216 eukaryotes. The number of species in each clade is shown in brackets. The middle panel shows the
total number of protein-coding genes in 35 representative species. Genes with an annotated 5′ untranslated regions (5′ UTR+) are colored by clade, and
those without 5′ UTR annotation (5′ UTR-) are shown in gray. The unavailability of annotated 5′ UTRs for many genes in less-studied organisms is
presumably caused by the lack of accurate annotations. The right panel shows the ratio of the observed number of uAUGs to the expected number of
uAUGs (O/E ratio) in the 35 species. The error bars indicate the 95% confidence interval of the O/E ratio. b O/E ratios of uAUGs in sex chromosome (X or
Z) genes (Sex, blue) and autosomal genes (Auto, red) in humans, mice, opossum, flies, and chickens. n= 1000 permutation replicates for each category of
genes in each species. Center point, median; error bars, 95% confidence intervals. P values were obtained by two-sided Wilcoxon signed-rank tests, and no
correction for multiple testing was made. c Relationship between the effective population size (Ne) and the O/E ratio of uORFs among 14 animals. The blue
line indicates the local polynomial regression fit of the O/E ratio against Ne, and the gray band indicates the standard error of the fit. Spearman’s correlation
(ρ) between Ne and the O/E ratio and the two-sided P value are shown in the plot. d Relationship between the genome-wide median number of
nonsynonymous changes per nonsynonymous site over the number of synonymous changes per synonymous site (ω) of coding sequences (CDSs) and the
O/E ratio of uORFs among 56 animals. The blue line indicates the local polynomial regression fit and the gray band indicates the standard error of the fit.
Both Spearman’s correlation and the significance of the two-sided phylogenetic independent contrast (PIC) between ω and the O/E ratio (PPIC) are shown.
Source data are provided as a Source Data file.
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wildly across species, either due to the differences in the
sequencing coverage of genomes, the accuracy and completeness
of 5′ UTR annotation, the number of protein-coding genes, the
length of 5′ UTRs, or mutational bias in 5′ UTRs77. To control for
the compounding factors, in each species, we compared the
observed number of uAUGs (O) versus the expected number (E)
that was obtained with the assumption of randomness by ran-
domly shuffling the 5′ UTR sequences. We maintained the same
dinucleotide frequencies in each sequence during shuffling for
two reasons. First, the stacking energy of a new base pair is
influenced by the neighboring base pairs in an RNA
molecule78,79. Second, the biased mutations in certain dinucleo-
tide contexts, such as from CpG to TpG mutations in mammals,
might also affect the occurrences of uAUGs. The O/E ratio
enabled the efficient measurement of selective pressure on uAUG
depletion in a given species. As expected32,56–59, the O/E ratio of
uAUGs was significantly lower than 1 in nearly all the examined
species (473 out of 478 species, Fig. 1a and Supplementary
Data 1). As a negative control, we also calculated the O/E ratio of
all the other 63 possible triplets in 5′ UTRs and 3′ UTRs sepa-
rately in each species. Of note, AUG had the lowest relative O/E
ratio (5′ UTRs over 3′ UTRs) among all the 64 possible triplets
(Supplementary Fig. S2), supporting the notion that purifying
selection is the major force shaping the prevalence of uAUGs in
the eukaryotic genomes. Interestingly, some AUG-like triplets
(e.g., AUU, UUG, AUC, and GUG) tended to have higher O/E
ratios in 5′ UTRs than in 3′ UTRs in all the clades. Such AUG-like
triplets were either selectively maintained in 5′ UTRs as they can
be used as noncanonical start codons, or alternatively, were the
consequence of the depletion of uAUGs because point mutations
can easily convert AUG to AUG-like triplets (e.g., from AUG→
UUG) in the 5′ UTRs. However, further studies are required to
separate these two possibilities.

Within a species, the O/E ratio of uAUGs was significantly
lower in the 5′ UTR regions within a distance L from the start
codons of CDSs (cAUGs) than in the remaining 5′ UTR regions
(P= 3.5 × 10−37, two-sided Wilcoxon signed-rank test when L
was set to 100 nt; other values of L did not affect the conclusion,
see Supplementary Fig. S3). This pattern is consistent with
previous observations that uAUGs closer to CDSs showed a
higher tendency to be depleted from 5′ UTRs57. Notably, the O/E
ratio of oORFs was significantly lower than that of nORFs
(Supplementary Fig. S4), suggesting oORFs tend to be more
repressive and thus under stronger purifying selection than
nORFs. Interestingly, NTEs showed lower O/E ratios than both
oORFs and nORFs in 457 out of 478 species (Supplementary
Fig. S4), suggesting that novel NTEs were selected against as they
might alter protein functions21.

X-linked mutations experience stronger selection than auto-
somal mutations if the fitness effects of the mutations are
(partially) recessive80–82. If purifying selection is the dominant
force acting on the occurrences of uAUGs in a genome, we expect
to observe lower O/E ratios of uAUGs on X chromosomes than
on autosomes. Indeed, significantly lower O/E ratios of uAUGs
were found in X chromosomes than in autosomes, and this
finding was obtained with both vertebrates and insects (Fig. 1b).
In birds, which present female heterogamety (males ZZ, females
ZW), selection is more efficient on the Z chromosome than
autosomes83. Accordingly, a slightly lower O/E ratio of uAUGs
was observed on the Z chromosome than on autosomes (Fig. 1b).
Thus, the comparison between sex chromosomes and autosomes
reinforces the thesis that purifying selection is the major force
governing the prevalence of uORFs and NTEs in eukaryotes.

Overall, these results suggest that uAUGs were selected against
in 5′ UTRs, and the NTEs, which only accounted for a small
fraction (~2.31% on average) of the uAUGs, were also shaped by

strong purifying selection during evolution. Since uORFs (nORFs
and oORFs) and NTEs might have different mechanisms in
regulating gene expression and function, in what follows, we only
focused on the putative canonical uORFs.

Gene expression level as an important factor influencing the
genome-wide distributions of uORFs across genes. In humans,
genes with uORFs exhibited lower expression levels than genes
without uORFs84. Similarly, our analysis of previously published
mRNA and protein abundance data of fly, human, mouse,
mustard plant, and yeast revealed uORFs were infrequently
detected in housekeeping genes, and there were significant
anticorrelations between the gene expression level and the
number of uORFs (Supplementary Fig. S5a and Supplementary
Data 2). Meanwhile, gene ontology analysis revealed that genes
containing putative uORFs tend to be enriched in the categories
of signal transduction, transcription factors, and membrane
proteins (Supplementary Fig. S5b; Supplementary Data 3). These
patterns still held when we focused on the uORFs supported by
previously published ribosome profiling data in fly32 and other
species collected in the GWIPs-viz database85 (Supplementary
Table S1; Supplementary Fig. S5b). Noteworthy, the antic-
orrelation between uORF occurrences and gene expression level
well reconciles with the gene ontology analyses as housekeeping
genes tend to be highly (or broadly) expressed86.

Since gene expression level affects the efficacy of natural
selection87,88, we further asked whether the efficacy of purifying
selection is reduced in removing deleterious uORFs in lowly
expressed genes. We grouped genes of a species into 20 equal-
sized bins based on increasing expression levels and calculated the
O/E ratio of uORFs in each bin. In all the five species we
examined, the O/E ratio was lower than 1 in each bin
(Supplementary Fig. S5c), suggesting that purifying selection
was the dominant evolutionary force acting on the uORF
occurrence regardless of gene expression levels. Interestingly, we
observed significant anticorrelations between the gene expression
level and O/E ratio of uORFs in each species, suggesting that
purifying selection acting on uORFs is relatively weak for lowly
expressed mRNAs.

Thus, our results suggest that gene expression level is an
important factor influencing uORF distribution across genes in a
eukaryotic species. Excessive uORFs in highly expressed genes
might cause insufficient protein output, which is harmful to the
organisms. We postulate that purifying selection has removed
deleterious uORFs in the highly expressed genes more efficiently
than in the lowly expressed genes. On the other hand, genes in
specific functional categories, such as transcriptional factors,
which are likely to be lowly expressed, might be preferentially
suppressed by uORFs at the translational level for optimizing
protein production. Further studies are needed to investigate the
relative importance of the two mechanisms in shaping the
anticorrelation between gene expression level and uORF
occurrence.

Differences in Ne influence interspecies differences in uORF
occurrences. The O/E ratio of uORFs varied widely across the
eukaryotic species (Fig. 1a and Supplementary Data 1), suggesting
that the efficacy of natural selection differs across these species.
Because the efficiency of natural selection is determined by Ne

89,
we questioned whether the differences in the O/E ratios of uORFs
between different eukaryotes are due to the differences in Ne. We
reasoned that the O/E ratio should be lower in species with a
larger Ne because purifying selection is the dominant force acting
on uORFs, and deleterious uORFs will be depleted more effi-
ciently by purifying selection. Indeed, we uncovered a significant
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negative correlation between the O/E ratio and Ne (Spearman’s ⍴
=−0.67, P= 0.011) for 14 animals for which the Ne value was
estimated in previous studies (Fig. 1c and Supplementary
Table S2).

Because the Ne value was unknown for most eukaryotes
investigated in this study, we calculated the genome-wide average
dN/dS ratio (ω, number of nonsynonymous changes per
nonsynonymous site over the number of synonymous changes
per synonymous site) of CDSs between closely related species as
an indirect measure of the average Ne for a clade based on the
following rationale: if a clade includes species with a large Ne,
deleterious nonsynonymous mutations in CDSs will be more
efficiently removed by natural selection, resulting in a smaller ω
value for that clade. Therefore, if the purifying selection is the
major force acting on uORF prevalence, a positive correlation
between the O/E of uORFs and the ω of CDSs would be expected
across different species. We aligned orthologous CDS sequences
at the genomic scale for 37 pairs of closely related species, and
calculated the genome-wide ω value for each pair of species
(Supplementary Table S3). In this analysis, we assumed that two
closely related species would have the same ω values and obtained
both the O/E ratios of uORFs and the ω values of CDSs for
56 species. We uncovered a significant positive correlation
between the O/E ratio and the ω value (⍴= 0.70, P= 1.8 ×
10−9; Fig. 1d), which further confirms that the differences in Ne

determine the differences in uORF depletion among eukaryotic
genomes. Interestingly, a significant positive correlation between
the median 5′ UTR length and the ω was also observed (⍴= 0.54,
P= 1.4 × 10−5; Supplementary Fig. S6), suggesting that the 5′
UTR length is also under selective constraints. This finding is not
surprising because the number of uORFs is generally positively
correlated with the 5′ UTR length90. To exclude the possibility
that the observed positive correlations were confounded by the
phylogenetic relationships of the eukaryotic species, we also
performed phylogenetic independent contrasts91 and still
detected significant positive correlations between the O/E ratio
and the ω (P= 0.017) and between the 5′ UTR length and the ω
(P= 0.021). Together, our analyses suggest that purifying
selection is the dominant force governing the contents of uORFs
in eukaryotes and that the degree of uORF depletion in a species
is mainly determined by the Ne of that species.

Role of positive selection in influencing the prevalence of
uORFs in eukaryotes. Although uAUGs are generally depleted in
the 5′ UTRs of Drosophila, our previous results indicated that a
considerable fraction of the uORFs recently fixed in D. melano-
gaster were driven by positive Darwinian selection32. Our results
are consistent with the notion that the very large Ne of D. mel-
anogaster increases the efficacy of both positive selection and
purifying selection89. Nevertheless, whether positive selection
drives the fixation of uORFs in a eukaryote with a small Ne, such
as humans, remains unclear. To address this research gap, we
analyzed the new uORFs that were newly fixed in the lineages
leading to extant humans after divergence from Pongo abelii,
Gorilla gorilla, or Pan troglodytes using the asymptotic
McDonald-Kreitman test (asymptoticMK)92,93. We detected
weak signals of positive selection on the newly fixed uORFs in all
three branches, and the value of αasym, which represents the
fraction of newly formed uORFs driven to fixation by positive
selection, was 0.24 (95% confidence interval [CI], −0.04–0.51),
0.20 (95% CI, −0.09 to 0.49), and 0.19 (95% CI, −0.10 to 0.48) in
the three branches, respectively (Fig. 2a). Noteworthy, C>T
mutations at CpG dinucleotides are highly frequent in mam-
mals94, and new AUGs can be generated from CpG to TpG
mutations through two approaches95: (1) from ACG to ATG, and

(2) from CGTG to CATG (Fig. 2b). Thus, we further examined
new uORFs derived from the CpG contexts and the remaining
new uORFs separately. Roughly speaking, ~33% of the new
uORFs fixed in each of the three branches were generated by CpG
to TpG mutations. Interestingly, the CpG-derived uORFs were
under strong positive selection (the αasym was 0.48 (95% CI,
0.18–0.78), 0.45 (95% CI, 0.13–0.76), and 0.44 (95% CI,
0.11~0.76) in the three branches, respectively), while the αasym for
the remaining uORFs was close to 0 (Fig. 2b). Noteworthy, the
αasym values were even higher when we focused on the new
uORFs that were derived from the CpG contexts in the highly
expressed genes (Supplementary Table S4). Of note, for the new
uORFs fixed in D. melanogaster we previously analyzed32, a
higher αasym value was also observed for the highly expressed
genes (Supplementary Table S4). Therefore, although the pre-
valence of uORFs in a species was generally under purifying
selection, we still found a fraction of uORFs might be favored by
positive selection even in primates that typically have a small Ne.

To further explore how positive and purifying selection
coupled with differences in Ne shaped the repertoire of uORFs
in a given species, we mathematically modeled the O/E ratio of
uORFs by treating this ratio as the average fixation probability of
mutations with different fitness effects. Considering that uORFs
are generally deleterious, we assumed that 20%, 75%, and 5% of
newly originated uORFs are neutral, deleterious, and beneficial,
respectively. We also assumed that both beneficial and deleterious
mutations present the same absolute selection coefficient in a
diploid organism and that the fitness reduction in heterozygotes
is half of that in homozygous mutants. We then calculated the
overall fixation probability of newly originated uORFs relative to
the neutral expectation, which is, by definition, similar to the O/E
ratio. In our modeling, the relative fixation probability of newly
originated uORFs gradually decreased with increases in the Ne

(Fig. 2c), which resembled our observation that species with
larger Ne values tend to exhibit lower O/E ratios. Moreover, a
higher fraction of fixed uORFs that are driven by positive
selection was obtained with a higher Ne value (Fig. 2d). Together,
our results suggest that both purifying selection and positive
selection act on uORF occurrences during eukaryotic evolution
and that differences in Ne, which affects the efficiency of both
types of natural selection, plays a major role in shaping the
differences in uORF prevalence among eukaryotic species.

Selective constraints on start codons of uORFs in eukaryotes.
Next, we questioned how the uORFs were maintained during
eukaryotic evolution. The start codon is the most important
definitive characteristic of a uORF4, and a uORF with a more
conserved start codon tends to be more repressive toward the
translation of the downstream CDS19,32. Here, we first quanti-
tatively measured the selective pressures on the AUG start codons
of uORFs (uoAUGs) in vertebrates, insects, and yeasts. Among
the 78,003 uoAUGs identified in the human reference genome,
98.7% have conserved uoAUGs in other vertebrates (Fig. 3a).
Interestingly, 1030 (1.3%) uoAUGs were only observed in
humans and not in any other species, suggesting that these have a
recent origin. Whether the human-specific uoAUGs are asso-
ciated with unique human features remains to be investigated. For
each uoAUG identified in the human reference genome, we cal-
culated the branch length score (BLS) based on the conservation
patterns of the orthologous sites among 100 vertebrate species
using a previously described method96 (Fig. 3b). To estimate the
number of uoAUGs that are more conserved than the neutral
expectation, we also calculated the BLS for all 63 other triplets
present in 5′ UTRs based on the assumption that these triplets
evolve neutrally. The start codons of 173,290 noncanonical
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uORFs identified in humans by McGillivray et al.17 were excluded
from the neutral controls.

Compared with the other triplets, uoAUGs showed signifi-
cantly higher BLS values (P= 7.6 × 10−58, two-sided Wilcoxon
rank-sum test [WRST]; Fig. 3c), suggesting that the uoAUGs are
under selective constraints during evolution. At a BLS cutoff of
0.5, the signal-to-noise ratio (fraction of uoAUGs that meet a
minimum BLS cutoff divided by the fraction of other triplets with
the same minimum BLS) was 3.71, and this value increased with
increases in the BLS cutoff (Fig. 3d). Moreover, the BLS values of
translated uoAUGs supported by ribosome profiling data from
human samples were significantly larger than those of untrans-
lated uoAUGs (P= 8.6 × 10−262, two-sided WRST; Fig. 3c).
Accordingly, at a BLS cutoff of 0.5, a markedly higher signal-to-
noise ratio (4.40) was obtained for the translated uoAUGs
(Fig. 3d), suggesting that uoAUGs from which translation is
initiated are under even stronger functional constraints. We also
calculated the BLS values for the start codons of the 173,290
noncanonical uORFs previously identified in humans by
McGillivary et al.17. Since conservation was used as a feature to
identify the noncanonical uORFs in that study, it is not surprising
that these noncanonical start codons were slightly (~1.2 times)
more conserved than the other random triplets (P= 2.1 × 10−77,
two-sided WRST; Fig. 3d). However, they were significantly less
conserved than the canonical uoAUGs (P= 1.3 × 10−12, two-
sided WRST).

The uoAUGs identified in D. melanogaster were also more
conserved than the random triplets in 5′ UTRs across the 27
examined insect species (Fig. 3e, f and Supplementary Fig. S7),

and the uoAUGs with translational evidence from ribosome
profiling data were more conserved (Figs. 3e, f). Analogously, the
uoAUGs in S. cerevisiae were significantly more conserved than
the other triplets in the 5′ UTRs across the seven yeast species we
examined, no matter we used all the uoAUGs or the translated
ones only (P < 9.5 × 10−11, two-sided WRST; Supplementary
Fig. S8). Altogether, the start codons of the canonical uORFs,
particularly the translated ones, are more likely to be maintained
by functional constraints during eukaryotic evolution.

Coding regions of uORFs are overall under neutral evolution.
How many uORFs can encode functional peptides remains
unclear4,10,32,97. If a uORF encodes a functional peptide, one
expects that the coding region of that uORF should be under
selective constraints. In contrast, if the function of a uORF is to
tune the translation of the downstream CDS by sequestering or
competing for ribosomes, the coding regions of uORFs might be
under neutral evolution or weaker selective constraints. Thus, we
investigated the conservation patterns of the uORF peptides in
the vertebrates, insects, and yeasts. While NTEs were not inclu-
ded as uORFs in our analysis, we further excluded CDS-
overlapping portions of oORFs due to the confounding effects
of selective constraints on CDS evolution. Briefly, for each of the
48,286 human uORFs that encode peptides of at least ten amino
acids, we searched the putative homologous peptide sequences in
other vertebrate species and calculated the BLS for that peptide
(homologous sequences that have stop codons or frameshifts
within 80% of the start regions were excluded). 48.8% of these
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Fig. 2 Selection and effective population size (Ne) shape the upstream open reading frame (uORF) prevalence in eukaryotes. a Asymptotic
McDonald–Kreitman (AsymptoticMK) test of newly fixed uORFs in the lineages leading to extant humans (branches 1, 2, and 3). The left panel shows the
phylogeny of the five primates related to the analysis. Rhesus macaque (Macaca mulatta) was used as the outgroup. The fraction of newly fixed uORFs
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human uORFs putatively presented conserved peptide sequences
only in primates; 36.6% of them putatively exhibited conserved
peptide sequences in mammals other than primates, and 1.82% of
them putatively exhibited conserved peptide sequences in fishes.
Of note, the BLS values of the uORF coding sequences were
significantly lower than those of the uoAUGs (Fig. 4a; Supple-
mentary Fig. S9 for other cutoffs of the minimum number of AAs
required for uORF peptides). Analogously, for the uORFs iden-
tified in D. melanogaster, the coding regions of uORFs were also
less conserved than uoAUGs in the 27 examined insect species
(Fig. 4b and Supplementary Fig. S9). A similar pattern was also
observed in the seven-way alignments of yeasts (Supplementary
Fig. S10). Of note, a strong anticorrelation was observed between
the BLSs and the lengths of uORF peptides in both humans and
flies (see Fig. 4c and d), suggesting the peptides encoded by long
uORFs are less likely to be maintained during evolution because
they were more likely disrupted by stop codons or frameshifts.
Also, if the major function of uORFs is to regulate CDS trans-
lation, a longer uORF might be less advantageous than a shorter
one because the translation of a longer uORF consumes more
energy and metabolites, which might be harmful to the host
organisms. (The analysis was not conducted in yeasts because for
69% of the uORF peptides in S. cerevisiae we could not reliably
identify the orthologous sequences in other yeast species).

Together, these results suggest that the coding regions of uORFs
tend to be less conserved than start codons of uORFs.

To further test the selective pressure on the coding sequences
of uORFs, we calculated the ω for coding regions of uORFs
between humans and macaques. To reduce the noise in
estimating ω values, we ranked the uORFs based on the Kozak
scores of their start codons and equally grouped the uORFs into
1000 bins. For each bin, we concatenated the alignments of the
uORF coding sequences and calculated the ω value. In contrast to
CDSs, which present ω values markedly lower than 1, the ω value
of the uORF coding region was roughly equal to 1 between
humans and macaques (median ω= 1.05; Fig. 5a and Supple-
mentary Fig. S11a). Similarly, the ω of uORFs was also close to 1
between D. melanogaster and D. simulans (median ω= 0.99 for
all uORFs or 0.98 for translated uORFs only; Fig. 5b and
Supplementary Fig. S11b). Moreover, we also grouped the single
nucleotide polymorphisms (SNPs) in uORFs of humans (1000
Genomes Project98) and flies (Drosophila Genetic Reference
Panel99) based on the derived allele frequencies (DAF) and
calculated the ratio of nonsynonymous SNPs to synonymous
SNPs (pN/pS) in each bin. In parallel, we performed the same
analyses on SNPs in CDSs. In CDSs of both humans and flies, the
pN/pS ratios were substantially lower than the values expected
under randomness, and the pN/pS ratio was significantly
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negatively correlated with the DAF bins in both species (Fig. 5c,
d; Supplementary Fig. S11c, d). In contrast, in uORFs of both
humans and flies, the pN/pS ratio fluctuated around expected
values, and there was no correlation between pN/pS and DAF
bins. Thus, these contrasting patterns indicated that at the
population level, the nonsynonymous SNPs in CDSs were under
strong purifying selection, while the nonsynonymous SNPs in
uORFs were nearly neutral. Together, these analyses further
revealed that the coding regions of uORFs are overall under
neutral evolution in both primates and flies.

To estimate the proportion of uORFs that might encode
conserved peptides, for each uORF, we also calculated PhyloCSF
score, which predicts whether a genomic region potentially
represents a conserved protein-coding region or not based on
multiple sequence alignments100 (a positive PhyloCSF score
means that region is more likely to encode a peptide). As a
negative control, we also calculated the PhyloCSF scores for
20,000 randomly selected ORFs in 3′ UTRs (downstream ORFs,
dORFs), as these dORFs have little chance of translation. Among
the 36,655 uORFs that are ≥10 codons and evidenced of
translation in humans, only 361 (0.985%) had positive PhyloCSF
scores (Supplementary Fig. S12a). In contrast, the PhyloCSF score
was positive for 0.545% (109 out of 20,000) dORFs. Thus, after
controlling for the background noises, only 0.44% (161) of the
translated uORFs showed evidence of encoding conserved
peptides. In Drosophila, 1.19% (152 of 12,745) translated uORFs

and 0.39% (78 out of 20000 dORFs) had positive PhyloCSF scores
(Supplementary Fig. S12b), yielding an estimate of 0.80% (102 of
12,754) of the translated uORFs might encode conserved
peptides. Overall, these analyses suggest that <1% canonical
uORFs might encode conserved peptides.

To test whether our evolutionary analyses of uORFs were
supported by experimental evidence, we analyzed the mass
spectrometry (MS) data from 38 samples of different develop-
mental stages or tissues of D. melanogaster (Supplementary
Data 4)101–105. Among the 23,321 uORFs that met our parameter
settings (Methods), 57 (0.24%) had peptides detected in at least
one sample (Supplementary Data 5). Interestingly, the BLS
analysis revealed that the MS-supported uORFs present slightly
more conserved coding regions than the other uORFs (Fig. 5e),
suggesting these MS-supported uORF peptides might be
functionally important. Collectively, our results support the
notion that most uORFs play regulatory roles and their start
codons are maintained due to functional constraints, and only a
tiny fraction (<1%) of the uORFs might encode peptides that are
maintained by natural selection during evolution.

Evolution of Kozak sequence contextual characteristics that
influence uORF translation. The Kozak sequence context (−6 to
+4 nucleotides) around the uoAUG plays a prominent role in
influencing the translational initiation of that uORF16,32,106,107.
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As the nucleotide compositions differ between eukaryotes108–110,
the preferential Kozak sequence context around cAUGs also
differs across species111,112. Nevertheless, whether Kozak con-
textual characteristics around uoAUGs evolve remains unclear.
To address this research gap, in each of the 478 species, we
reconstructed a position weight matrix of the Kozak sequence
context (PWMK) for all the CDSs (Supplementary Data 6 and
Supplementary Fig. S13). Subsequently, in each species, we cal-
culated the Kozak score for each cAUG or uoAUG with the
PWMK of that species as previously described32.

To test the performance of the Kozak score in predicting the
translational initiation of a uORF (or CDS), we analyzed
translation initiation site (TIS) profiling data from three species
(human, mouse, and fly)32,38,40. We detected the translation of
26,344, 16,245, and 15,195 canonical uORFs that were supported
by TIS data in at least one sample for human, mouse, and fly,
respectively (Supplementary Table S1). For each uoAUG in a
sample, we calculated the normalized TIS signal by dividing its
initiating ribosome-protected fragment (RPF) count by its mean
coverage in the matched RNA-Seq data. Strong positive
correlations were found between the Kozak score and the
normalized TIS signal for both cAUGs (Supplementary Fig. S14)
and uoAUGs (Fig. 6a and Supplementary Fig. S15), suggesting
that start codons with an optimized Kozak sequence context
exhibit a higher translation initiation efficiency for both CDSs
and uORFs.

Interestingly, the number of uORFs was negatively correlated
with the Kozak score of the cAUGs in most species (Fig. 6b),
suggesting that uORFs tend to suppress genes translated at low
levels, as previously suggested59. Also, the Kozak scores of the
uORFs were significantly lower than those of the CDSs in each
species (Supplementary Fig. S16a), supporting the notion that
uORFs are generally located in less optimal contexts than
CDSs16,32,113. To test whether the sequence contexts of uoAUGs
are optimized, in each species, we also calculated the Kozak scores
of the AUG triplets in 3′ UTRs (downstream AUGs, dAUGs) as
neutral controls. The Kozak scores of uoAUGs were significantly
higher than those of dAUGs in most (82.4%, 112 out of 136)
vertebrates, (61.0%, 25 out of 41) plants, and (71.9%, 174 out of
242) fungi; however, an opposite trend was observed in
invertebrates, and no obvious trend was observed in protists
(Supplementary Fig. S16b). These results suggest that the
optimization of the Kozak sequence context of uORFs is different
across eukaryotic clades.

To examine whether the Kozak contextual characteristics of
uORFs evolved, in each of the 478 species, we calculated the
pairwise Euclidian distance of the PWMK for uORFs (or CDSs)
between two species (“Methods”). Interestingly, for both uORFs
and CDSs, the distance between two species from a clade tend to
be significantly shorter than that between one species in that clade
and another species outside of that clade (Fig. 6c). A similar
pattern was observed for the uORF PWMK as well (Fig. 6d).

Fig. 5 Selective constraints on coding regions of upstream open reading frames (uORFs). a Distribution of the number of nonsynonymous changes per
nonsynonymous site over the number of synonymous changes per synonymous site (ω) of uORFs between humans and rhesus macaques. Human uORFs
were equally divided into 1000 bins based on the start codon of uORFs with an increasing Kozak score. For each bin, the alignments of uORF sequences
between human and rhesus macaque were concatenated to calculate the ω value. b Distribution of the ω values of uORFs between D. melanogaster and D.
simulans. The procedure for ω calculation was similar to that described in a. c The ratio of the nonsynonymous to synonymous SNP numbers (pN/pS) in
coding sequences (CDSs, red) and uORFs (blue) in bins with an increasing derived allele frequency (DAF). Spearman’s correlation (ρ) between the pN/pS
ratio and the median DAF of each bin of uORFs and CDSs is displayed in the plot with two-sided P values. d Same as c but for fly uORFs. e The empirical
cumulative distribution function of (ECDF) of peptide branch length score (BLS) for mass spectrometry (MS)-supported uORFs and the remaining uORFs in
flies. uORFs with <10 amino acids were excluded. The one-sided t-test was performed to test differences in BLS. Source data are provided as a Source
Data file.
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Together, our results suggest that, although the Kozak sequence
context plays a pivotal role in regulating the translational
initiation of uORFs and CDSs in eukaryotes, its contextual
characteristics evolved during eukaryotic evolution.

Comparing the canonical versus noncanonical uORFs in
repressing CDS translation in human populations. Recent
studies have demonstrated that noncanonical uORFs are very
abundant17,34, and many of them might have diverse

functions4,20. Moreover, hundreds of noncanonical uORFs are
conserved between different yeast species, suggesting they might
be functionally important114. In the above analyses, we mainly
focused on the canonical uORFs because (1) the majority of the
species analyzed in this study had no ribosome profiling data
available, and (2) it is still challenging to identify noncanonical
uORFs without experimental data.

To test whether the noncanonical uORFs influence the
translation of CDSs, we extracted high-quality genotyping,

Fig. 6 The Kozak sequence contextual characteristics that influence upstream open reading frame (uORF) translation. a Relationship between the
Kozak scores and normalized translational initiation signals of uORF start codons (uoAUGs) in human HEK293 cells, mouse MEF cells, and fly S2 cells. In
each sample, we ranked uORFs based on increasing Kozak scores and divided them into 50 bins (100 bins for S2 cells) with equal numbers of uoAUGs. The
median Kozak score and normalized TIS signal for each bin were used to calculate Spearman’s correlations (ρ) and two-sided P values. The linear fit was
indicated with a blue line. b The distribution of Spearman’s correlation coefficients between the coding sequence (CDS) Kozak scores and the number of
uORFs for that gene in eukaryotes in different taxa. In the left panel, each dot represents one species. The right panel shows that in humans, genes that
have multiple uORFs tend to have weaker Kozak sequence context around the start codon of CDSs. Padj, two-sided P value after correction for multiple
testing; NS, not significant. Box plots showing the distribution of the Euclidian distance of the position weight matrix of Kozak sequences (PWMK) for
cAUGs (c) and uoAUGs (d) between species within the same taxa (brown) or species in different taxa (green). Differences in distances were compared
with two-sided Wilcoxon rank-sum tests. Exact P values (no correction for multiple testing were made) and the number of pairwise distances in each group
were shown in the plot. Center line, median; box limits, upper and lower quartiles; whiskers, 1.5 times the interquartile range. Source data are provided as a
Source Data file.
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mRNA-Seq, and Ribo-Seq data of 60 human lymphoblastoid cell
lines from previous studies98,115, and examined whether varia-
tions in uORF start codons influence the translation efficiency of
the main CDSs among different samples (Fig. 7a). Among the
potentially functional uORFs in humans predicted by McGillivray
et al.17, 146 canonical and 796 noncanonical uORFs had genetic

variants in their start codons among these samples (only variants
with minor allele frequency ≥5% were considered in the analysis).
We performed linear regressions to assess the regulatory impact
of uORF alteration on the translation of down-stream CDSs, with
a positive slope value in the regression meaning that the presence
of a uORF in certain individuals is associated with a decrease in
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Fig. 7 Experimental verification of canonical and noncanonical upstream open reading frames (uORFs). a The scheme showing how to determine the
effect of uORF variations in the human population on the translation efficiency (TE) of downstream coding sequences (CDSs). With the mRNA-Seq and
Ribo-Seq data of 60 human lymphoblastoid cell lines115, we calculated the translation efficiency of CDS for each gene and obtained the genotypes of each
subject from the 1000Genomes Project. For each uORF variant, we performed a linear regression between the number of non-uORF alleles and the
log2(TE) of downstream CDS across the 60 cell lines. b The distribution of slopes in the linear regression between genotypes (the number of non-uORF
alleles) and CDS translational efficiency among 60 cell lines. Center line, median; box limits, upper and lower quartiles; whiskers, 1.5 times the interquartile
range. The number of variants in each category was shown in the plot. Exact P values of two-sided Wilcoxon signed-rank tests were shown in the plot. The
ratio of relative luciferase intensity (log2) between the reporters with the uORF allele or the non-uORF allele for each variant of canonical uORFs (c) or
noncanonical uORFs (d). The bars are displayed in blue or red when the relative intensity of uORF-allele is significantly lower or higher than that of the non-
uORF allele (one-sided Wilcoxon rank-sum tests, Padj < 0.1), respectively. Measures of center, mean; error bars, standard errors. n = 4 or 5 independent
biological replicates for each variant (details are presented in source data). Source data are provided as a Source Data file.
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the translation efficiency of the downstream CDS in those
individuals, and vice versa (“Methods”). A general trend was the
slope values were overall positive for the canonical uORFs, while
the slope values for the noncanonical uORFs fluctuated around 0
(Fig. 7b). This comparison suggests that in human populations,
the noncanonical uORFs overall have relatively limited repressive
effects on CDS translation compared to the canonical uORFs,
although we cannot exclude the possibility that a small fraction of
the noncanonical uORFs might have strong repressive effects on
the translation of downstream CDSs.

To experimentally verify the influence of both types of uORFs
on CDS translation, we sampled 80 human uORFs and performed
luciferase reporter assays in HEK293FT cells (Supplementary
Fig. S17). These tested uORFs, which included 42 canonical and
38 noncanonical ones, were predicted potentially functional by
McGillivray et al.17 and had polymorphic start codons in human
populations. For each uORF, we compared the repressive effect of
the annotated uORF allele versus that of the non-uORF allele in
suppressing translation of the reporter gene. Although occasion-
ally the non-uORF allele had a stronger repressive effect than the
uORF allele, the general trend was that the uORF allele had a
stronger effect than the non-uORF allele in suppressing
translation (Fig. 7c, d). Moreover, a significantly higher propor-
tion of the canonical (55%, 23/42) than the noncanonical (26%,
10/38) uORFs exhibited the pattern that the annotated uORF
allele showed a significantly stronger repressive effect on the
CDS translation than the non-uORF allele (P= 0.013, Fisher’s
exact test, Fig. 7c, d). Also, the difference in CDS translation
suppression between the uORF and the non-uORF allele is
significantly larger for the canonical than the noncanonical
uORFs (P= 0.006, one-sided WRST). Altogether, these results
reinforced the thesis that the noncanonical uORFs overall have
weaker repressive effects on CDS translation than the
canonical uORFs.

Discussion
In this study, we analyzed ~17 million uAUGs, 97.69 ± 0.15% of
which are start codons of putative canonical uORFs in 478
eukaryotic species that span the majority of extant taxa of
eukaryotes. Although the prevalence of canonical uORFs in a
species was generally under purifying selection, we still found a
fraction of new canonical uORFs might be favored by positive
selection even in primates that typically have a small Ne. These
observations are consistent with the evolution model of uORFs
we previously proposed4,32. Under that model, the majority of
newly formed uORFs are deleterious and quickly removed from
the population, and a relatively smaller fraction of the new uORFs
are beneficial and rapidly fixed in populations under positive
selection. After fixation, the functional uORFs, particularly the
start codons, are maintained by natural selection during evolu-
tion. Hence, although in a species the occurrence of uORFs is
influenced by positive or purifying selection, the opposing effects
of positive selection and purifying selection acting on new uORFs
result in a pattern that uORFs are overall depleted in 5′ UTRs. As
shown in our population genetic modeling, the efficacies of both
positive and purifying selection on uORF fixation in a species are
influenced by the effective population size. Moreover, we also
found that the gene expression level affects the efficacy of natural
selection acting on uORF occurrences. Thus, our results have
systematically demonstrated how positive and purifying selection,
coupled with differences in gene expression level and Ne, influ-
ence the genome-wide distribution and contents of uORFs in
eukaryotes. Together, our analyses reveal the general principles
underlying the distribution and sequence evolution of uORFs in
eukaryotes. As uORFs often control posttranscriptional gene

expression in combination with other regulators such as micro-
RNAs90, further studies are required to elucidate how uORFs
coevolve with other regulatory elements.

We found that start codons of canonical uORFs, particularly
the translated ones, tend to be maintained by functional con-
straints during evolution. These results might also be pertinent to
the translational buffering mechanism, which indicates that
protein expression levels are more conserved between species
than mRNAs116–120. Nevertheless, our analyses suggest the cod-
ing regions of uORFs are overall under neutral evolution. It is not
uncommon that some uORF-encoded peptides are conserved
across species; however, the conservation of such a peptide does
not necessarily mean that peptide might be functional since the
coding region of a uORF can be constrained to optimizing
translation elongation of that uORF54,121,122. Overall, our results
suggest that the major function of uORFs is to fine-tune CDS
translation rather than to encode conserved peptides. Never-
theless, we do not deny that some uORFs can encode functional
peptides, as clearly demonstrated by the previous studies15,123,124.
Of note, both our PhyloCSF analyses and MS data analyses
suggest that a small fraction (<1%) of uORFs might produce
peptides.

We found the start codons of the noncanonical uORFs
McGillivray et al.17 identified in humans are overall slightly (~1.2
times) more conserved than the other random triplets across
vertebrates. Moreover, our re-analyses of the previously published
gene expression data revealed that the noncanonical uORFs tend
to have weaker repressive effects on CDS translation than the
canonical uORFs, and this pattern was further confirmed by our
luciferase reporter assays. Of note, these results do not necessarily
suggest that noncanonical uORFs are functionally unimportant,
as it has been well established that many noncanonical uORFs
might have diverse functions in various biological processes4,20,
such as stress responses125,126 or tumor initiation127. Overall, our
current understanding of the prevalence and function of the
noncanonical uORFs are still very limited. Further studies are
required to reliably identify the noncanonical uORFs and eluci-
date their regulatory functions and evolutionary principles.

Protists have a very high phylogenetic diversity128, and many
protists use alternative nuclear genetic codes involving stop-
codon reassignments68,69 and obligatory frameshifting at internal
stop codons74. In protists with no dedicated stop codons71, such
as Condylostoma magnum70,71, Parduczia sp.71, Blastocrithidia72,
and Amoebophrya sp. ex Karlodinium veneficum73, translation
from any possible uAUG is supposed to terminate near the end of
a transcript and overlaps with the main CDS, which results in a
different protein. Thus, the occurrence of uORFs in protists with
alternative genetic decoding schemes might differ considerably
from that of most other eukaryotes. In this study, we only focused
on 20 protists that use the standard genetic code. Although the O/
E ratio of uAUGs was significantly <1 in all the fungi, multi-
cellular plants and animals we examined, such a pattern was
observed in only 15 of the 20 protists. The O/E ratio of uAUGs
was close to or higher than 1 in the remaining five protists,
including Cystoisospora suis (1.161, 95% CI 1.154–1.169), Tox-
oplasma gondii (0.998, 95% CI 0.989–1.1.007), Nannochloropsis
gaditana (0.997, 95% CI 0.986–1.007), and two malaria vectors
Plasmodium yoelii (1.016, 95% CI 1.008–1.025), and Plasmodium
vivax (0.989, 95% CI 0.975–1.004). However, these five protists
tended to have significantly longer 5′ UTRs than the other 15
protists (Supplementary Fig. S18), suggesting this observation
might be an artifact caused by inaccurate 5′ UTR annotations in
these five species. Indeed, the O/E ratio of uAUGs in the 5′ UTR
regions that are proximal to CDS (within 100 or 150 nt) were
significantly lower than 1 in all the five protists (Supplementary
Table S5), suggesting that uAUG occurrence in 5′ UTR regions
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proximal to CDSs is still under purifying selection in these
protists.

The Kozak sequence context around the uoAUG plays a crucial
role in controlling the translation of a uORF16,32,106,107, which
subsequently regulates translation of the downstream CDS. There
has been a growing interest in engineering uORFs for precise
translation control of the main protein products129–131. Our
results revealed the Kozak sequence context evolved across
eukaryotic clades, which suggests that the species-specific Kozak
sequence contextual features should be considered in designing
uORFs for a specific desired trait.

Methods
Identification of putative canonical uORFs. We downloaded the gene models
and cDNA sequences of all eukaryotes that are annotated in the Ensembl Genome
Browser (release 96)132, Ensembl Metazoa (release 43), Ensembl Plants (release 43),
Ensembl Protists (release 46), and Ensembl Fungi (release 46). Transcript ends of
yeast mRNAs were obtained from a previous study133. Putative uORFs and NTEs
that start with AUG codons and end with stop codons (UAA/UAG/UGA) were
identified from the annotated 5′ UTRs of protein-coding genes. uORFs and NTEs
with start codons located in CDSs of other transcripts were excluded from the
analysis. Only the species for which 5′ UTR annotation information was available
for more than 25% of the protein-coding genes were considered in the analyses.
Among all the 479 species meet this criteria, Ichthyophthirius multifiliis was
excluded since UAA and UAG are reassigned to encode glutamine in this spe-
cies134, which would interfere with the uORF and NTE prediction.

Calculation of the O/E ratio. A permutation analysis was performed to determine
the ratio of the observed to the expected number of uAUGs (O/E ratio) for each
species. For genes that exhibited more than one transcript, only the longest tran-
script was used in the analysis. Unusually long 5′ UTRs in each species (longer than
the mean+ 3s.d. of the lengths of the 5′ UTRs in that species) were excluded
because these are likely annotation artifacts. We denoted the number of AUG
triplets in the 5′ UTRs of a species as nobs. We subsequently shuffled the 5′ UTRs
with 1000 replicates while maintaining the same dinucleotide frequency using
uShuffle135. We calculated the median and 2.5% and 97.5% quantiles of the
number of AUGs in the shuffled 5′ UTRs and denoted these numbers as nexp,
n0.025, and n0.975, respectively. We then calculated the O/E ratios for the species as
nobs/nexp with a 95% confidence interval of [nobs/n0.975, nobs/n0.025]. The O/E ratio
of other triplets in 5′ UTRs or 3′ UTRs was calculated using the same procedure.

Estimation of the genome-wide ω of protein-coding genes. To estimate the
genome-wide average ω of protein-coding genes between two closely-related spe-
cies in a clade, we performed a reciprocal best BLAST136 of protein sequences
between the two species (E < 10−10). We identified orthologs of protein-coding
genes at the genomic scale for 37 pairs of closely related species, which spanned
56 species. For each pair of orthologs between two species, we aligned their protein
sequences with MUSCLE (3.8.31)137 using the default parameters and generated
codon alignments with tranalign from the EMBOSS package138. We then calcu-
lated ω using yn00 from PAML139 with the codon alignments as input. The median
ω of all pairs of orthologs between two species was used as the genome-wide ω of
protein-coding genes. For species that were compared with multiple other species,
the median ω values obtained from different comparisons were averaged.

Phylogenetic independent contrasts. For the 56 metazoan species for which ω
values were estimated, we obtained the phylogenetic tree from the Open Tree of
Life140. We used BUSCO141 to identify single-copy protein orthologs that were
conserved in all 56 species, concatenated the protein sequences of the single-copy
orthologs in each species, and performed multiple alignments using MUSCLE with
the default parameters. Poorly aligned regions in the resulting alignment were
removed using trimAl142 with the “-automated1”method. The branch length of the
tree was calculated using codeml from PAML with the JTT substitution model
(“seqtype = 2, runmode = 0, model = 2, aaRateFile = jones.dat”). Phylogenetic
independent contrasts were performed using the “pic” function in the ape pack-
age143. The O/E ratio, ω, and median 5′ UTR length of each species were log-
transformed before the contrasts.

McDonald–Kreitman test of newly fixed uORFs in humans and primates. To
identify fixed differences in AUG triplets in 5′ UTRs and introns, we downloaded
whole-genome pairwise alignments between humans (hg19 freeze) and other pri-
mates (Pan troglodytes, Gorilla gorilla, Pongo abelii, and Macaca mulatta) from the
UCSC Genome Browser144. AUG triplets that were newly fixed in the human or
hominid lineages were inferred using the parsimonious method with M. mulatta as
the outgroup. We obtained all human SNPs and their ancestral allele information
from the phase 3 data of the 1000 Genomes Project98. Both fixed and polymorphic
AUG differences located in repetitive regions were excluded from the downstream

analysis. Newly fixed or polymorphic AUGs in 5′ UTRs that form NTEs were
removed. AsymptoticMK92,93 tests were performed to detect the signal of positive
selection. The data for asymptoticMK tests in flies was obtained from our previous
study32. To determine the effect of gene expression on positive selection, fixed and
segregating mutations were divided into two halves based on the median expres-
sion level of genes with fixed new AUGs in 5′ UTR. The average protein abun-
dances across different tissues145 were used from humans, and the average Reads
per Kilobase per Million mapped reads (RPKM) values in Ribo-Seq of 12 different
developmental stages or tissues were utilized for flies32.

The fixation probability of new uORFs. For a new autosomal mutation with a
selective coefficient s in a diploid population of size Ne, the fixation probability of
the mutation relative to a neutral mutation was calculated as

f ðsÞ ¼ 2Ne
R
1

2Ne

0
G xð Þdx= R1

0
G xð Þdx, where G xð Þ ¼ exp½�4Neshx � 2Nes 1� 2hð Þx2�

and h is the dominance coefficient146. For mutations that introduce new uORFs
into the population, the fractions of neutral, deleterious, and beneficial mutations
are denoted as p1, p2, and p3, respectively. Based on the assumption that the
selective coefficients for deleterious and beneficial mutations have the same
absolute value, we can obtain the overall relative fixation probability of mutations
as p1 þ p2f �sð Þ þ p3f ðsÞ. In the simulation, we used a fixed h= 0.5, and p1, p2, and
p3 were set to 0.2, 0.75, and 0.05, respectively.

Processing of ribosome profiling data. We obtained pre-calculated ribosome
profiling coverage data from humans, mice, rats, zebrafish, and A. thaliana from
the GWIPs-viz database85. Fly ribosome profiling data generated by our group32

and other researchers147 that covered all the major developmental stages were also
used in this study. Each RPF was assigned to a P-site with plastid148. For a uORF in
a species, the number of RPFs whose P-sites were within the uORF was calculated
with BigWigAverageOverBed149. For uORFs that overlapped with CDSs, the
overlapping regions were excluded. A uORF was considered as translated if it was
covered by the P-site of at least one RPF read across different ribosome profiling
datasets in a species.

The genome-wide coverage of initiating ribosome profiling and matched
mRNA-Seq data from human and mouse cell lines were downloaded from the
GWIPs-viz database. The RNA-Seq data from S2 cells and corresponding Ribo-Seq
data after harringtonine treatment were obtained from our previous study32. As
previously conducted40, we first counted the number of initiating RPFs whose P-
sites were within the 1-nt flanking region (i.e., −1 to +4) of each uORF or CDS
start codon and then normalized the initiating RPF count with the mean coverage
of the RNA-Seq data in the same region. We only used start codons with at least 2
initiating RPFs and at least 4 mRNA reads for the downstream analysis of human
and mouse cell lines, and those with at least 5 initiating RPF reads and at least 10
mRNA reads were used for the analysis of S2 cells.

Gene ontology analysis. Gene ontology (GO) annotations for human, mouse, rat,
zebrafish, fly, A. thaliana, and yeast were downloaded from the Gene Ontology
Resource (2019-06-09 release). Because not all genes under a GO term were pro-
vided in the GO annotation files, we parsed the gene annotation files to obtain the
complete list of genes under each term using topGO150. For each species, all the
GO terms belonging to Molecular Function, Biological Process, and Cellular
Component were combined in the enrichment analysis. The GO terms enriched in
uORF-containing genes or uORF-free genes were determined using Fisher’s exact
tests. Multiple testing correction was performed with the Benjamini–Hochberg
method151, and significant terms were determined at a false discovery rate of 0.1 for
each species. Nonredundant representative terms that were significantly enriched
in at least five species were chosen for visualization.

Branch length score calculation. We downloaded the 100-way vertebrate genome
alignments based on human (hg19), 27-way insect alignments based on D. mela-
nogaster (dm6), the 7-way alignments of yeast species based on S. cerevisiae
(sacCer3), and the corresponding phylogenetic trees from UCSC Genome Browser
and used the Galaxy platform152 to parse the multiple sequence alignments of 5′
UTRs in vertebrates or insects. For the start codon of each human uORF (uoAUG),
we calculated the sum of the branch lengths of the subtree composed of the species
in which the uAUG was present in the orthologous sites (B0) and then calculated
the BLS value by dividing B0 by the total branch lengths for the phylogenetic tree of
the 100 species. Similarly, the BLS was calculated for the start codon of each uORF
in D. melanogaster across 27 insect species.

For each predicted uORF peptide in humans, we searched its peptide against the
orthologous sequences of other species in the 5′ UTR alignments using Exonerate
(V2.2)153. uoAUGs located in repeat regions (downloaded from UCSC Genome
Browser) were excluded. For oORFs, only the portion that was not overlapping
with CDSs were considered in the analysis. To avoid spurious matching, we only
considered human uORF peptides containing at least m amino acids (m was set at
10, 15, and 20 in the analysis). We identified uORFs with conserved peptides in
other species using the following criteria: (1) the first codon of the matched
sequence was AUG; (2) no stop codons or frameshifts were present in the first 80%

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21394-y ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:1076 | https://doi.org/10.1038/s41467-021-21394-y | www.nature.com/naturecommunications 13

www.nature.com/naturecommunications
www.nature.com/naturecommunications


of the matched sequence; and (3) between humans and the studied species, the
identity of the uORF peptide should be greater than the 2.5% quantile of the
genome-wide identity of the main protein sequences. For each uORF, we also
calculated the BLSs for peptide sequences based on the presence of conserved
peptides in other vertebrates as described above. A similar analysis was performed
for the fly and yeast uORFs.

Based on these alignments of uORF peptides, we generated alignments of uORF
coding regions between humans and macaques and between D. melanogaster and
D. simulans. Due to the short length of uORFs, we ranked the uORFs based on
their Kozak score and divided them into 1000 bins with equal numbers of uORFs.
For the uORFs in each bin, we concatenated their alignments and calculated ω
values using yn00 as described above.

pN/pS analysis. To study the population variation within uORFs, we merged the
genomic intervals of human uORFs and excluded the regions overlapping with
CDSs and repeats. We then extracted the SNPs overlapping with uORF regions
from the phase 3 data of the 1000 Genomes Project. SNPs in the CDS-overlapping
portion of oORFs were excluded. We annotated the effect of SNPs on human
uORFs (nonsynonymous or synonymous) using custom scripts and excluded
ambiguous SNPs that were annotated as both nonsynonymous and synonymous in
different uORFs. For comparison, we also extracted the SNPs in CDS regions and
determined their effect on CDSs using SnpEff154. The same analysis was performed
for uORFs of D. melanogaster using the freeze 2 data of the Drosophila Genetic
Reference Panel99.

PhyloCSF score calculation. The alignments of human uORFs with at least 10
codons were extracted from the 100-way vertebrate genome alignment based on
humans as described above. PhyloCSF for each uORF was calculated with Phy-
loCSF software100 using the parameter set “100vertebrates”. As a negative control,
we annotated all the possible ORFs in 3′ UTRs (dORFs) with at least ten codons
using getorf from EMBOSS suit138. dORFs overlapping with any CDS or uORF
were excluded. We randomly selected 20,000 unique dORFs from the remaining
dORFs and calculated PhyloCSF scores with the same procedure as for uORFs. The
same analysis was performed for uORFs and dORFs in flies, except that the
parameter set “23flies” was used when calculating PhyloCSF scores.

MS data analysis. MS datasets for multiple tissues, developmental stages, and cell
lines of D. melanogaster were obtained from ProteomeCentral155. Information on
these datasets is listed in Supplementary Data 4. In peptide search, we used a
custom database composed of the annotated proteome of D. melanogaster and all
the peptides encoded by regions between two consecutive in-frame stop codons in
cDNA sequences with at least 7 amino acids. To recover as many uORF-encoded
peptides as possible, each sample was searched with three different search engines
(MaxQuant v1.6.5156, OpenMS v2.3.0157, and pFind3158) at a 1% false discovery
rate. Enzyme specificity was set to trypsin, and at most two missing cleavages were
allowed. Cysteine carbamidomethylation was included as the fixed modification
and methine oxidation as the variable modification. Both the precursor and frag-
ment tolerance were set to 20 ppm for higher-energy collisional dissociation
datasets. Fragment tolerance was set to 0.5 Da for collision-induced dissociation
(CID) datasets. Peptides with <7 amino acids were excluded during searching.
Peptides that match the built-in contaminants in MaxQuant, yeast proteins and the
annotated fly proteome were removed with PeptideMatchCMD v1.0159 allowing
mismatches of leucine and isoleucine. The remaining peptides were mapped to
peptides encoded by all the putative canonical uORFs. uORFs with uniquely
mapped peptides were kept as MS-supported uORFs.

Calculation of the Kozak score. For each species, we retrieved the six nucleotides
upstream of the CDS start codons and one nucleotide downstream of these codons
and built a position probability matrix (PWM) as the Kozak sequence context. We
then determined the Kozak score for the start codon of a uORF or CDS, as well as
for each AUG in 3′ UTRs by calculating the log-odds ratio of their flanking
sequences using the above-derived PWM32. The Euclidian distance between two
PWMs of uORF or CDS Kozak sequences was calculated using TFBSTools160.

Effect of uORF variation on CDS translation in human populations. The RNA-
Seq and ribosome profiling data from lymphoblastoid cell lines (LCLs) were
obtained in a previous study115. High-quality genotyping data from 60 LCLs were
obtained from the 1000 Genomes project98. After pre-processing, the RNA-Seq
reads and RPFs were mapped to the human reference genome with STAR161. Reads
mapped to the CDS region of each protein-coding gene were tabulated with htseq-
count162. CDS read counts were normalized across different cell lines with
DESeq2163 separately for RNA-Seq and RPFs. The translation efficiency of a gene
in a sample was calculated as the ratio of the normalized RPF read count over the
normalized RNA-Seq read count. To control for false positives, only SNPs that
disrupt the canonical and noncanonical uORFs annotated by McGillivray et al.17

were analyzed. SNPs with a minor allele frequency of <5% among the 60 LCLs were
excluded. A SNP is classified as a canonical uORF variant if the wild-type start
codon or mutant start codon is AUG and is classified as noncanonical otherwise.
For each uORF variant, a linear regression was performed between the CDS

translational efficiency and the number of non-uORF alleles (0, 1, or 2) across
different LCLs.

Experimental verification of uORF variants. The effects of uORF variants were
assayed with dual-luciferase reporter assays (psiCHECK-2 vector, Promega).
HEK293FT cells were purchased from the Cell Bank of the Chinese Academy of
Sciences. RNA was extracted using the TRIzol reagent (15596018, Thermo Fisher
Scientific), and cDNAs were synthesized using the PrimeScript First-strand cDNA
Synthesis Kit (6110B, TaKaRa). For each uORF variant, the wild-type (WT) 5′ UTR
or mutated 5′ UTR were cloned from cDNAs by PCR. All the primers used for
cloning 5′ UTR fragments were listed in Supplementary Data 7. The reporter
plasmid was linearized using Nhe1 (R3131S, NEB). The product and the 5′ UTR
sequence were assembled using the NEBuilder HiFi DNA Assembly Cloning Kit
(E5520S, NEB). Plasmid libraries were extracted using a QIAGEN Miniprep kit
(27106, QIAGEN) according to the manufacturer’s instructions. The constructed
vectors were transfected into HEK293FT cells using Lipofectamine 3000 Trans-
fection Reagent (L3000015, Thermo Fisher Scientific). The cells were cultivated in
Dulbecco’s modified Eagle’s medium (DMEM) with 10% FBS for 32 h. Then the
psiCHECK-2 dual-luciferase reporter assay system (Promega) was used to detect
levels of the Renilla luciferase with WT or mutant 5′ UTR and normalized to the
firefly luciferase as an internal control. At least four biological repetitions were
performed for each WT or mutated 5′ UTR plasmid.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The putative uORFs and NTEs annotated in this study are available from figshare67

(https://doi.org/10.6084/m9.figshare.9980441.v4). The following public data were
analyzed in this study: (1) gene annotations, cDNA sequences and genome sequences
from Ensembl Genome Browser (https://www.ensembl.org and http://ensemblgenomes.
org); (2) the transcript ends of yeast mRNAs from Gene Expression Omnibus (GEO)
under the accession number GSE49026; (3) functional annotation of gene categories
from The Gene Ontology Resource (http://geneontology.org); (4) gene expression data in
model organisms from previous studies as listed in Supplementary Data 2; (5) Ribo-Seq
data from GWIPs-viz database (https://gwips.ucc.ie) and our previous study32; (6) the
effective population size reported in previous studies as listed in Supplementary Table 2;
(7) single nucleotide polymorphisms from the 1000 Genomes Project (https://www.
internationalgenome.org/data) and DGRP2 (http://dgrp2.gnets.ncsu.edu); (8) multiple
genome alignments from UCSC Genome Browser (https://genome.ucsc.edu); (9) the
annotation of potential functional uORFs in humans from McGillivray et al.17; (10) mass
spectrometry datasets from ProteomeCentral (http://proteomecentral.proteomexchange.
org) as listed in Supplementary Data 4; 11) RNA-Seq and Ribo-Seq data of human
lymphoblastoid cell lines from GEO under the accession number GSE61742 and the
Gilad/Pritchard group (http://eqtl.uchicago.edu/RNA_Seq_data). Source Data have been
deposited in figshare (https://doi.org/10.6084/m9.figshare.12612068.v2) and are provided
with this paper.

Code availability
The data investigated in this study were analyzed using R statistical software (v3.6). The
custom scripts used in this study are available from figshare (https://doi.org/10.6084/m9.
figshare.12612068.v2).
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