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The interpretation of thoracic radiographs is a challenging and error-prone task for veterinarians.
Despite recent advancements in machine learning and computer vision, the development of
computer-aided diagnostic systems for radiographs remains a challenging and unsolved problem,
particularly in the context of veterinary medicine. In this study, a novel method, based on multi-
label deep convolutional neural network (CNN), for the classification of thoracic radiographs in
dogs was developed. All the thoracic radiographs of dogs performed between 2010 and 2020 in the
institution were retrospectively collected. Radiographs were taken with two different radiograph
acquisition systems and were divided into two data sets accordingly. One data set (Data Set 1) was
used for training and testing and another data set (Data Set 2) was used to test the generalization
ability of the CNNs. Radiographic findings used as non mutually exclusive labels to train the CNNs
were: unremarkable, cardiomegaly, alveolar pattern, bronchial pattern, interstitial pattern, mass,
pleural effusion, pneumothorax, and megaesophagus. Two different CNNs, based on ResNet-50 and
DenseNet-121 architectures respectively, were developed and tested. The CNN based on ResNet-50
had an Area Under the Receive-Operator Curve (AUC) above 0.8 for all the included radiographic
findings except for bronchial and interstitial patterns both on Data Set 1 and Data Set 2. The CNN
based on DenseNet-121 had a lower overall performance. Statistically significant differences in

the generalization ability between the two CNNs were evident, with the CNN based on ResNet-50
showing better performance for alveolar pattern, interstitial pattern, megaesophagus, and
pneumothorax.

Thoracic radiographs are part of routine clinical evaluation of patients with confirmed or suspected thoracic
pathology both in human and veterinary medicine. Nevertheless, interpreting thoracic radiographs is a chal-
lenging and error-prone task for the medical doctor!?, and for the veterinary practitioner alike®. In human
medicine, despite the efforts to improve radiology residents’ training programmes, the prevalence of interpreta-
tion errors has not significantly improved in recent decades'?. The prevalence and the impact of interpretation
errors on thoracic radiographs have only seldom been investigated in veterinary medicine?. Conversely, this
topic has been widely studied in human medicine and the most common causes of interpretation errors have
been identified®~. Different strategies to reduce interpretation errors have been proposed both in human’® and
veterinary medicine®; among these is the use of computer-aided detection (CAD) tools to support the practitioner
in everyday practice®’.

The high performances shown by deep-learning algorithms in several radiology-related tasks have driven very
active research in this field, with an increasing number of publications!’. In particular, deep learning algorithms
for the detection of specific pathologies or conditions such as pneumothorax'!, pneumonia'?, malignant nodules'?
and COVID-19'* have been proposed. In addition, broader applications of these algorithms, such as automatic
triaging!® and automatic labeling of chest radiographs!®, have been investigated. Furthermore, several artificial
intelligence-based products for the automatic detection of specific conditions, both on plain radiographs and
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Radiographic finding | DataSet1 | Data Set 2
Unremarkable 1279 365
Cardiomegaly 583 138
Bronchial pattern 123 33
Mass 94 32
Pleural effusion 76 16
Alveolar pattern 59 41
Pneumothorax 33 12
Megaoesophagus 33 21
Pneumomediastinum 5 3
Tracheal collapse 10 2
Hernia 5 2
Fracture 5 3
Excluded 632 77

Table 1. Number of LL radiographs showing the following included radiographic findings.

computed tomographic images, have been approved by the Food and Drug Administration in the last few years,
thereafter becoming commercially available.

To date, the possibilities offered by deep learning in veterinary medicine have been investigated for the clas-
sification of magnetic resonance images'”'® for the detection of liver degeneration from ultrasound images'’
and for the automatic classification of corneal lesions from photographs®. Multi-label algorithms allow for
the detection of different objects (in our case lesions) on the same image. In multi-label training each image is
annotated with multiple labels according to the lesions evident on the radiograph?.. To the best of the authors’
knowledge, both in human'»'*?? and in veterinary medicine?**, most of the studies on applying CNNs to thoracic
radiographs are focused on detecting individual pathologies or conditions, whereas studies using a multi-label
approach are relatively scarce in the human medical literature'®?*42> and the scope to use multi-label algorithms
on canine thoracic radiographs has not been explored yet. Therefore, the aims of this study are: (1) to develop a
multi-label deep learning-based network capable of detecting some of the most common lesions found on plain
radiographs of the canine thorax; (2) to test the generalization ability of the developed algorithm on an external
Data Set of radiographs.

Results

Database. The complete database was composed of 3839 latero-lateral (LL) radiographs. Data Set 1 com-
prised 3063 LL images, 632 LL images were discarded due to incorrect positioning or poor image quality. Data
Set 2 comprised 776 LL, 77 LL radiographs were excluded because of positioning error or poor image quality. In
both data sets, “unremarkable” and “cardiomegaly” were the two most represented lesions. There was an uneven
distribution of the different radiographic findings between the two data sets, with some over-represented and
some under-represented in Data Set 2 when compared to Data Set 1.

Selection of the radiographic findings. Only a limited number of radiographs showing tracheal col-
lapse, hernia, fracture and pneumomediastinum were available in Data Set 1 (Table 1) , and, therefore, these
radiographic findings were excluded from training. Thus the radiographic findings used to train the network
were: unremarkable, cardiomegaly, alveolar pattern, bronchial pattern, interstitial pattern, mass, pleural effu-
sion, pneumothorax, megaoesophagus.

Classification results. ResNet-50 had a higher classification accuracy than DenseNet-121, both on Data
Set 1 and on Data Set 2, for all the considered radiographic findings except pleural effusion. Classification accu-
racy of the two architectures on Data Set 1 and Data Set 2 is reported in Tables 2 and 3. For some radiographic
findings the classification accuracy of both ResNet-50 and DenseNet-121 was higher on Data Set 2 than on Data
Set 1. In particular, both architectures showed a higher accuracy on Data Set 2 than on Data Set 1 for alveolar
pattern. Furthermore, DenseNet-121 showed higher accuracy on Data Set 2 than on Data Set 1 also for bronchial
pattern, cardiomegaly, megaoesophagus, unremarkable and pneumothorax. For the remaining radiographic
findings, accuracy on Data Set 2 was lower than on Data Set 1. Statistically significant differences in accuracy on
Data Set 2 (generalization accuracy) between ResNet-50 and DenseNet-121 were evident for: (1) alveolar pat-
tern (Z = 3.813, P = 0.0001); (2) interstitial pattern (Z = 3.283, P = 0.0010); (3) megaeosophagus (Z = 2.257, P
= 0.0240); (4) pneumothorax (Z = 3.314, P = 0.0009). No differences were evident for: cardiomegaly (Z = 0.800,
P =0.427); mass (Z = 1.580, P = 0.1142); unremarkable (Z = 0.817, P = 0.4137); pleural effusion (Z = 0.347, P =
0.7286). A graphical representation of the classification results of the model is reported in Fig. 1.
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Test set Radiographic finding | AUC Sensitivity Specificity PLR NLR

Data Set 1 Alveolar pattern 0.87 (0.78-0.97) | 0.95 (0.64-1) 0.38 (0.31-0.45) 1.48 (1.2-1.8) | 0.2(0.01-1.4)
Data Set 2 Alveolar pattern 0.89 (0.86-0.92) | 0.95 (0.9-0.98) 0.52 (0.38-0.72) 1.99 (1.8-2.2) | 0.095 (0.04-0.2)
Data Set 1 Bronchial pattern 0.78 (0.66-0.9) 0.95 (0.66-0.99) | 0.092 (0.04-0.68) | 1.02(0.9-1.2) | 0.78(0.1-0.54)
Data Set 2 Bronchial pattern 0.69 (0.61-0.76) 0.96 (0.86-0.99) | 0.20 (0.17-0.24) 1.2 (1.1-1.3) 0.2 (0.05-0.8)
Data Set 1 Cardiomegaly 0.92 (0.88-0.97) | 0.95 (0.86-1) 0.52 (0.43-0.6) 1.98 (1.7-2.3) | 0.08 (0.02-0.3)
DataSet2 | Cardiomegaly 0.89 (0.86-0.92) | 0.95(0.91-0.98) | 0.59 (0.54-0.63) | 2.31 (2.1-2.6) | 0.076 (0.03-0.2)
Data Set 1 Interstitial pattern 0.92 (0.9-0.98) 0.95 (0.52-1) 0.77 (0.71-0.83) 3.88(2.8-5.5) | 0.14 (0.02-0.9)
Data Set 2 Interstitial pattern 0.79 (0.73-0.85) 0.95 (0.87-1) 0.44 (0.4-0.48) 1.72 (1.6-1.9) | 0.09 (0.02-0.3)
DataSet1 | Mass 0.77 (0.68-0.875) | 0.95 (0.74-1) 0.42 (0.35-0.5) 1.64 (1.4-1.9) |0.12 (0.02-0.8)
Data Set 2 Mass 0.66 (0.55-0.77) 0.95 (0.85-1) 0.11 (0.09-0.14) 1.1(1-1.2) 0.26 (0.04-1.8)
Data Set 1 Megaesophagus 0.78 (0.56-1) 0.95 (0.42-1) 0.29 (0.17-0.27) 1.10 (0.8-1.5) | 0.65(0.1-4.1)
DataSet2 | Megaesophagus 0.80 (0.71-0.90) | 0.95 (0.76-1) 0.31 (0.27-0.34) | 1.37 (1.2-1.5) | 0.16 (0.02-1.1)
DataSet1 | Pleural effusion 0.96 (0.9-1) 0.95 (0.64-1) 0.57 (0.49-0.63) | 2.11 (1.7-2.6) | 0.14 (0.02-0.9)
Data Set 2 Pleural effusion 0.96 (0.93-0.98) | 0.95(0.73-1) 0.81 (0.77-0.84) 4.87(4.0-5.9) | 0.07 (0.01-0.5)
Data Set 1 Pneumothorax 0.88 (0.72-0.96) | 0.95(0.75-0.98) | 0.40 (0.35-0.34) 1.56 (1.3-1.6) | 0.24 (0.07-1.8)
DataSet2 | Pneumothorax 0.84 (0.72-0.96) | 0.95 (0.64-0.96) | 0.30 (0.27-0.34) | 1.35(1.2-1.5) | 0.18 (0.03-1.2)
Data Set 1 Unremarkable 0.88 (0.83-0.92) | 0.95(0.89-0.98) | 0.63 (0.54-0.73) 2.62 (2-4.4) 0.08 (0.04-0.2)
Data Set 2 Unremarkable 0.83 (0.80-0.86) | 0.95(0.92-0.97) | 0.44 (0.38-0.5) 1.69 (1.5-1.9) |0.11(0.07-0.2)

Table 2. Performances of ResNet-50 in Data Set 1 and Data Set 2. Parentheses show 95% ClIs. AUC area under
the receiver operator curve, PLR positive likelihood ratio, NLR negative likelihood ratio. Most relevant results

have been bolded.
Test Set Radiographic finding | AUC Sensitivity Specificity PLR NLR
Data Set 1 Alveolar pattern 0.80 (0.66-0.94) | 0.95 (0.64-1) 0.33(0.27-0.40) | 1.38 (1.1-1.7) |0.23 (0.04-1.5)
Data Set 2 Alveolar pattern 0.83 (0.8-0.87) 0.95 (0.9-0.98) 0.41 (0.37-0.45) | 1.61(1.5-1.7) | 0.12(0.06-0.3)
Data Set 1 Bronchial pattern 0.69 (0.59-0.8) 0.95 (0.66-1) 0.44 (0.37-0.52) | 1.67 (1.4-2) 0.16(0.02-1.1)
Data Set 2 Bronchial pattern 0.70 (0.63-0.77) | 0.95 (0.83-1) 0.17 (0.14-0.20) | 1.13 (1-1.2) 0.37 (0.1-1.1)
Data Set 1 Cardiomegaly 0.87 (0.80-0.93) | 0.98 (0.89-1) 0.24 (0.17-0.31) | 1.28 (1.2-1.4) | 0.09 (0.01-0.6)
Data Set 2 Cardiomegaly 0.98 (0.85-0.91) | 0.95 (0.87-0.96) | 0.65 (0.61-0.99) | 2.67 (2.4-3) 0.11(0.06-0.2)
Data Set 1 Interstitial pattern 0.78 (0.65-0.91) | 0.95 (0.52-1) 0.55 (0.44-0.58) | 1.82 (1.4-2.4) |0.22(0.03-1.4)
Data Set 2 Interstitial pattern 0.70 (0.64-0.77) 0.95 (0.84-1) 0.25(0.22-0.23) | 1.26(1.2-1.4) 0.23(0.08-0.7)
DataSet1 | Mass 0.64 (0.5-0.78) | 0.95 (0.74-1) 0.04 (0.02-0.07) |0.98 (0.9-1.1) |1.44(0.2-11.1)
Data Set 2 Mass 0.59 (0.49-0.7) 0.95 (0.80-1) 0.05 (0.03-0.07) | 0.99(0.9-1.1) 1.27 (0.3-5.1)
Data Set 1 Megaesophagus 0.66 (0.42-0.9) 0.95 (0.36-1) 0.17 (0.1-0.22) 1(0.7-1.4) 1(0.2-6.1)
Data Set 2 Megaesophagus 0.69 (0.58-0.79) | 0.95(0.76-1) 0.28 (0.26-0.32) | 1.32(1.2-1.5) |0.17 (0.03-1.2)
Data Set 1 Pleural effusion 0.97 (0.93-1) 0.95 (0.64-1) 0.83(0.77-0.88) | 5.51(3.9-7.8) |0.09 (0.01-0.6)
Data Set 2 Pleural effusion 0.95 (0.93-0.98) | 0.95(0.73-1) 0.89 (0.82-0.88) | 6.27 (5.1-7.8) | 0.06 (0.01-0.4)
DataSet1 | Pneumothorax 0.56 (0.15-0.96) | 0.95 (0.73-1) 0.17 (0.07-0.63) | 0.8 (0.4-1.8) | 1.97 (0.4-10)
DataSet2 | Pneumothorax 0.71 (0.6-0.82) | 0.95 (0.74-1) 0.22 (0.19-0.26) | 1.22(1.1-1.4) | 0.24 (0.04-1.6)
Data Set 1 Unremarkable 0.84 (0.79-0.9) 0.95 (0.90-0.99) | 0.56 (0.46-0.66) |2.16(1.7-2.7) |0.079 (0.03-0.2)
Data Set 2 Unremarkable 0.84 (0.81-0.87) | 0.95(0.92-0.97) |0.42(0.36-0.48) |1.63(1.5-1.8) |0.12(0.08-0.2)

Table 3. Performances of DenseNet-121 in Data Set 1 and Data Set 2. Parentheses show 95% Cls. AUC area
under the receiver operator curve, PLR positive likelihood ratio, NLR negative likelihood ratio. Most relevant
results have been bolded.

Discussion

A new, deep learning-based, multi-label classification method for the automatic detection of several radiographic
findings in canine thoracic radiographs is proposed. The high classification accuracy shown by both tested
architectures on Data Set 2, for almost all the radiographic findings, suggests that multi-label CNNs can be suc-
cessfully trained also in the case of relatively small-sized and highly unbalanced databases. On the other hand,
the classification differences in several radiographic findings between the veterinary and the human medical
literature make comparison with similar studies?"** not entirely straightforward. Moreover, some of the radio-
graphic findings that are common in humans (e.g. emphysema, fibrosis) are rarely found in dogs. Nonetheless,
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Figure 1. Visual assessment of the ResNet-50 classification results of a radiograph of a dog showing an alveolar
pattern in the cranial lung lobe. The activations of the last layer are visualized superimposed on the radiographs.
Each image corresponds to the activations for a specific radiographic finding. The alveolar pattern was correctly
identified by the model (B) however the model also falsely identified the presence of a mass (E). (A) Original
image, (B) alveolar pattern, C bronchial pattern, (D) cardiomegaly, (E) mass, (F) interstitial pattern, (G) pleural
effusion, (H) pneumothorax, (I) unremarkable.

it is feasible to make this direct comparison between human and veterinary examples for some radiological
findings, such as cardiomegaly, pleural effusion, pneumothorax, consolidation (labelled “ alveolar pattern” in
this study) and unremarkable?"**. Interestingly, for all the above-mentioned radiographic findings, the AUC of
the developed CNN was similar to or higher than that reported in similar studies on humans*"** both for Data
Set 1 and for Data Set 2.

Another interesting aspect of this research is related to the large variability in body size and body shape typical
of the dog, which directly translates into a wide range of normality in the radiographic appearance of the canine
thorax. Indeed, the dog is the only known species that has a 50-fold variability in dimensions among individu-
als. Therefore, it is easily understood that the radiographic appearance of the thorax of, for example, a bulldog, a
dachshund, or a German shepherd, is very different in radiological terms. Despite such variability, the developed
CNN was able to detect most of the radiographic findings included in the CNN with an accuracy ranging from
moderate to very good. In particular, ResNet-50 displayed an AUC above 0.8 in the detection of alveolar pattern,
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cardiomegaly, megaoesophagus, pleural effusion, and pneumothorax. In addition it showed high accuracy in
identifying normal radiographs (labelled “unremarkable”). Interestingly, in similar experiments in humans the
accuracy in identifying radiologically normal images was lower?. Conversely, accuracy was lower than 0.8 for
bronchial pattern, interstitial pattern and mass. It is the authors” opinion that the limited generalization ability
shown by ResNet-50 in the detection of bronchial and interstitial patterns might be related to the difference in
image quality of the original DICOM images between Data Set 1 and Data Set 2. In fact, the radiographs acquired
using the CR system had a lower image quality than those acquired through the DR system. Another possible
explanation is that bronchial and interstitial patterns were not assessed on VD images. On the other hand, the
low accuracy in the detection of masses could be related to the inability of the network to consider orthogonal
views simultaneously. The low accuracy in detecting masses shown by ResNet-50 and DenseNet-121, both on
Data Set 1 and Data Set 2, is probably related to the fact that several mass-like structures (for example nipples,
degeneration of the costochondral joints in older animals, pleural mineralizations) are often present in normal
radiographs. Interestingly, also in the experiments by Wang et al. 2017%* and Yao et al. 2018 accuracy in detect-
ing masses and nodules in humans was low (AUC below 0.8). The developed CNN had variable performances
for the detection of the different lesions and, therefore, results obtained with the current version of the CNN
should be confirmed with other methods (e.g.: interpretation by radiologist, computed tomography, magnetic
resonance imaging) before taking clinical decisions based on those results.

ResNet-50 and DenseNet-121 are the two most commonly used pre-trained CNNs for multi-label chest
X-ray image classification*?#%, In this study, ResNet-50 showed a significantly higher generalization ability than
DenseNet-121 in the detection of alveolar pattern, interstitial pattern, megaoesophagus, and pneumothorax,
whereas no differences were evident for cardiomegaly, mass, unremarkable and pleural effusion. In previous
human studies, these two network architectures demonstrated a variable accuracy in the detection of radiographic
lesions ,with ResNet-50 performing better than DenseNet-121 for some lesions and vice versa?'. Furthermore, in
some studies, both ResNet-50 and DenseNet-121 were used as backbones for category-wise, residual operations,
and attention-based mechanisms?'. Incorporating the above modules within the network is reported to increase
the average AUC?!. The above modules were not included in the present study, mainly due to the limited data
set size and because of the high imbalance lesion distribution.

Models trained on a specific data set do not always obtain comparable performance when tested on data sets
from a different institution. Accuracy increases if the data sets acquired from multiple institutions are used for
the training®. A limitation of this study is that both data sets were acquired at the same institution and a data
set from an external veterinary clinic was not available. However, in order to keep center generalization into
account, Data Set 1 and Data Set 2 (used respectively for training and testing) were acquired using two different
radiograph acquisition systems. Further studies, possibly including radiographs acquired at multiple veterinary
clinics, could help clarify the current generalization performances of the developed CNN. Furthermore, it is
also possible that the exclusion of incorrectly positioned and exposed radiographs from both the training and
the test set might have influenced the classification accuracy towards more favorable results. The possibility to
automatically detect positioning or exposure abnormalities has not been explored yet.

Another limitation of the present study is that the radiographic findings included in the training set do not,
of course, fully represent all the lesions types that might occur in thoracic radiographs in dogs. Furthermore,
due to the limited number of available cases, radiographs showing the least represented radiographic findings
(tracheal collapse, hernia, fracture, and pneumomediastinum) were not included in the training. For the above
reasons, the real “in-field” generalization ability of the developed CNN has yet to be fully tested.

The developed CNN is prospectively aimed to assist veterinary clinicians, both general practitioners and
radiology specialists, in their daily work. It is the authors’ opinion that the scope to use deep learning-based
tools during routine clinical activity will increase productivity while decreasing the error rate. Generally speak-
ing, veterinary facilities are smaller than human hospitals and the global number of veterinary specialists in
all the disciplines is significantly lower the global number of specialist doctors. Therefore, veterinary general
practitioners are required to develop expertise in several different fields of medicine, such as radiology, surgery,
internal medicine, pathology, and so on. It is the authors’ opinion that, in such a scenario, veterinarians could
greatly benefit from the use of deep learning-based tools to assist them in their clinical routine. Indeed, several
application cases for these algorithms have been proposed and analysed in the human medical literature. For
instance, the use of deep learning-based algorithms is reported to increase accuracy in the detection of pulmonary
nodules by skilled radiologists’, or to decrease the average reporting delay in a clinical setting'®. The possible
impact CNN use in the veterinary medical field has not been evaluated yet.

Methods

Database creation. Radiographic findings. All the images were reviewed by three experienced veteri-
nary radiologists (AZ, TB and SB, with more than 20, 10 and 3, years experience respectively). Before interpreta-
tion, image quality was assessed and, in particular, radiograph exposure and patient positioning were evaluated.
Only properly exposed images with the animal positioned correctly were included in both data sets. Radio-
graphs of immature dogs and images with evident artefacts (double exposure, dirt on the cassette, etc.) were
also excluded. When available, both LL and VD radiographs of the same patient were reviewed simultaneously.
The radiographs were classified strictly based on the presence or absence of individual radiographic findings
and not on the presence or absence of pathologies (e.g.: pneumonia) or conditions (e.g.: oedema) that might be
characterized by the simultaneous presence of several radiographic findings. All the radiographs were labelled
according to the following radiographic findings: alveolar pattern, interstitial pattern, bronchial pattern, mass,
cardiomegaly, pleural effusion, pneumothorax, hernia, megaoesophagus, fracture, pneumomediastinum, tra-
cheal collapse. If no radiographic findings were evident, the image was classified as unremarkable. The distribu-
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tion (focal vs. diffused) of both alveolar and interstitial patterns was not considered. Interstitial and bronchial
patterns were graded as mild, moderate, or severe. Mild bronchial and interstitial patterns were considered
as normal variations in the radiographic appearance of the canine thorax and, therefore, not included in the
training. If only mild bronchial and interstitial patterns were evident, the radiographs were classified as unre-
markable. Cases showing both segmental and diffused megaoesophagus were classified as megaoesophagus. The
presence of cardiomegaly was assessed based on the authors’ experience. In unclear cases, the vertebral heart
score® was calculated and then compared with the breed-specific reference intervals reported in the literature.
Medjiastinal and thoracic wall masses were included in the mass tag. Both diaphragmatic and abdominal wall
hernias were classified as hernia. Likewise, both fractures to the ribs and to the vertebral column were classified
as fracture. Fractures of the long bones were not considered. No grading score was assigned to tracheal collapse.
All the images were reviewed simultaneously by the three authors and all the labels were assigned following a
consensus discussion.

Image processing and deep learning. The deep-learning analysis was performed on a dedicated work-
station (Linux operating system, Ubuntu 18.04, Canonical) equipped with four graphic processing units (Tesla
V100; NVIDIA), a 2.2 GHz processor (Intel Xeon E5-2698 v4; Intel) and 256 GB random-access memory. Before
feeding to the CNN the images were downsampled to 224x224 pixels. The images were not cropped during the
test phase, neither lossy compressed or converted to JPEG. Instead, the lossless MHA format was used. Radio-
graph classification was performed using convolutional neural networks (CNN), a special class of deep-learning
algorithms specifically designed to work with images, and this classification was performed using two different
CNN architectures: (1) DenseNet-121%, (2) ResNet-50*. The tested CNN architectures were pre-trained on a
large-scale data set of everyday images called ImageNet and then fine-tuned. Different radiographic findings
are usually evident on the same radiograph, often as a result of a single condition or pathology, and, therefore,
a multi-label approach was used. Binary cross-entropy was used as the objective function. The same training
parameters were used for all the networks. Training was performed until convergence using the Adam optimizer
and a learning-rate scheduler with exponential decay. The weights from the epoch with the lowest loss on the
validation set were chosen and further used for testing. The training set was augmented by random horizontal/
vertical flips, cropping, affine warping, and linear contrast changes. All the images were normalized to the 0-1
range, where 0 denotes the background. The split ratio for training, validation, and test set (for Data Set 1) was
8:1:1 respectively.The training scheme was not directly optimizing any of the evaluation metric, e.g. AUC, sensi-
tivity, or specificity. No information from Data Set 2 was used during the training.

Statistical analysis. We assessed individual architectures, both on Data Set 1 and Data Set 2, with the
area under the receiver operating characteristic curve (AUC) using a commercially available statistical software
(MedCalc). Sensitivity was calculated as: true positive /(true positive + false negative), specificity as: true nega-
tive/ (false positive 4 true negative), positive likelihood ratio (PLR) as: sensitivity / (1 — specificity) and negative
likelihood ratio (NLR) as: (1 — sensitivity)/specificity. The performances of the two architectures were compared,
on the Data Set 2 only, with the DeLong test. The differences in the AUCs of the considered tests, as a result of
the DeLong test, are expressed as Z score. All p-values were assessed at an alpha of 0.05.

Conclusions

A multi-label CNN-based network for the automatic classification of canine LL radiographs was developed and
tested. The developed network had a variable accuracy in the detection of radiographic findings in an external
test set. Further studies, hopefully including a larger number of radiographs acquired in several different veteri-
nary institutions, could allow the development of a network with a broader generalization ability. Furthermore,
a larger database could allow testing the network also on VD images. CNN-based tools could, prospectively,
assist the veterinarian in his everyday work allowing for a higher quality veterinary care. Nonetheless, for a suc-
cessful application of these tools in the clinical workflow, the advantages and the pitfalls of such tool must be
clearly known by the operator.

Data availibility

The data sets generated during and/or analysed during the current study are not publicly available because they
are property of the Veterinary Teaching Hospital of the University of Padua but are available from the corre-
sponding author on reasonable request.
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