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Breath analysis based early gastric 
cancer classification from deep 
stacked sparse autoencoder neural 
network
Muhammad Aqeel Aslam1, Cuili Xue1, Yunsheng Chen1,2, Amin Zhang1, Manhua Liu1, 
Kan Wang1 & Daxiang Cui1,3*

Deep learning is an emerging tool, which is regularly used for disease diagnosis in the medical field. 
A new research direction has been developed for the detection of early-stage gastric cancer. The 
computer-aided diagnosis (CAD) systems reduce the mortality rate due to their effectiveness. In 
this study, we proposed a new method for feature extraction using a stacked sparse autoencoder to 
extract the discriminative features from the unlabeled data of breath samples. A Softmax classifier 
was then integrated to the proposed method of feature extraction, to classify gastric cancer from 
the breath samples. Precisely, we identified fifty peaks in each spectrum to distinguish the EGC, 
AGC, and healthy persons. This CAD system reduces the distance between the input and output by 
learning the features and preserve the structure of the input data set of breath samples. The features 
were extracted from the unlabeled data of the breath samples. After the completion of unsupervised 
training, autoencoders with Softmax classifier were cascaded to develop a deep stacked sparse 
autoencoder neural network. In last, fine-tuning of the developed neural network was carried out with 
labeled training data to make the model more reliable and repeatable. The proposed deep stacked 
sparse autoencoder neural network architecture exhibits excellent results, with an overall accuracy 
of 98.7% for advanced gastric cancer classification and 97.3% for early gastric cancer detection using 
breath analysis. Moreover, the developed model produces an excellent result for recall, precision, and 
f score value, making it suitable for clinical application.

Gastric Cancer (GC) is one of the major types of cancer, deadliest, fourth commonest, and the second leading 
cancer-associated deaths worldwide1–3. According to the World Cancer Research Fund, China is among the top 
five countries, which have the highest rate of GC in 20184. GC is associated with several factors such as lifestyle, 
genetic, and environment5. GC is classified into two stages: (1) AGC: Advanced Gastric Cancer, (2) EGC: Early 
Gastric Cancer. In clinics, endoscopy and biopsy (pathological examinations) are the most commonly used 
methods for the detection of AGC and EGC6. GC is a very aggressive type of malignancy, which is very difficult 
to detect at the early stages, due to vague symptoms of EGC7,8. Only in 2018, 1.8 million deaths were recorded 
due to poor prognosis of GC around the globe9. As the symptoms of GC at the early stages are not characteristic, 
most GC patients wasted precious time of treatment10. The mortality of gastric cancer can be reduced if it is 
diagnosed at early stages. Early prognosis is not only enough, but the mortality can be reduced by the prospec-
tive precise staging11. The mortality depends upon the early prognosis of the disease. AGC patients have 24% 
five-year survival rate, whereas EGC patients have 90% five-year survival rate12. Breathomics is an alternative 
noninvasive method, which can be used in the medical field to diagnose different diseases. Sometimes it is very 
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difficult to reach a conclusion when a patient’s symptoms are complex and contradictory. The physician evalu-
ates the observation and makes a decision depending on his understanding and analyzing the patient’s data.

In Greek, ancient physicians found odor in the breath to diagnose different diseases13. From the previous 
studies, it has been confirmed that breath gas is a complex mixture, which contains more than 3000 VOC 
biomarkers14–16. These VOCs change their properties during the metabolism, and hence can be used as cancer 
VOC biomarkers for the detection of GC17. Lung cancer and GC have been diagnosed by breath analysis18. In 
previous studies, authors have focused on the prewarning of different cancers.

Breath analysis is gaining attention in the diagnosis of the diseases, it is noninvasive in nature. Breath analysis 
can produce accurate and reproducible results without producing any harm to the patient during the diagnostic 
tests. VOCs are measured from the breath to distinguish patients from healthy populations. VOC biomarkers 
reflect cellular metabolite levels due to the disease states, which are transferred to the blood, urine, and saliva. 
These VOCs are responsible for the disease state discerned in the breath.

Computer Aided Diagnosis based techniques have been developed by computer scientists to help the physi-
cian in the course of making decision19. In general, the pathologists analyze the whole image to observe the abnor-
mality in the specific cell/tissue. Moreover, the human eye is less adept to recognize these changes. Therefore, 
it is the need of time to develop sophisticated methods, which can help the pathologists to diagnose the disease 
with some ease. In this study, the authors have proposed a computer-aided based method using deep learning 
for breath analysis in gastric cancer classification, which can overcome the above-stated problems.

Deep learning is a subset of Artificial Intelligence20. Deep learning methods have been used for medical diag-
nosis, robotics, computer vision, bioinformatics, audio and speech recognition, industrial applications21. SSAE, 
CNN, DBN, and recurrent neural networks are some basic deep learning techniques, which have been used to 
achieve the state of art results for several tasks22. The success of many deep learning applications depends upon 
the big data, which is a prerequisite and converges the fields of data analytics and deep learning23. The use of 
Deep learning based algorithms has improved the accuracy of cancer prediction outcome 15–20%24.

The deep convolutional neural network is commonly used for two-dimensional data. Most of the deep learn-
ing based systems have been developed for breast cancer, very few authors have established systems for the 
prognosis of GC. Most of the authors have worked on medical images, which include histopathological images, 
PET images, X-Ray, MRI, and CT images25. A GC multistage detection system was developed by Oikawa et al., 
by using pathological images, which achieved a 14.1% false rate26. At the first stage, they used SVM to extract 
handicraft features at low resolution. In the next stage, CNN was developed for making the final decision. Another 
CNN based GC classification system for histopathological images was developed by Xu et al27. Their system was 
based on segmentation and classification. Firstly, they created small patches, and in the next stage, they used CNN 
to classify the epithelial and stromal tissues. Wang et al28 also presented a GC classification system, their work 
is very similar to Xu’s work. They also created patches, and in last they used CNN to classify these patches. Li 
et al29 proposed a system for the classification of GC using deep learning. They developed shallow and deep layers 
for the classification of GC. They achieved 100% accuracy for sliced based classification. They did not mention 
that how many of the patients belong to the early stage, as early-stage diagnosis is very important. Daniel et al30 
proposed a GC classification system using VOC biomarker. They achieved an accuracy of 93%. They developed 
an Artificial Neural Network (ANN) using backpropagation algorithm. They also haven’t defined the EGC and 
AGC groups. Although, they achieved very good accuracy, still there is some room for better results. Few stud-
ies have already been carried out using miRNA, but their use in clinical applications is very limited, because of 
the low sensitivity31–34. Therefore, they cannot discriminate between benign and malignant samples at the early 
stages. Few authors have worked on gene expression signatures for the prognosis and detection of cancner35–37. 
These studies have potential, but at the same time, they have some limitations of microarray, due to which they 
cannot be preferred in the clinics.

Deep learning has already shown its effectiveness in several fields in recent years. The first deep autoencoder-
based neural network was presented by Hinton et al38. It has resolved many different and challenging tasks related 
to histopathological image classification. Cruz et al. have proposed an architecture for the classification of cancer 
and non-cancerous regions. However, their autoencoder contains only one layer for the feature representation39. 
Xu et al. have developed a Stacked Sparse Autoencoder for Nuclei detection of Breast Cancer Histopathological 
images40. They used two-layer autoencoder for feature learning. Softmax classifier was used to classify the images. 
Feng et al., proposed a method, they extracted the features from the histopathological images by using deep 
manifold preserving autoencoder41. These features were learned from unlabeled data. Like Xu’s work, they used 
Softmax classifier in the last layer to classify the images. Their work is also based on breast cancer classification.

In this study, we have proposed and developed a deep learning based neural network that can distinguish 
between healthy people and cancerous patients. The proposed method can also distinguish between AGC and 
EGC. The diagnosis of EGC is very difficult, so we developed a CAD system to overcome this problem. The 
proposed deep stacked sparse autoencoder neural network architecture exhibits excellent results, with an over-
all accuracy of 96.3% for gastric cancer classification and 97.4% for early gastric cancer detection using breath 
analysis. The algorithm can be trained with less amount of time. Moreover, breath analysis based developed 
neural network has outperformed all the other existing techniques up to date.

Results.  In this work, we have developed several deep neural networks based on stacked sparse autoencod-
ers. This study aims to develop a deep neural network architecture that can be used to distinguish early-stage 
gastric cancer patients from healthy persons. We developed and studied different schemes of hidden layers in 
each deep neural network to visualize and analyze the effect of it on feature extraction. Based on the investigation 
of different hidden layers schemes, we have evaluated the performance of each deep neural network.
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We developed K-NN, Support Vector Machine, Linear Discriminant, and Decision Tree based neural net-
works for classification. The comparison of these developed neural networks and deep-stacked sparse neural 
network, we developed and investigated all the networks listed in Table 1. The proposed and developed deep 
stacked sparse autoencoder has outperformed all the other developed models of neural network. All the deep 
neural networks in this study consist of two hidden layers, each hidden layer comprises of different number of 
neurons. The objective of this study is to build a neural network architecture, which can classify the early-stage 
gastric cancer at high accuracy. The train + validate data was fixed at 70% and 15% respectively. Whereas, the 
test data was fixed to 15% of the total data.

The first model was developed with [100 20] size of autoencoders, the first hidden layer has 100 neurons and 
the second hidden layer carries 20 number of neurons. This model produces an overall accuracy of 81.5%. The 
second model was developed with [100 40] size of autoencoder, 100 and 40 are the number of neurons in the 1st 
and 2nd hidden layers respectively. This model produces an overall accuracy of 96.5%, this model misclassified 
only three samples of early-stage gastric cancer. Moreover, this model produces very good accuracy for predicting 
healthy people and advanced gastric cancer as well. This model provides an excellent result. This model yields 
an accuracy of 92.2%, 97.3% and 98.7% for EGC, Healthy, and AGC patients respectively. The third model was 
developed with [100 60] size of autoencoders, this model produces an overall accuracy of 84.2%. This model was 
unable to distinguish between gastric cancer patients and healthy persons more precisely. This model produces 
a misclassification of 12.7% in the healthy person class. The error rate was high in this class due to which this 
model can’t be used in clinical applications. The fourth and fifth models were developed with [100 80], [100 100] 
size of hidden layers respectively. These models produce an overall accuracy of 88.3% and 90.2% respectively.

Area Under the Curve (AUC) have been calculated to find the measure of performance across all possible 
classification thresholds. We have found the maximum AUC value for the second developed model, and the 
minimum value for AUC was obtained for the first developed model. All the AUC values for different models 
have been shown in Table 1.

The results from the Table 1 are indicating that the best classifier accuracy was 89.5% for the deep-stacked 
sparse autoencoder neural network (DSSAENN) with [100 40] size of the autoencoder. This model produces high 
results in Recall, Precision, F Score, and Detection rate as well. This model has outperformed all the other models 
developed during this study, and this model has produced more efficient results as compared to the previous 
studies. Therefore, this model can be used in clinical applications to help out clinical doctors reduce the mortality 
rate of gastric cancer. The minimum accuracy was achieved for [100 20] size of autoencoder based DSSAENN. 
The model developed with [100 100] size of autoencoder produces accuracy less than [100 40] based DSSAENN, 
but greater than all the other deep neural networks. Whereas, the models developed with [100 60] and [100 80] 
produces result better than the model [100 20] but locating behind the [100 40] and [100 100] based DSSAENN.

Figure 1 is representing the results in the form of confusion matrices obtained from the experiments. We 
trained the breath samples to distinguish the early-stage gastric cancer patients from the healthy persons with 
different neural networks. Figure 1, is indicating the training results of the different developed neural networks. 
In Fig. 1, the confusion matrices of training data, validation data, and test data have been shown separately. 
Whereas, the last confusion matrix of each in Fig. 1 is showing the overall accuracy result of that particular 
deep neural network.

Receiver Operating Characteristics (ROC) curve is an important tool for the evaluation of the neural network. 
The ROC curve for the DSSAENN is shown in Fig. 2. The ROC curves were used to visualize the performance of 
each developed deep neural network. These curves tell us about the compatibility of each model to distinguish 
between each class. The performance of the model is high if the area under the curve is more, and if the area 
under the curve is less this indicates poor performance of the model.

Figure 2a is representing the ROC curve obtained for the first deep neural network. This figure comprises 
four different ROCs. Which are the training ROC curve, Validation ROC curve, Test ROC curve, and All ROC 
curve respectively. Similarly, Fig. 2b–e are representing ROC curves for four other deep neural networks, which 
were [100 60], [100 40], [100 80] and [100 100] respectively. From Fig. 2, it can be observed that Fig. 2b has 
more area under the curve which means that this model has high performance. Whereas, Fig. 2a has the least 
area under the curve, giving a clear indication that this model has the lowest accuracy among the entire set of 
deep neural networks.

Table 1.   Comparison and performance evaluation of the different proposed deep stacked sparse autoencoder 
neural network.

Model number Training accuracy Test accuracy Precision F Score Recall AUC​

SVM – – 67.7% 77.5% 90.8% –

Decision Tree – – 58.7% 63.8% 70% –

K-NN – – 70.9% 48.3% 36.7% –

100 20 86.0% 69.1% 84.0% 85.9% 87.9% 0.9145

100 40 98.1% 89.1% 99.4% 99.4% 99.4% 0.9910

100 60 85.7% 83.6% 92.3% 88.3% 84.7% 0.9230

100 80 92.2% 76.4% 92.9% 94.76% 96.7% 0.9764

100 100 90.3% 87.3% 98.1% 96.8% 95.6% 0.9777

Chen et al.1 – – 94.1% 89.9% 91.95^ –
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Figure 1.   Confusion matrices of proposed deep stacked sparse autoencoder neural network with different 
number of neurons.
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Figure 2.   Receiver operating characteristics curves (ROCs) of proposed deep stacked sparse autoencoder 
neural network with different number of neurons.
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Discussion.  We have presented deep-stacked sparse autoencoder neural network architecture based model 
for the classification of EGC, AGC, and healthy persons from breath analysis. This model is capable of detecting 
gastric cancer at early stages with high accuracy and repeatability. The high-level features were captured in an 
unsupervised manner with the help of deep-stacked sparse autoencoder neural network. These high-level fea-
tures make sure that the classifier can detect gastric cancer from the breath samples very effectively. The effective-
ness of the deep-stacked sparse autoencoder neural network has been shown in Table 1. These high-level features 
were then incorporated with Softmax classifier (SMC) in a supervised manner to get the higher classification 
accuracy. The developed DSSAENN model for EGC detection is non-invasive, cheap, and faster as compared 
to the traditional gastric cancer detection methods. This method has provided an entirely new diagnostic way 
of EGC. This proposed and developed model can play an important part in clinical applications. The target and 
challenge of this study were to build a classifier based CAD system that can be used to detect gastric cancer 
patients at early stages by using breath samples. The proposed model is precise and reliable. The overall perfor-
mance of the developed model is very high. From the experiments, our developed neural network architecture, 
DSSAENN outperforms the previous studies. The developed model produces an overall accuracy of 99.2% for 
training data, 89.5% for validation data, 89.5% for test data. This model produces an overall accuracy for the 
detection of EGC to 97.4%, AGC 93.3%, and healthy person 98%making an overall accuracy of the developed 
model owns clinical translation prospect.

In this study, we have used autoencoder to extract the features from breath. In near future, we will extract 
the features by using Convolutional Neural Network (CNN). Feature extraction plays an important role in the 
performance of the neural network. Subsequently, a Computer-Aided Design system based on Deep Stacked 
Sparse Autoencoder Neural Network using Field Programmable Gate Array or other embedded systems are still 
an exciting task, and the hardware application of such systems can support medical professionals in the diagnosis 
of EGC. We are also developing a communication link so that we can use the standalone application in remote 
areas as well42. In near future, we will develop a neural network on a single chip combined with breath diagnosis 
sensors to diagnose precisely the early gastric cancer in the remote areas via internet of things.

Materials and methods
Patients.  This study was carried out under the guidelines of Reporting Recommendations for Tumor Marker 
Prognostic Studies (REMARK). All the breath samples were collected from the Shanghai Tongren Hospital, 
Shanghai, China. All the individuals were already guided about the conduction of clinical research. This study 
was approved by ethics committee of Shanghai Jiao Tong university. There were 200 volunteers, which include 
55 EGC patients, 56 healthy persons, and 89 AGC patients. There were three criteria which were followed while 
collecting the breath samples, (1) individuals have already gone through the clinical diagnosis of GC using dif-
ferent techniques, either biopsy or endoscopy; (2) excluding the patients with other malignancies; (3) excluding 
the patients with metabolic diseases, mainly including diabetes. Table 2 shows the clinical characteristics of the 
volunteers.

The AJCC Cancer Staging Manual was used for the GC stages. Age and gender have no impact on the EGC 
patients, AGC patients, and healthy person, therefore, we have excluded this information to make the resulting 
bias less. All the volunteers were asked to clean the mouth and refrain from eating and drinking for about 1 h. 
We assigned 75% breath samples for the training set and 25% breath samples were used for the validation set. In 
this study, we have used spectral region from 400 to 1500 nm for modeling.

Data augmentation.  The stability of any neural network depends on how well the model has learn the 
internal characteristics of the input data. As the number of samples increases, the stability of the neural network 
also increases. A sufficient amount of data is needed to avoid the overfitting and under fitting problems. In this 
study, we used data augmentation technique to produce additional data. The input to the proposed architecture 
is one dimensional, it contains the entire spectrum. This size is very large. Therefore, we crop the spectrum and 
used 1200 different values of each spectrum, 200 spectra are in total. Dataset can be expanded by moving breath 
samples either to right or left. In this study, we have shifted the breath samples on the right by 2 cm−1. There were 
1200 spectral values for each breath sample and total number of spectral values were 240,000, after performing 
the data augmentation the number of samples were 368 and total number of spectral values for input data was 
453,600.

Data preprocessing.  The breath samples were collected from the hospital, and these samples were affected 
by some noise. The data preprocessing steps were carried out on these breath samples to make them useful. This 
noise factor may lead us to the wrong classification. We eliminate and reduce the irrelevant and random varia-
tions from the breath samples.

Table 2.   Clinical characteristics of volunteers.

Group Number Age (years) Gender (M:F) Tobacco consumption

Healthy 56 30 ± 7 35:21 25%

EGC 55 48.6 ± 12.1 40:15 36%

AGC​ 89 56.3 ± 11.7 68:21 45%
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Spikes were generated, as the breath sample hits the detector. These spikes have narrow bandwidth with 
positive peaks. These spikes are random in nature and produced due to different position on the sensors. The 
bandwidth of spike is very small as compare to the Raman spectra. We remove the spikes from the Raman sam-
ples by using the above assumption. The noise has high frequency. There are several techniques which have been 
proposed to remove noise from the data. In this study, we have used median filter to remove noise from breath 
samples. The medial filter eliminates the noise effectively.

Baseline correction is an essential part of preprocessing to avoid the left over background problem, which 
is produced due to the negative values of the spectra. The baseline correction does not cut down Raman band 
signal strength. Labspec5 software was used for the baseline correction of each spectrum, and smoothing the 
spectrum was also carried out by the Labspec5 software.

Feature extraction.  We defined a total of 1200 breath features from the breath samples of each individual. 
The Raman spectral feature includes Raman spectral pattern, band numbers, peak positions, peak width, area, 
and so on. These parameters play an important part in the interpretation of the Raman spectra. We extracted 
dominant peaks with in-house developed data analysis software incorporated in MATLAB 2017b. We identified 
fifty peaks in each sample. These fifty peaks were used as an input to the proposed Deep Stacked Sparse Autoen-
coder Neural Network (DSSAENN) to train the desired model.

Autoencoder (AE).  Autoencoder is an unsupervised machine learning tool. It develops a better feature 
representation for the high dimensional input data. It finds the correlation between the input data. It is a multi-
layer feed-forward neural network, which represents the input with backpropagation. Figure 3 shows the basic 
structure of an autoencoder. Autoencoder minimizes the differences between the input and reconstructed data 
with the help of backpropagation.

Here x is the input data, z is some latent representation, s is an activation function, f denotes the encoder 
function and g denotes the decoder function, w is the weight, h is an approximation of the identity function and 
b represents the biases values.

Basic Sparse Autoencoder (SAE).  The basic structure of Sparse Autoencoder (SAE) for high-level feature 
learning of breath analysis is shown in Fig. 4. SAE learned high dimensional structured features representation 
of cancerous or non-cancerous data by using an unsupervised feature learning algorithm. The input x was trans-
formed into h by corresponding representation, at the input layer of the encoder. The hidden layer h visualizes 
the input data with new features. The hidden representation h was reconstructed from the new input data x̂ , this 
was done by the decoder at the output layer. The minimum discrepancy was found out by training the autoen-
coder between input x and its reconstructed value x̂ , to attain the optimal parameter values. The discrepancy 
was achieved with the use of backpropagation algorithm. The cost function of SAE is shown in Eq. (4), which 
comprises of three terms42,43.

 
The discrepancy between input and its reconstructed representation is shown by the first term, which is the 

average sum of square error. In the second term of Eq. (4), n represents the number of hidden layers and index 
j is summing the network over hidden units. The parameter ɑ shows the sparsity value. In general, this value is 

(1)f (x) = s(wx + b) = z

(2)g(z) = s
(

w′z + b′
)

= x̂

(3)h(x) = g
(

f (x)
)

= x̂

(4)JT (W , b) =
1

n

n
∑

i=1

L
(
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)

++
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∑
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Figure 3.   Basic structure of autoencoder.
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approximately zero but not equal to zero. The target activation of h is represented by p and the average activation 
of j-th hidden unit over n training data is denoted by ῤ. This is calculated by the following formula.

KL (p||ῤj) is the Kullback–Leibler divergence function43, which was define as KL(p||ῤj) = plog p/ῤj + (1-p) log 
(1-p) / (1-ῤj). The difference of two different distributions is measured by KL divergence function. The third term 
helps in overfitting the model, weight decay. This term tries to decrease the weight.

Here, the number of layers and number of neurons in first layer is represent by nl and sl respectively. The 
connection between j-th neuron of l-1 layer and j-th neuron of l layer is shown by the term w(l)

i,j .
Let X = {x(1),x(2),x(3),x(4),x(5),x(6),…,x(N)}T is the entire unlabeled dataset, used for train-

ing in this study. Here x(k) ϵ Rdn , N is the total number of breath samples and dn is the total num-
ber of attributes in each breath sample. The learned high level features at 1st layer are represented as 
h(1)(k) = {h11(k), h

1
2(k), h

1
3(k), h

1
4(k), h

1
5(k), h

1
6(k), . . . . . . .., h

1
dn
(k)}T , for k-th breath sample, dk represents the hid-

den units at the 1st layer. We used superscript notation to define hidden layers and subscript notation to define 
units in the whole manuscript. From the following figure, h1j , indicates the j-th unit in the 1st layer. For simplicity, 
x and h1 denotes the input breath sample and its representation at 1st layer respectively.

Stacked Sparse Autoencoder (SSAE).  We developed a stacked sparse autoencoder by cascading mul-
tiple layers of basis sparse autoencoder. The output of each layer was fed as an input to the successive layer. In 
this study, we constructed two layers of sparse autoencoder to develop two layers stacked sparse autoencoder 
neural network. The basic structure of the stacked sparse autoencoder neural network has shown in Fig. 5. The 
first layer is the input layer, the last layer is called the output layer, the hidden layers work as a bridge between the 
input layer to the output layer. There were dx = 50 * 200 input units in the input layer. The first hidden layer has 
dh(1) = 100 units and the second layer has dh(2) = 50 units as well.

Softmax layer.  Stacked autoencoders have trained each layer of the network using unlabeled data, as SAE 
belongs to the unsupervised learning algorithm category. The reconstruction of the input has provided by a 
feature vector. This feature vector will feed into the classifier so that the classification of the stacked sparse auto-
encoder’s input data. Logistic regression is commonly used for supervised classification, where we have one or 
two classes at the output. Since we have three classes at the output, we cannot use logistic regression and we used 
Softmax classifier because of its multiclass classification property. Softmax classification is the modified form of 
the logistic regression whose function is to generalize the logistic regression.
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Figure 4.   Basic architecture of sparse autoencoder.
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here f(.) is the sigmoid function, and w is the input weights. Softmax layer is present, just before the output layer. 
This layer allows the output to be interpreted directly as probability.

Deep stacked sparse autoencoder neural network.  Figure 6 shows the complete architecture of this 
study. The complete architecture of this neural network comprises of two sparse autoencoder. The output of 
SSAE was wired into the Softmax layer.

Implementation.  The proposed deep neural network was developed and tested using MATLAB 2017b 
(Math Works, Natick, MA, United States) for the classification of gastric cancer. The network was trained on 
Core i5-2350  M CPU, 2.3  GHz. The initial learning rate was set to 0.0001 after trivial methods. The neural 
network was converged after 1000 epochs. The values of all the parameters for this study have been shown in 
Table 3.

Performance evaluation.  This study aims to develop a classifier that can distinguish between the EGC, 
AGC, and healthy person. We developed DSSAENN and compared this method against the two other methods: 
(1) Softmax classifier (2) SAE + Softmax Classifier. Softmax classifier was used to classify the raw data. Whereas, 
in SAE + SMC based neural network, the features were learned by the SAE and these features act as raw input to 
the Softmax classifier, which was used to classify the EGC, AGC, and healthy persons. In this study, GC classifi-

Figure 5.   Block diagram of stacked sparse autoencoder with SMC classifier.

Figure 6.   Proposed architecture of DSSAENN.



10

Vol:.(1234567890)

Scientific Reports |         (2021) 11:4014  | https://doi.org/10.1038/s41598-021-83184-2

www.nature.com/scientificreports/

cation is a three-class problem. Three possible results can occur at the outcome of the classifier 0,1 and 2, which 
were regarded as EGC, AGC, and healthy respectively. The classification results of each developed model were 
calculated in terms of F1 score, Recall, specificity, sensitivity, and detection rate.

Here TP, TN, FP and FN are known as true positive, true negative, false positive, and false negative respec-
tively. For a good classifier, the model should have high accuracy, but at the same time, the precision and recall 
should also be minimum44. If any of the above criteria does not fulfill, the designed model is not accurate and it 
cannot be used in clinical applications.

Informed consent.  Informed consent was obtained from all individual participants included in this study.

Data availability
Dataset used in this particular study can be obtained from the corresponding author on reasonable request.
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