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1. Introduction

Maize (Zea mays L. ssp. Mays) is widely known for its impor-
tance as a food and feed crop, but it is also a predominant feedstock
for the production of renewable chemicals and fuels, such as bio-
ethanol [1-4]. In addition, maize is of substantial scientific impor-
tance; the availability of a vast collection of mutants, the high
degree of genomic collinearity with other cereal crops and related
grasses, and the availability of the genome sequence together with
the extensive nucleotide diversity, have made maize a model sys-
tem for basic and applied research [5-8].

Current research focuses mainly on deciphering the maize gen-
ome by functionally annotating the numerous unknown genes [9-
11]. This functional genomics approach has been advanced consid-
erably by the integration of metabolomics [12]. The metabolome,
i.e., the complete set of metabolites in an organism, provides a phe-
notypic read-out, which can yield insight into how genes, tran-
scripts, proteins and metabolites drive and influence the
phenotype of a system. This property makes metabolomics an
essential player in the understanding of cellular systems and in
decoding the function of genes [13]. Nonetheless, metabolome data
and knowledge of metabolite identities remain scarce for maize,
especially concerning its specialized (secondary) metabolism. This
information gap not only prevents understanding the system-wide
biology of maize, but also the continuous development of maize as
a model system.

The lack of metabolite identities also highly contrasts with the
importance of specialized metabolites in various biological pro-
cesses; they are involved in the attraction of pollinators, in the
interaction of the plant with its environment (e.g., microorganisms
in the soil), in nutrient uptake, and in plant defense against biotic
(e.g., herbivores and pathogens) and abiotic (e.g., UV-radiation)
stresses. Furthermore, many specialized metabolites possess bio-
logical activity [14-16], which is exploited in the pharmaceutical
industry. Indeed, many drugs or precursors for drug synthesis are
derived from plant specialized metabolites [17].

The main reason for the low number of known metabolites is
the tremendous effort needed to identify the structures of new
metabolites, which is either done via purification followed by
nuclear magnetic resonance (NMR) analysis, or via authentication
based on chemically synthesized standards and subsequent analy-
sis by mass spectrometry (MS). In MS-based metabolite profiling,
structural information on an unknown metabolite is gained via
its collision-induced dissociation (CID)-spectrum, which can be
matched against spectral databases [18,19]. However, spectral
matching typically yields very few annotations, because these
databases cover only a small fraction of all metabolites in plants
[20]. This shortcoming has led to the development of various de
novo structural elucidation programs [21-28]. Spectral databases
are quickly emerging [29], but tend to focus on certain types of
CID spectra, consequently restricting spectral matching and struc-
tural prediction to those spectral databases and de novo elucidation
programs that can handle the particular CID spectral type. There
are two types of CID spectra that are primarily employed in liquid
chromatography (LC)-MS [30]: tandem-in-space MS/MS spectra,
generated in, e.g., quadrupole-time-of-flight (QTOF) MS instru-
ments, and tandem-in-time MS" spectra, generated in, e.g., ion trap
(IT) MS instruments. Both CID spectra provide complementary
information on the structure of the unknown compound, which
is advantageous for spectral database matching, spectral interpre-
tation using chemical principles, and automated, often machine-
learning-based, structural elucidation. Ideally, samples have to be
analyzed several times, on different instruments and using differ-
ent settings to collect, for each compound, an extensive set of mass
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spectral data, referred to as spectral metadata hereafter. However,
prior to the use of spectral metadata for structural characteriza-
tion, the multiple MS/MS and MS" data for each profiled compound
have to be associated. This requires the development of a spectral
database in combination with an alignment tool.

In addition to the progress made in CID spectral analysis, MS
spectral interpretation has also been improved by considering bio-
transformations. Because a limited number of organic reactions
represent most of the enzymatic reactions, mass differences corre-
sponding to those organic reactions, for example, 14.015 Da in the
case of a methylation, can be searched for between pairs of fea-
tures [peaks that are defined by a retention time and a mass-to-
charge (m/z) value]. Biotransformations were first taken into
account when interpreting direct infusion Fourier-transform (FT)
MS spectra [31,32]. This method has been further developed for
use with LC-MS data [33,34], and extended by including the elution
order between the candidate “substrate” and candidate “product”
features (Fig. 1) [35]. Concatenating these candidate “substrate-p
roduct” feature pairs into a candidate substrate-product pair
(CSPP) network with nodes and edges representing features and
biotransformations, respectively, significantly advanced structural
characterization via a propagation approach starting from known
network nodes [35,36]. Associating multiple CID spectra, e.g., MS/
MS and MS" spectra, with each CSPP network node, provides com-
plementary structural information (Fig. 1) to further boost the
CSPP-based structural elucidation pipeline. In addition, the CSPP-
based structural elucidation pipeline would benefit from including
as many pathways and their intermediates as possible. Because dif-
ferent classes of specialized metabolites often accumulate in speci-
fic plant organs [37,38], CSPP network propagation would be
improved by the analysis of different organs in order to maximize
the variety of profiled specialized metabolites.

In this research, we focused on the phenolic metabolism of maize.
Five maize organs and four genotypes were profiled using different
reversed-phase LC-MS methods. All CID spectra were archived in a
spectral database called DynLib, and are publicly available via an
online webtool (https://bioit3.irc.ugent.be/dynlib/). The CID spectra
associated with the same compound were linked using a newly
developed R package, called RDynLib. This package also allows the
visualization of spectral metadata and local CSPP networks for each
compound. Using the various tools implemented in RDynLib, 427
compounds were structurally elucidated, of which 200 were at least
partially authenticated via profiling of purchased compounds.
Remarkable in this compound set was the rich variety of auxin gly-
cosides in the tassel and corn cob, most of which had not been
described before. Using the set of characterized compounds, the
most frequently occurring mass differences within the maize
metabolite profiles were determined and characterized. Acylations
and glycosylations were among the most frequently observed bio-
transformations in the CSPP network, yielding a wide variety of gly-
cosylated molecules bearing moieties corresponding to different
metabolic classes.

The combination of the characterized compounds and mass dif-
ferences are an important step forward in metabolic pathway dis-
covery in maize, and the study of the specialized metabolism in
general.

2. Methods
2.1. Growth, harvest and metabolite extraction conditions

From a maize field plot planted in May 2017 at the ILVO fields
in Wetteren (Belgium), ears of the genotype CML91, H99, W153R,
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Fig. 1. Combined Candidate Substrate-Product Pair (CSPP) / Spectral Meta Data Analysis. A CSPP is defined whenever two features have a mass difference corresponding to a
biotransformation (e.g., a difference of 15.995 Da is expected in the case of an oxygenation) and an elution order that agrees with the expected change in molecular structure
(e.g., the compound representing the “product” feature is expected to elute earlier than that representing the “substrate” feature on a reverse-phase column in the case of an
oxygenation). In Morreel et al. (2014) [35], further support that the CSPP reflects a biochemical conversion had been obtained by considering the similarity between the
negative ion MS? spectra (black) of the CSPP “substrate” and “product” features. In this study, both positive and negative ionization MS™ and MS/MS spectra (gray), were

associated with the CSPP.

and OH43 were harvested at the end of June. Late cobs, leaves,
stems (internodium that bears the maize cob), and tassels from
these four genotypes were harvested at the end of August. The
20 samples (four genotypes and five organ types, no biological
replicates were included) were separately homogenized using a
GRINDOMIX GM 200 (Retch GmbH, Germany). Approximately
200 mg fresh weight was extracted with 1 mL methanol. Follow-
ing evaporation of the methanol supernatant, an extraction with
0.8 mL of Milli-Q water/cyclohexane (1/1, v/v) was performed
as previously described [39]. Finally, 0.2 mL of the aqueous phase
was stored at —80 °C.

2.2. LC-MS profiling

Each metabolic extract originating from the maize field plot
(10 pL injected) was profiled in negative and positive ionization
mode using two mass spectrometers, a UHPLC-ESI-QTOF-MS
(Acquity UPLC system coupled to a Synapt High Definition MS,
Waters Corporation, Manchester, UK) and a UHPLC-IT-FT-ICR-MS
(Accela UHPLC system coupled to an LTQ FT Ultra, Thermo Scien-
tific, Bremen, Germany). On both instrument platforms, a
reversed-phase separation was performed using an Acquity UPLC
BEH C18 (2.1 x 150 mm, 1.7 pum; Waters Corporation) column
heated to 40 °C. The mobile phase was gradually changed from
99% solvent A (99/1/0.1 Milli-Q water/acetonitrile/formic acid, v/
v/v) to 50% solvent B (99/1/0.1 acetonitrile/Milli-Q water/formic
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acid, v/v/v) in 30 min using a flow of 350 puL/min. On the FT plat-
form, full FT-ICR-MS scans between m/z 100 and m/z 1000 were
recorded in parallel with data-dependent IT-MS" scans (35% colli-
sion energy) consisting of one MS? scan and three MS> scans. For
each ionization mode and each sample, two runs were performed,
recording MS> spectra of the 1st, 2nd and 3rd and of the 3rd, 4th
and 5th most abundant MS? product ions, respectively. The ESI
source voltage, capillary voltage, tube lens, capillary temperature,
sheath gas, and aux gas were set at —4.5 kV, —18 V, —150 V,
275 °C, 20 (arb) and 5 (arb) and 4 kV, 1V, 40V, 275 °C, 8 (arb)
and O (arb) in negative and positive ionization mode. On the QTOF
platform, two runs per ionization mode and per sample were per-
formed, recording full MS data between m/z 100 and m/z 1000 in
the first run, and recording data-dependent analysis-based MS/
MS spectra for a maximum of three ions for prominent masses
selected from a single MS survey scan in the second run. The cap-
illary voltage, sampling cone and extraction cone were set at
—2.5kV, -37 V and —3.5 V and 2.5 kV, 40 V and 3.5 V in negative
and positive ionization mode. In both ionization modes, the source
and desolvation temperatures were 120 and 400 °C. The cone and
desolvation gas flows were set at 50 and 550 L/h and 50 and 500 L/
h in the case of negative and positive ionization mode. The trap and
transfer collision energies were 4 and 3 V, and 6 and 4 V for nega-
tive and positive ionization. For data-dependent analysis, a ramp-
ing between 10 and 20 eV and between 20 and 45 eV was
applied for the low and high mass ions.
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2.3. Data processing, database and RDynLib construction, and
structural elucidation

The processing of the LC-MS data is described in the Supple-
mental Text (LC-MS data processing). Also the construction of the
DynLib database (DynLib database construction), the development
and application of the RDynLib package (RDynLib construction and
application), and the structural elucidation of the CID spectra are
described in the Supplemental Text (Structural elucidation of CID
spectra; Supplemental Fig. 10 and 14-23). The maize DynLib data-
base csv files, the perl scripts to upload CID spectra into the DynLib
database, the RDynLib package, a file explaining the different func-
tions in RDynLib (‘RDynLib tools’), and two pptx files explaining
how to upload data into the DynLib database via RDynLib and
how to elucidate CID spectra via RDynLib, are available at
https://floppy.psb.ugent.be/index.php/s/09z6mUBIIAIWGbT. The
DynLib database webtool can be consulted at https://bioit3.irc.
ugent.be/dynlib/.

2.4. CSPP network construction and data analyses

The construction of Manhattan plots displaying the number of
feature pairs versus the mass difference, selection of the prevailing
mass differences, and construction of CSPP networks, were per-
formed as described previously [35]. All multivariate data analyses
occurred in R version 3.4.2 [40]. PCA analysis [PCA(data, graph = F)
function, FactoMineR package [41]] was performed using either
feature abundances or mass difference frequencies. In the case of
mass differences, proportional data were obtained by dividing each
mass difference by its frequency threshold computed following the
approach described in Morreel (2014) [35]. Both feature abun-
dances and mass difference frequencies were centered and unit
variance-scaled. PCA results were visualized using the fviz_p-
ca_ind(PCA, col.ind=*“cos2”) and fviz_pca_biplot(PCA, repel = TRUE,
select.var = list(contrib = 10)) functions of the FactoExtra package
(https://CRAN.R-project.org/package = factoextra). The Venn dia-
grams were generated using the venn.diagram() function in the
VennDiagram package [42] in R.

3. Results
3.1. Adding LC-MS data to the DynlLib database

In order to characterize the maize phenolic metabolism, metha-
nol extracts from five different organs (stem internodium, leaf, tas-
sel, ear and late cob) and four genotypes (CML91, H99, W153R and
OH43) were profiled via reversed-phase LC-MS using two instru-
ment platforms: (i) an ultra-high-performance liquid chromatogra-
phy (UHPLC) hyphenated via an electrospray ionization (ESI)
source to an ion-trap Fourier-transform ion-cyclotron-resonance
mass spectrometer (IT-FT-ICR-MS; hereafter abbreviated simply
as FT) and (ii) an UHPLC-ESI-QTOF-MS (hereafter abbreviated sim-
ply as QTOF). Negative and positive ionization data were recorded
on each platform yielding the FTneg, FTpos, QTOFneg, and QTOFpos
sets of raw data. The FT was used to generate MS" spectra (in
which each IT-based MS™ spectrum represents an MS? spectrum
and optionally one or more MS? spectra, each displaying second-
order product ions resulting from the fragmentation of a particular,
MS2-derived, first-order product ion), whereas the QTOF was used
to generate MS/MS spectra.

To obtain a general impression of the variation between the
profiles, the FT data were subjected to a principal component anal-
ysis (PCA) of the feature abundances following chromatogram pro-
cessing. The PCA yielded three distinct clusters based on the first
and second principal components (PC1 and PC2) for the FTneg
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(Fig. 2A) as well as the FTpos data sets (Supplemental Fig. 1A).
The profiles from stem, ear, and late cob clustered together,
whereas those of leaf and tassel were present in two distinct clus-
ters. Together, PC1 and PC2 captured 34% (FTneg) and 23% (FTpos)
of the variation between metabolite profiles, reflecting differences
between the plant organs rather than between the genotypes.

Because different CID spectra provide complementary informa-
tion on the structure of the unknown compounds, structural char-
acterization would optimally benefit from including all profiling
data, i.e., negative and positive ionization spectra and both MS/
MS and MS" spectra. To initiate such a strategy, all CID spectra
obtained by LC-MS profiling of the different organs of the four
maize genotypes were collected in an in-house-generated database
(Supplemental Table 1), referred to as the ‘Dynamic Library’ or,
simply the DynLib database (Supplemental Fig. 2; an in-depth
description is given in Supplemental Text, DynLib database con-
struction and Adding MS spectral data to the DynLib database). The
DynLib database consists of four sub-databases (hereafter referred
to as subDBs), i.e., for each instrument platform (FT or QTOF) and
for each ionization mode, and these subDBs are called ‘FTMS_neg’,
‘FTMS_pos’, ‘QTOF_neg’, and ‘QTOF_pos’ (names differ slightly from
those used for the corresponding raw data sets to stress the dis-
tinction between a raw LC-MS data set and a CID spectra-specific
subDB). Following CID spectral archiving, the FTMS_neg and
FTMS_pos, and the QTOF_neg and QTOF_pos subDBs contained
4,208 and 1,785 MS" spectra, and 2,665 and 1,816 MS/MS spectra,
respectively. Taking into account the many LC-MS features (and
their associated CID spectra) representing a particular compound,
and the presence of the CID spectral information across the four
different DynLib subDBs, CID spectral data of approximately
5,420 compounds (see Supplemental Text, Adding MS spectral data
to the DynlLib database) were uploaded into the DynLib database.

In order to exploit the complementarity of the different CID
spectra, the features representing the same ions in the different
subDBs of the DynLib database have to be aligned. Therefore, an
R package called RDynLib was created. Because the alignment
occurs between subDBs rather than chromatograms, only features
for which CID spectra are available were included in the alignment.
The alignment via the RDynLib package is therefore based on a
combination of CID spectral matching and retention time align-
ment (an in-depth description is given in Supplemental Text, Align-
ing SubDB experiments using RDynLib; Supplemental Figs. 3 and 4).
This alignment procedure was executed between the FTMS_neg
and QTOF_neg, the FTMS_pos and QTOF_pos, the FTMS_neg and
the FTMS_pos, and the QTOF_neg and QTOF_pos subDBs and
resulted in 843, 287, 542 and 477 aligned features, respectively.
Thus, between any pair of subDBs, the number of features that
could be aligned ranged between 13% and 32% of the total number
of features in each of the two subDBs in the considered alignment
(Table 1).

3.2. Added value of including both MS/MS and MS" spectra for
structural elucidation

To gain insight into the added value of the aligned MS spectral
metadata (MS" and MS/MS spectra) in the DynLib database for
structural elucidation, we performed spectral matching of the
unique CID spectra with publicly available CID spectral databases
(http://mona.fiehnlab.ucdavis.edu/downloads) (see Supplemental
Text for details, Structural elucidation of CID spectra). The external
CID spectral databases that were consulted comprised MassBank
[18], ReSpect [43], HMDB [44], GNPS [29], iTree [45] and Metabo-
BASE (https://sumnerlab.missouri.edu/download/).

Using a spectral similarity threshold of 0.6, 39 of the 4,208
(0.93%), 44 of the 1,785 (2.46%), 58 of the 2,665 (2.18%), and 43
of the 1,816 (2.37%) CID spectra in the FTMS_neg, FTMS_pos,
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threshold line displayed in the Manhattan plots (see C and Table 3). PCA plots display the principal component 1 (PC1) and 2 (PC2) values. The variances explained by PC1 and
PC2 are indicated between parentheses. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Table 1
Number of CID spectra per DynLib subDB.

Computational and Structural Biotechnology Journal 19 (2021) 1127-1144

Table 2
Number of characterized compounds per compound class.

DynLib subDB

Compound class # characterized compounds  Organ distribution

FTMS_neg FTMS_pos QTOF_neg QTOF_pos
# CID spectra 4,208 1,785 2,665 1,816
vs FTMS_neg 4,208 (1.00) 542 (0.30) 843 (0.32)
vs FTMS_pos 542 (0.13) 1,785 (1.00) 287 (0.16)
vs QTOF_neg 843 (0.20) 2,665 (1.00) 477 (0.26)
vs QTOF_pos 287 (0.16) 477 (0.18) 1,816 (1.00)

Each column represents a DynLib subDB. The first row represents the number of CID
spectra (MS" and MS/MS spectra in case of the FTMS-based and the QTOF-based
subDB, respectively) in each of the subDB. The cells in the remaining rows display
the number of aligned features between the considered subDBs, indicated by the
row and column header of each cell. Between parentheses, the proportion is shown
of the number of aligned features versus the total number of features in the subDB
mentioned in the column header. Feature alignment was not performed between
the QTOF_neg and the FTMS_pos, and between the QTOF_pos and the FTMS_neg
subDBs.

QTOF_neg and QTOF_pos DynLib subDBs, respectively, had a posi-
tive match with at least one CID spectrum in the external data-
bases. Focusing on ions having negative ionization MS? as well as
negative ionization MS/MS spectra (843 ions), 15 ions (1.78%)
had a positive match based on their MS? spectrum and 16 ions
(1.90%) had a positive match based on their MS/MS spectrum. Only
3 of the 843 ions (0.36%) had a spectral match with both their MS?
and MS/MS spectrum. When focusing on ions having both positive
ionization MS? and positive ionization MS/MS spectra (287 ions),
12 (4.18%) ions had a positive match based on their MS? spectra
and 7 ions (2.44%) had a positive match based in their MS/MS spec-
trum. Similar to the results based on the negative ionization mode,
only 3 of the 287 ions (1.05%) were matched via both their MS? and
MS/MS spectrum. Thus, most of the ions were matched to external
CID spectral databases via either their MS? or their MS/MS spec-
trum, showing the importance of including both types of CID spec-
tra for spectral matching. However, these results also illustrate the
very low number of ions from specialized metabolism that can be
annotated via spectral matching with publicly available CID spec-
tral databases, highlighting the need for structural characterization
tools that take advantage of the information present in LC-MS data
and different types of CID spectra.

3.3. Characterizing the maize specialized metabolome via RDynLib

Various MS spectral analysis tools are included in RDynLib to
facilitate structural characterization and to exploit the spectral
metadata (see Supplemental Text, Structural characterization tools
in RDynLib; Supplemental Figs. 5-10). In addition to these tools,
RDynLib allows mass difference analysis via the construction of
local CSPP networks (based on a fixed set of 34 well-known bio-
transformations) (see Supplemental Text, Structural characteriza-
tion tools in RDynlLib; Supplemental Fig. 11). Using the MS
spectral metadata, the spectral and mass-difference analysis tools
in RDynLib, and knowledge about the gas-phase fragmentations
for particular compound classes (see Supplemental Text, Compound
class-specific gas-phase fragmentations), we structurally character-
ized 427 compounds from the maize-derived CID spectra present
in the DynLib database (Supplemental Data Set 1). The structures
of 72 compounds were verified via identity matching of the CID
spectra with those of purchased standards (see Supplemental Text,
Compound class-specific gas-phase fragmentations). For another 128
compounds, structural moieties were identified via identity match-
ing of the corresponding MS> spectra with the MS? spectra of pur-
chased standards. When consulting the PubChem database
(https://pubchem.ncbi.nlm.nih.gov/), a compound database con-
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(neo)lignan 8 S,L>T,E,C
amine 1

amino acid 21 T>ECLS
apocarotenoid 1

benzenoid 22 T>S,LEC
benzofuran 1

benzoxazinoid 15 E.L>CT,S
C-glycosylated flavonoid 36 L T>SEC
coumarin 1

dioic acid 3

flavonoid 5

flavonolignan 28 L SST>EC
gibberellin 1

glutathione 6

indole 22 T>C>S,LE
mixed glycosides 77 T>LS,EC
monolignol 2

monoterpenoid 1

nucleoside 5

0O-glycosylated flavonoid 40 LS, T>EC
oligolignol 14 S>E,T>LC
organic acid 9 E,C>LS,T
oxylipin 9 S,E,T,C>L
phenethylamine 1

phenol 3

phenylethanoid 4

phenylpropanoid 82 All organs
phosphate 3

quinoline 1

sugar 4

vitamin 1

Total 427

Organ distributions are shown for compound classes that have at least eight
members. C, late cob; E, ear; L, leaf; S, stem; T, tassel.

taining the structures of over 100 million compounds, 168 of the
427 compounds could be found, whereas a structurally highly sim-
ilar isomer (Tanimoto coefficient > 0.95) was present for another
104 compounds. Based on the FooDB (http://foodb.ca/) and the
CornCyc (https://www.plantcyc.org/databases/corncyc/9.0) data-
bases, only 75 of the 427 compounds were already found in maize.

The number of characterized compounds per chemical class is
shown in Table 2. The metabolic classes with the largest number
of characterized compounds were the phenylpropanoids and their
glycosides, the O- and C-glycosylated flavonoids and the mixed gly-
cosides with 82, 40, 36 and 77 characterized compounds, respec-
tively. An overview of the shikimic acid-derived metabolic
pathways is shown in Fig. 3. The ‘mixed glycoside’ class contained
saccharides to which moieties of at least two different chemical
classes were attached, hence, preventing them from being included
in one of the other chemical classes. For example, many phenyl-
propanoid and flavonoid-bearing glycosides also contain auxin-
derived moieties. Phenylpropanoids were found in all organs,
whereas O- and C-glycosylated flavonoids were mainly present in
leaf and tassel, with the O-glycosylated flavonoids being abundant
in the stem as well. Other specialized metabolic classes that fre-
quently occurred were the flavonolignans (28; enriched in the leaf,
stem, and tassel), benzenoids (21; tassel), indolics (22; tassel), and
benzoxazinoids (15; ear and leaf). In addition, 14 oligolignols and a
number of compounds belonging to other metabolic classes were
characterized. The class of oligolignols contained only aglycones;
the eight characterized oligolignol glycosides were classified as
(neo)lignans. Oligolignols and (neo)lignans were enriched in the
stem, and in the stem and leaf, respectively. A webtool (https://
bioit3.irc.ugent.be/dynlib/) that allows searching known and
unknown CID spectra of the profiled maize compounds in the Dyn-
Lib database is available (Fig. 4).


https://pubchem.ncbi.nlm.nih.gov/
http://foodb.ca/
https://www.plantcyc.org/databases/corncyc/9.0
https://bioit3.irc.ugent.be/dynlib/
https://bioit3.irc.ugent.be/dynlib/
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Fig. 4. Screenshot of the DynLib Webtool. Based on the entered ionization mode, instrument, species and m/z value, all CID spectra are returned. Relative abundances (lowest
and highest abundances are indicated by blue and red, respectively) of the precursor ion in the five organs and the four genotypes are shown. In case the CID spectrum was
elucidated, a trivial name for the compound and its structure are returned. (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)

3.4. Mass differences of feature pairs

CSPPs are pairs of features of which the mass difference and elu-
tion order correspond to those expected for known organic reac-
tions [35]. In order to obtain insight into the extent in which
such organic reactions are enriched in specific organs, we searched
for mass differences between pairs of LC-MS features that fre-
quently occur in a given organ. To this end, all mass differences
between 0 and 250 Da in intervals of 0.001 Da were computed in
the FTneg and Ftpos raw data sets of the five different maize organs
from the four genotypes (Fig. 2C, Supplemental Fig. 1C and 12). Fol-
lowing an organ- and genotype-wide PCA performed on the num-
ber of feature pairs for each of these 250,000 mass differences, the
two highest-order PCs explained 56% (Fig. 2B) and 35% (Supple-
mental Fig. 1B) of the variation within the FTneg and FTpos raw
data sets, respectively. These data indicate that specific mass dif-
ferences occur more frequently in a given organ as compared to
the other organs.

Most of the 250,000 mass differences do not reflect any combi-
nation between the chemical elements that occur most commonly
in living organisms, i.e., C, H, O, N, P, and S elements, indicating that
these mass differences do not reflect true biochemical conversions.
Furthermore, in some cases for which a chemical formula can be
computed from a mass difference, a chemically valid structure can-
not be drawn (for example, the mass difference of 17.039 Da corre-
sponds to CHs). To ease the interpretation of the data, we enriched
for true biotransformations based on the assumption that their

associated mass differences should occur more frequently than
mass differences that do not reflect biotransformations. Therefore,
a Manhattan plot was constructed that reflects the frequency of
each of the 250,000 mass differences (Fig. 2C and Supplemental
Fig. 1C). From such a Manhattan plot, prevailing mass differences,
hereafter called ‘candidate biotransformations’, were selected [35].
Manhattan plots were constructed for each organ and for the FTneg
and FTpos raw data sets (Supplemental Fig. 12). From the raw data
sets of the FTneg, 107 candidate biotransformations were selected
(Table 3) and for the FTpos, 167 candidate biotransformations
(Supplemental Data Set 2). Upon PCA, 45% (PC1 and PC2; Fig. 2D)
and 38% (PC1 and PC2; Supplemental Fig. 1D) of the variation
within the selected candidate biotransformation sets of the FTneg
and FTpos raw data sets were explained, respectively. Regarding
the FTneg raw data set, the tassel, leaf, and stem profiles were pre-
sent in three distinct clusters, whereas the ear and late cob profiles
clustered together (Fig. 2D). For the FTpos raw data set, the ear and
stem samples, the leaf and late cob samples, and the tassel samples
formed three distinct clusters (Supplemental Fig. 1D). Similar to
the PCA results obtained on feature abundances, most of the vari-
ation in biotransformation frequencies was among organs rather
than among genotypes.

Mass difference frequencies, displayed in Manhattan plots,
were computed for all genotypes and all organs. Mass differences
are given whenever their frequencies surpassed the local frequency
threshold (the frequency threshold varied dependent on the con-
sidered mass difference; see Morreel et al. (2014) [35]) in an organ

<

Fig. 3. Overview of Shikimic Acid-Derived Metabolic Pathways. Thin arrows represent one or multiple, either well-known or presumed, biochemical conversion(s). Thick
arrows indicate one or multiple compound(s) that serve as precursor(s) without specification of a particular biochemical route. (Neo)Lignans, flavonolignans and oligolignols
are given descriptive shorthand names following a previously described convention [35]. G, S, T, Sox, and SpCA refer to moieties derived from coniferyl alcohol (yielding the
guaiacyl unit), sinapyl alcohol (yielding the syringyl unit), tricin, 7-oxo-sinapyl alcohol, and 9-0-p-coumaroy! sinapyl alcohol, respectively. The (8-0-4)-, (8-5)- and (8-8)-
linkages refer to p-aryl ether, phenylcoumaran and resinol units, respectively. 3DQA 3-dehydroquinic acid; 3,4-DHBA 3,4-dihydroxybenzoic acid; 4HPAA 4-hydroxypheny-
lacetic acid; BMD benzomorpholine-2,3-diol; CA caffeic acid; ConAlc coniferyl alcohol; DAHP 3-deoxy-D-arabino-heptulosonate-7-phosphate; DIBOA-(2R)-Glc 2,4-
dihydroxy-2H-1,4-benzoxazin-3(4H)-one-(2R)-B-D-glucoside; DIBOA-(2S)-Glc 2,4-dihydroxy-2H-1,4-benzoxazin-3(4H)-one-(2S)-B-D-glucoside; E4P D-erythrose-4-phos-
phate; FA ferulic acid; Glc glucose; GlcA glucuronic acid; HBA p-hydroxybenzoic acid; HBOA 2-hydroxy-2-1,4-benzoxazin-3-one; HIAA 5-hydroxyindole-3-acetic acid; I3GP
indole-3-glycerol phosphate; IAA-Asp indole-3-acetyl-L-aspartic acid; MBOA 6-methoxybenzoxazolinone; PAA phenylacetic acid; pCA p-coumaric acid; pCouAlc p-coumaryl
alcohol; PEP phosphoenolpyruvic acid; Rha rhamnose; SA sinapic acid; SinAlc sinapyl alcohol; SyrA syringic acid; VA vanillic acid.
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Table 3
Candidate biotransformations derived from the FTneg raw data set.
m/z Chemical Formula Putative Conversion Short Organ [0OI(avOOI)] Class
EAR LATE COB LEAF STEM TASSEL

0.015 - Unknown UNK1 716(911) 1180 (1339) 1249 (1468) 293 (453) 17 (499) -
0.021 - Unknown UNK2 603 (838) 994 (1213) 1094 (1209) 508 (661) 14 (460) -
0.036 - MET + RED - OXY DIFF1 84 (137) 112 (229) 170 (198) 48 (113) 3(115) 1
0.037 - MET + RED - OXY DIFF1 387 (553) 522 (711) 504 (582) 236(334)  18(740) 1
1.003 - Be- 17 13C 2(11) 37 (49) 91 (111) 5(7) 1(2) -
1.004 - Bc_12c 13C 121 (166) 325 (336) 438 (537) 64(114)  5(26) -
1.979 - OXY - MET DIFF2 78 (125) 84 (194) 139 (173) 64 (93) 6(91) 1
1.980 - OXY - MET DIFF2 247 (347) 369 (532) 352 (392) 294 (418) g (87 1
2.015 H, Reduction RED 7(11) 14 (32) 24 (33) 10 (18) 4 (45 1
2.016 H, Reduction RED 1(1) 1(1) 1(2) 1(1) 1(7) 1
3.995 - MO MO1 65 (93) 48 (111) 55 (79) 45 (73) 7(15 4
4.031 Ha MO MO2 44 (91) 26 (50) 70 (86) 66 (97) 15(263) 4
12000 € 12C addition 12C 26 (43) 30 (61) 23 (36) 18 (24) 25 (27) 1
15.995 (0] Oxygenation OXY 1(3) 3(3) 1(1) 4(5) 1(5) 1
18.011 H,0 Hydration HYD 14 (35 25 (47) 77 (95) 30 (44 37 (57) 1
27.995 co MO MO3 65 (101) 64 (81) 66 (95) 93 (102) 36 (41 4
28.031 CoHy Ethylene addition ETH 126 (145) 57 (81) 32 (55) 152 (221) 166 (186) 2
30010  CH,0 OXY + MET MOX 3(5) a(7) 4(5) 1(3) 3(7) 1
30.011 CH,0 OXY + MET MOX 12(16 29 (58 44 (56) 6(11) 6(10) 1
32.026 CH40 MOX + RED MXRD 25 (29) 16 (29 25 (41) 26 (44) 50 (74) 1
39.995 C,0 MO MO4 35 (72) 34 (84) 49 (74) 56 (100) 144 (181) 4
42.010 C,H,0 Acetylation ACE 47 (67) 20 (42) 26 (37) 40 (59) 53 (74) 1
44.026 C,Hi0 MET + MOX MTMX 27 (46) 13 (34) 19 (24) 35 (51) 30(37) 1
46.005 CH,0, Formic acid addition FORM 3(4) 4(5) 4 (6) 3(4) 3(6) -
56.026 C3H40 MOX + ETY MXETY 7(12) 8(9) 6 (6) 10 (22) 17 (20) 1
58.005 C,H,0, OXY + ACE OXYACE 42 (82) 84 (102) 67 (95) 27 (60) 62 (81) 1
60.021 C,H,40, Cross ring cleavage CRC60 20 (28) 18 (19) 17 (18) 8 (13) 7 (13) -
70.005 C3H,0, CAR + ETY CRETY 30 (54) 28 (41) 20 (29) 24 (41) 71 (104) 1
72.021 C3H40, MOX + ACE MXACE 10 (11 7(8) 8 (10) 9(12) 6 (11) 1
74.036 C3HgO2 Glycerol coupling GLY 82 (104) 55 (74) 54 (83) 33 (95) 122 (194) 1
76.016  C,H,0; PEN - MOX - ETY DIFF3 56 (92) 119 (149) 104 (125) 38 (61) 30 (45) 1
80.026 CsH40 HQL - MO3 DIFF4 22 (34) 28 (49) 24 (43) 47 (72) 48 (84) 2
82.041 CsHgO MO MO5 24 (65) 92 (109) 67 (94) 89 (193) 233 (240) 4
84.021 C4H40, Unknown UNK3 42 (90) 48 (99) 63 (118) 48 (101) 23 (35) -
84.057 CsHs0 MO MO06 62 (146) 107 (118) 29 (39) 255(367) 248 (274) 4
86.000 C3H,05 Unknown UNK4 20 (55) 10 (21) 40 (45) 20 (28) 98 (130) -
88.016 C3H403 Glyceric acid coupling GLC 75 (88) 108 (132) 80 (92) 36 (64) 38 (67) 1
90.031 C3HgO3 Cross ring cleavage CRC90 23 (33 22 (36 12 (20 21 (26) 29 (42 -
92.026 CgH4O Phenol coupling QUL 58 (94) 89 (136) 90 (103) 24 (38 21 (39) 3
96.021 CsH,40, DHBA - ETY DIFF5 23 (30) 19 (41) 36 (48) 49 (57) 32 (51 3
98.036 CsHgO, Unknown UNK5 16 (22 8 (17 11(19) 53 (84) 44 (57) -
100.052 CsHgO, MO MO7 49 (98) 24 (63) 14 (39) 75 (137) 125 (156) 4
102.031  C4He0s PEN - MOX DIFF6 32 (45 38 (59) 31 (48) 24 (30) 25 (29) 1
104026  C;H,0 Benzoylation BEN 146 (168) 103 (148) 177 (281) 23 (26) 32 (48 3
104.047  C4Hs0; Unknown UNK6 45 (85) 29 (57) 46 (53) 30 (44 43 (78)
106.026  C3HgO4 PEN - ETY DIFF7 46 (84) 27 (135) 138 (166) 51 (62) 92 (120) 1
108.021  CgH.O» Quinone coupling HQL 84 (125) 56 (84) 87 (100) 67 (80) 43 (52) 2
110.036  CgHgO- Unknown UNK?7 34 (79) 45 (90) 61 (90) 102 (126) 89 (113) -
112.052  CgHsO; Mevalonolactone coupling MEV 22 (54) 27 (59) 27 (34) 34 (70) 51 (85) 1
114.031  CsHeO3 GLC + ETY GLCETY  17(21) 17 (27) 19 (29) 17 (29) 27 (31 1
116.010  C4H404 Unknown UNKS 162 (196) 139 (184) 191 (219) 34 (64) 121 (205) -
116.047  CsHs0s PEN - OXY DIFF8 23 (44) 17 (22) 12 (14) 31(39) 34 (37 1
118.041  CgHeO Phenylacetyl coupling PHA 316 (372) 242 (369) 329 (424) 263 (349) 44 (121 3
120021  C;H40, Hydroxybenzoylation HBEN 119 (170) 72 (149) 133 (168) 86 (99) 20 (29) 3
120.042 C4HgO4 Cross ring cleavage CRC120 91 (134) 75 (84) 77 (107) 35 (54) 68 (91) -
122.036 C7Hg02 Dihydroxybenzylalcohol coupling DHBA 21 (73) 46 (73) 35 (61) 29 (48) 63 (83) 3
124.052  C;Hs0, Unknown UNK9 52 (67) 38 (65) 30 (41) 51 (80) 86 (144) -
126.031 CgHgO3 DHBA - ETY + MOX DIFF9 23 (45) 32 (59) 23 (41) 42 (80) 63 (83) 3
128.047  CgHsOs Unknown UNK10 36 (92 75 (93) 51 (66) 82 (120) 72 (79) -
130.026  CsHgO4 Mo MO8 9 (14 5(25 13 (16) 21 (30) 14 (25) 4
130062  CgHi003 HEX - OXY - OXY DIFF10 67 (96) 64 (69) 21 (36) 98 (168) 97 (128) 1

(continued on next page)
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m/z Chemical Formula Putative Conversion Short Organ [0OI(avOOI)] Class
EAR LATE COB LEAF STEM TASSEL
132.041  CsHgO.4 Pentose coupling PEN 53 (99) 106 (131) 104 (141) 92 (115) 42 (103) 1
132.042 CsHgO4 Pentose coupling PEN 60 (90) 49 (102) 52 (84) 26 (57) 26 (67) 1
134.036  CgHgO> PHA + OXY HPHA 43 (80) 15 (29) 32 (59) 22 (36) 15 (23) 3
136.052  CgHgO» Unknown UNK11 46 (97) 98 (155) 109 (123) 31(38) 61 (75) -
142.026  CgHgO4 Unknown UNK12 20 (34) 21 (52) 43 (52) 61 (76) 40 (65 -
144.041 CgHgO4 Hydroxyadipic acid coupling HADI 51 (78) 43 (95) 76 (83) 87 (91) 12 (38) 1
144042  CgHgOs Hydroxyadipic acid coupling HADI 32 (89) 62 (97) 57 (91) 63 (88) 60 (129) 1
146.057 CeH1004 Deoxyhexosylation RHA 8(14) 6(7) 5 (6) 11 (16) 8 (25 1
150.031 CgHgO3 Vanillic acid coupling VAN 37 (90 62 (99) 107 (116) 35 (42) 40 (54 3
150.052  CsHi0s MO MO9 120 (164) 120 (181) 98 (123) 82 (140) 28 (60 4
154.062  CgHy03 Unknown UNK13 78 (103) 71 (137) 39 (40) 34 (64 59 (119) -
162.052 CsH1005 Hexosylation HEX 2(4) 1(2) 2(3) 2(3) 2(5) 1
174.052  C;H;00s Quinic acid coupling QuUI 19 (50) 27 (51) 15 (17) 42 (52) 31 (50) 1
178.047  CgHq006 HEX + OXY HXOXY 10 (23) 12 (36) 38 (51) 28 (38) 10 (17) 1
178.062 C10H1003 Condensed guaiacyl coupling GUNS8 32 (49 41 (82) 94 (116) 17 (35) 70 (121) 3
180.041 CoHgO4 Syringic acid coupling SYR 70 (162) 35 (102 35 (47) 19 (90) 86 (125) 3
180.042  CoHgO. Syringic acid coupling SYR 104 (167) 91 (126) 121 (140) M (72) 155(188) 3
180.078  CioH1203 GUNS + RED GN8RD 12 (36) 31 (52) 33 (68) 13 (16) 56 (220) 3
182.057  CoHy004 Unknown UNK14 39(73) 29 (55) 39 (53) 27 (45) 43 (53) -
186.052  CgH100s MO MO10 25 (49) 15 (25) 13 (22) 47 (88) 36 (46 4
192.062  C;H;,04 HEX + MOX HXMX 70 (234) 160 (212) 33 (70) 77(122)  11(36 1
194.057  CyoH1004 FA + HYD FAHYD 6 (11 6(14) 10 (19) 7.(10) 24 (43) 3
196.036  CoHgOs Unknown UNK15 40 (81) 33 (51) 18 (21) 79 (98) 14 (43) -
196.073 Cy0H1204 Non-condensed guaiacyl coupling ~ GUN4 17 (29) 14 (35) 18 (29) 15 (23) 22 (113) 3
198.052  CgH100s Unknown UNK16 84 (137) 22 (54) 48 (75) 60 (101) 13(37) -
204.062  CgHi206 HEX + ACE HXACE 63 (119) 83 (146) 37 (56) 90 (170) 27 (76) 1
206.057  Cy1H1004 Sinapic acid coupling SIN 15 (23) 8(32) 26 (32) 14 (20) 26 (47 3
208.073 Cy1H1204 Condensed syringyl coupling SUNS 15 (23 12 (23 27 (59) 7(12) 11 (18) 3
210052 CyoH100s SYR + MOX SRMX 14 (29) 16 (23) 8 (10) 26 (33) 16 (33 3
210.088  C;;H1404 MO MO11 34 (125) 72 (147) 75 (129) 27 (60 250 (365) 4
212.067  CioH1205 MO MO12 37 (51 42 (107) 70 (92) 71 (85) 97 (115) 4
214.047  CoHy00s Unknown UNK17 105 (130) 29 (63) 74 (98) 91 (153) 42 (78) -
222.052  Cy1Hyo0s HQL + RHA - MOX - RED DIFF11 29 (37) 12 (19) 39 (63) 30 (59 39 (53) 2
224.067  Cy1H1205 HQL + RHA - MOX DIFF12 8(24 11(21) 15 (29) 11 (27 23 (47 2
224068  C;;H1205 HQL + RHA - MOX DIFF12 54 (118) 23 (90) 74 (109) 57 (84) 18 (45 2
226.047  CyoH1006 Unknown UNK18 59 (95) 33 (56) 38 (68) 60 (163) 11.(30) -
226.083 C11H1405 Non-condensed syringyl coupling SUN4 9(21) 11 (21 8(9) 6(9) 19 (43) 3
236.067  Cy2Hy205 SIN + MOX SNMX 9 (40) 10 (25) 10 (14) 36 (52) 10 (14) 3
238.047  Cy;H1006 HQL + RHA - MET - RED DIFF13 41 (62) 42 (62) 30 (65) 120 (140) 78 (103) 2
238.083  Cy2Hi405 GUN4 + ACE GN4ACE 9 (22) 17 (40) 16 (25) 10 (15) 25 (59) 3
240062  Cy1H;206 HQL + HEX - MOX DIFF14 44 (71) 31(43) 56 (79) 61(108)  33(47) 2
242.078 C11H1406 HQL + HEX - MOX + RED DIFF15 6(21) 4(9) 9 (15) 8 (10) 19 (36) 2
246.073  CyoH1407 Unknown UNK19 33 (94 102 (145) 41 (54) 158 (216) 96 (180) -
246.109  C;;H;506 Unknown UNK20 56 (141) 133 (157) 33 (126) 180 (268) 513 (704) -
248.067 Cy3H;1205 Unknown UNK21 8 (79) 13 (100) 29 (66) 25 (50) 7(37) -
248.068  C;3H;205 Unknown UNK21 93 (230) 99 (194) 271 (402) 125(157) 33 (74) -

of at least one of the four genotypes; in these organs, the mass dif-
ference frequency is shown in bold and underlined. For each organ
and each genotype, the frequencies of all mass differences were
normalized and ranked. Normalization was based on the division
of the frequency of the mass difference by its local frequency
threshold. These normalized mass difference frequencies were
then ranked in decreasing order and an order-of-importance
(00I) number was assigned in increasing order (mass differences
that show a high frequency obtained a low OOI number). The
0O0I number given for the considered mass difference in the table,
corresponds with that of the genotype having the lowest OOI num-
ber among all genotypes for the particular organ. To account for
the variation in OOI number for a particular mass difference among

the genotypes, the average OOI (avOOI) value across the genotypes
was computed and is given between parentheses. Abbreviations
used when naming the ‘Putative Conversion’ can be traced in the
‘Short’ column; the full name is then mentioned in the ‘Putative
Conversion’ column. Five abbreviations that cannot be found in
the ‘Short’ column are CAR, carboxylation (CO,, 43.990 Da); ETY,
ethyne addition (C;H,, 26.016 Da); FA, feruloylation (C;oHgOs,
176.047 Da); MET, methylation (CH;, 14.016 Da); and MOX, oxy-
genation (OXY) + methylation (MET) (CH,0, 30.011 Da). A + and
- sign indicate that the second putative conversion represents an
addition and elimination, respectively. Class 1, 2, 3 and 4 represent
‘decoration’-type, ‘structural’-type, ‘core transfer’-type and ‘multi-
ple options’ (MO)-type biotransformations, respectively.
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Fig. 5. CSPP Network Based on the FT Chromatograms Using Negative lonization Mode. The node color (red, greenish brown, green, blue and purple) represents the organ in
which the feature was the most abundant (the ear, late cob, leaf, stem or tassel, respectively). The color of the network edges shows the MS? similarity of the substrate and the
product. LC, long chain; MC, medium chain. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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3.5. Obtaining insight into organ-preferential biotransformations via
CSPP networks

In an attempt to gain insight into the organ specificity or organ
enrichment of the candidate biotransformations, CSPP networks
were constructed based on the selected biotransformations (Table 3
and Supplemental Data Set 2) for the FTneg (Fig. 5) and FTpos (Sup-
plemental Fig. 13) raw data sets. In both CSPP networks, nodes rep-
resent features for which CID spectra were recorded, i.e., features
that were present in the DynLib database. Based on the annotated
features in the DynLib database, which were characterized via
RDynLib, compound information was added to the network nodes.

The CSPP networks constructed from the features present in the
FTMS_neg and FTMS_pos subDBs contained 3,505 and 652 nodes,
and 32,252 and 2,552 edges, respectively. Besides the main sub-
network, the FTMS_neg-based CSPP network (Fig. 5) contained
two medium-sized sub-networks, which predominantly repre-
sented N-containing compounds and the natural '3C isotope distri-
bution of the profiled compounds. In the network, different clusters
were associated with different compound classes. When consider-
ing the node color, which represents the organ in which the feature
was the most abundant, different regions in the network became
apparent. For example, nodes representing oligolignols appeared
as a cluster and were mainly present in the LC-MS profiles of stem
extracts (Fig. 5, blue), whereas a cluster of nodes associated with
medium-chain-length hydroxyfatty acids was predominantly
found in late cob and leaf extracts (Fig. 5, greenish brown and
green). Similarly, a distinction between benzoxazinoids and
dihydroxyindole-3-acetic acid derivatives was observed in the
sub-network of the N-containing compounds, with the latter com-
pound class being almost solely present in the tassel (Fig. 5, purple).
The FTMS_pos-based CSPP network consisted of only one large sub-
network, in which clusters of features that were more abundant in
particular organs could be distinguished (Supplemental Fig. 13).

The CSPP networks were subsequently consulted to characterize
the included candidate biotransformations derived from the FTneg
(Table 3) and FTpos raw data sets (Supplemental Data Set 2). In
addition to mass differences that were associated with a single con-
version, some reflected a unique combination of conversions [e.g.,
oxygenation + methylation + reduction (32.026 Da)], whereas
others remained unassigned because they corresponded to multi-
ple possible combinations of conversions (multiple options or MO).

The ten candidate biotransformations from which the frequen-
cies contributed the most to the PCA-based discrimination
between the different organs, based on the FTneg raw data set,
are visualized in Fig. 2D. These biotransformations were associated
with mass differences of 28.031 Da, 84.057 Da and 130.062 Da (en-
riched in leaf), 118.041 Da, 144.041 Da and 150.052 Da (enriched
in tassel), 30.011 Da (enriched in ear, late cob, stem, and tassel),
104.026 Da (enriched in stem and tassel), 180.078 Da (enriched
in ear, late cob, leaf, and stem) and 39.995 Da (enriched in ear
and late cob). Based on the annotated features in the DynLib data-
base, six of these biotransformations could be annotated as the
addition of phenylacetic acid (118.041 Da), benzoic acid
(104.026 Da), ‘condensed guaiacyl’ + reduction [180.078 Da; ‘con-
densed guaiacy!’ is the result of a radical-radical coupling of con-
iferyl alcohol into oligolignols/(neo)lignans via a condensed bond
(i.e., characterized by an 8-5 or 8-8 interunit bond)], ethylene
(28.031 Da; generally observed as the mass difference between a
benzoic acid and a dehydrated phenylpropanoid), hydroxyadipic
acid (144.041 Da), and a methoxy group (30.011 Da).

A PCA-based selection of the ten most important organ-
discriminating candidate biotransformations (Supplemental
Fig. 1D) derived from the FTpos raw data set included mass differ-
ences of 134.037 Da, 189.043 Da, and 207.054 Da (enriched in tas-
sel), 42.011 Da (enriched in ear, late cob, leaf and tassel),
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130.063 Da (enriched in leaf), 2.016 Da and 44.026 Da (enriched
in all organs), 58.042 Da (enriched in late cob and leaf),
21.982 Da (enriched in ear, late cob and stem) and 88.053 Da (en-
riched in ear, stem and tassel). Of these biotransformations, the
conversion could be tentatively assigned for 2.016 Da (reduction),
42.011 Da (acetylation), 44.026 Da (methylation + oxygenation +
methylation), 134.037 Da (addition of phenylacetic acid + oxygena
tion), and 189.043 Da (addition of dihydroxyindole-3-acetic acid).

In a search for the organ distribution of the candidate biotransfor-
mations, we visualized all prevalent FTneg biotransformations (see
Table 3) in a Venn diagram (Fig. 2E). Twenty-eight candidate bio-
transformations occurred frequently in all organs. These mass differ-
ences were general biotransformations, such as reduction,
oxygenation, hexosylation, sinapic acid coupling or syringyl cou-
pling. The Venn diagram also shows biotransformations that were
prevailing in only one or a few organs. Thirty-nine candidate bio-
transformations were enriched in only one particular organ (ranging
from twoin the late cob to 19 in the tassel; Fig. 2E). Among them, four
were assigned to a single conversion (Table 3): coupling/insertion of
ethylene (28.031 Da, leaf), glycerol (74.036 Da, stem), glyceric acid
(88.016 Da, tassel), and hydroxybenzoic acid (120.021 Da, tassel).

For the FTpos raw data set, 24 candidate biotransformations
(Supplemental Data Set 2) occurred frequently in all organs (Sup-
plemental Fig. 1E). Seventy-nine candidate biotransformations
(Supplemental Fig. 1E) were solely enriched in one particular
organ, of which nine were tentatively assigned as a single conver-
sion (Supplemental Data Set 2): addition of carboxylic acid
(43.990 Da, leaf), phenol (92.026 Da, ear), hydroxybenzyl alcohol
(106.042 Da, stem), phenylacetic acid (118.042 Da, tassel), dihy-
droxybenzyl alcohol (122.037 Da, stem), vanillic acid
(150.032 Da, stem), ferulic acid (176.048 Da, ear), ‘condensed gua-
iacyl’ (178.063 Da, stem), and syringic acid (180.043 Da, stem).
Compared to the FTneg raw data set, the FTpos raw data set
revealed more biotransformations that were prevailing in one par-
ticular organ. To conclude, the combination of different reversed-
phase LC-MS methods with CSPP-networks, allowed the structural
characterization of a collection of specialized metabolites and bio-
transformations, which is a critical necessity in the understanding
of the maize phenolic metabolism.

4. Discussion
4.1. Structural characterization is enhanced using spectral metadata

The structural annotation of the many unknown compounds in
metabolome data has been limited by the low coverage and slow
growth of CID spectral libraries [20]. Consequently, only a minority
of the profiled specialized metabolites can be annotated through
matching their CID spectra with CID spectral libraries. This limita-
tion was confirmed by our observation that only 0.93% up to
2.46% (dependent on the DynLib subDB) of the unique CID spectra
of the maize specialized metabolome could be annotated through
matching with publicly available spectral databases. The inclusion
of all DynLib subDBs, and thus different types of CID spectra, for
spectral matching led to more annotations than could be obtained
for any of the individual subDBs. For the “library-matched and
MS/MS-MS"-aligned” CID spectra in the FTMS_neg, QTOF_neg,
FTMS_pos and QTOF_pos DynLib subDBs, 20% (3/15), 19% (3/16),
25% (3/12), and 43% (3/7), respectively, were annotated via both
MS/MS and MS" spectral matching. Thus, the majority of these
CID spectra were annotated via either its MS/MS or its MS" spec-
trum. This positive increase in spectral matches by considering dif-
ferent types of CID spectra resulted in part from the low compound
overlap between the different DynLib subDBs, which is acknowl-
edged by the rather low number of features for which both MS/
MS and MS" spectra were recorded (Table 1). Furthermore, the
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added value of including all DynLib subDBs for spectral matching is
the consequence of two limitations of currently existing spectral
databases. Firstly, spectral databases do not fully overlap; part of
each spectral database represents spectral data from compounds
for which CID spectra are unavailable in other spectral databases.
Secondly, these spectral databases are often focused on a particular
type of CID spectrum, i.e., MS/MS or MS" spectra. Whereas the for-
mer limitation implies an augmented annotation rate when match-
ing with several spectral databases instead of just one, the latter
limitation guarantees more success in structural annotation when
different types of CID spectra for a given compound are available
for spectral matching. With the RDynLib package, we enabled link-
ing of the MS/MS and MS" spectral data belonging to a given fea-
ture, thereby increasing the chance of finding a spectral match for
this feature with publicly available spectral databases, now also
including the DynLib database.

Nonetheless, for the majority of the profiled features there is no
CID spectrum available in the currently existing spectral databases,
which prevents the annotation of the unknown compound by spec-
tral matching. However, the structure of the corresponding com-
pounds might be present in compound databases such as the
PubChem database [46]. Upon computation of the chemical for-
mula of the unknown feature, candidate structures can be
retrieved from these compound databases. Subsequently, the CID
spectra of these candidate structures can be predicted in silico
and matched against the unknown CID spectrum. Consequently,
de novo CID spectral elucidation software, such as MetFrag [28]
and CSI:FingerID [22], have been developed. De novo CID spectral
elucidation software takes full advantage of the large size of these
compound databases, sometimes comprising tens of millions of
compounds. In this study, 168 of the 427 characterized compounds
(i.e., 39.3%; Supplemental Data Set 1) were present in the PubChem
database. Installing a connection between the DynLib database and
de novo CID spectral elucidation software would therefore further
enhance the efficiency of compound characterization.

Structural characterization of metabolites by CSPP network
propagation also benefits from including as much MS data as possi-
ble. For example, the complementary information of negative and
positive CID spectra allows a distinction between charge-driven
and charge-remote fragmentations [47]. In addition, the spectral
information gained from QTOF-MS and IT-MS instruments is com-
plementary. Whereas QTOF-based MS/MS spectra offer a higher
mass accuracy of the product ions and also display the low-mass
product ions, IT-based MS" spectra allow the relationships between
the product ions to be delineated. Furthermore, CID in IT-MS is less
energetic than in QTOF-MS, which partially prevents further frag-
mentation of the initially formed first-order product ions. The
longer timescale of CID reactions in IT-MS as compared to those
in QTOF-MS coincides with the higher importance of thermody-
namic control during CID in IT-MS as compared to kinetic control
in QTOF-MS. As an example, Supplemental Fig. 15 displays the com-
plementarity between MS/MS and MS? upon CID of the diferuloyl
glycerol anion. To date, the RDynLib package is equipped with a bat-
tery of tools to aid in structural elucidation (see Supplemental Text,
Structural characterization tools in RDynLib; Supplemental Figs. 5-
11). The combination of complementary CID spectra and their
simultaneous analysis using the RDynLib tools, and the interplay
with CSPP network propagation, played an important role in the
elucidation of the 427 characterized compounds, of which the
majority had not been described in maize before.

4.2. Compound abundances as well as biotransformation frequencies
reflect organ-preferential metabolism

The annotated biotransformations displayed in Table 3 can be
grouped into four classes. The first class represents mass differ-
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ences corresponding to true (bio)chemical conversions, such as
hexosylation (HEX), methylation (MET), and reduction (RED).
Sometimes they reflect the subsequent action of two or more
enzymes such as an oxygenation followed by a methylation
(MOX). The CID spectra of the CSPP substrates and products of
these biotransformations often show a high spectral similarity.
Some of these biotransformations or combinations of biotransfor-
mations seem to be rather specific to particular taxa. For example,
the combination of carboxylation and ethylation (CAR + ETH) was
not enriched in the CSPP networks derived from leaf extracts of
Arabidopsis [35], nor in those derived from the extracts of different
poplar organs (data not shown). The biotransformations of this
class seem to be involved in decorating core structures of special-
ized metabolism, e.g., a flavonoid or phenylpropanoid, and were
suggested by Wang et al. (2019) [48] to occur following the biosyn-
thesis of the core structure of the specialized metabolic class. How-
ever, some of these biotransformations seem to occur more
frequently for particular classes of specialized metabolites. For
instance, methoxylation (MOX, 30.011 Da; see Fig. 2D) was most
frequently associated with oligolignol biosynthesis and, conse-
quently, discriminated stem organs - in which oligolignols are
enriched - from the other organs. This first class of biotransforma-
tions could be referred to as ‘decoration’-type biotransformations.
Morreel et al. (2014) [35] argued that these CSPP biotransforma-
tions were often observed between glycosylated derivatives,
whereas the corresponding enzymatic reactions are often known
to occur on the aglycone level. For example, the conversion
between caffeoyl hexose and feruloyl hexose is annotated as a
methylation, yet, biochemically, this methylation reaction is
known to use caffeoyl CoA as substrate. Therefore, a ‘decoration’-
type biotransformation often includes multiple enzymatic reac-
tions besides the annotated reaction.

Frequently occurring mass differences from the second class
do not represent one or more true enzymatic reactions but rather
the structural difference between two core structures from spe-
cialized metabolism. For example, the mass difference of
108.021 Da reflects the structural difference between a phenyl-
propanoid and a flavonoid, e.g., between dihydroxyindole-3-
acetic acid (caffeoyl) hexoside and dihydroxyindole-3-acetic acid
(eriodictyol-O-) hexoside. These ‘structural’-type biotransforma-
tions can only occur between two metabolites belonging to differ-
ent specialized metabolic classes if their core structures share the
same type and number of chemical modifications/decorations.
Therefore, their occurrence supports the hypothesis that largely
the same ‘decoration’-type biotransformations occur in the
biosynthesis pathways of different specialized metabolic classes
[48]. The CID spectra of the candidate substrates and products
corresponding to different metabolic classes are dissimilar. Conse-
quently, a lower average CID spectral similarity are expected for
CSPPs representing this class of conversions as compared to those
belonging to the first class. Although not reflecting enzymatic
reactions, these ‘structural’-type biotransformations might aid
deriving the biochemical pathways from the CSPP network by
revealing the absence of particular pathway intermediates (Sup-
plemental Fig. 24).

A third class of biotransformations includes true (bio)chemical
conversions that involve the coupling of the core structure of a
specific metabolic class onto another molecule. Among these ‘core
transfer’-type biotransformations are phenylacetyl coupling (PHA),
syringic acid coupling (SYR), and oligolignol unit extensions such
as the (non-)condensed guaiacyl (GUN58 and GUN4) and syringyl
(SUN58 and SUN4) coupling reactions. The large number of glyco-
sides and sugar esters encountered among the characterized com-
pounds (Supplemental Data Set 1) suggests that these ‘core
transfer’-type biotransformations mainly happen onto a sugar moi-
ety of a glycosylated molecule.
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The fourth class of biotransformations are those that can arise
via multiple, putative biotransformation pathways, each pathway
often including multiple reactions. For instance, a mass difference
of 3.995 Da can be explained by the mass difference between a
hydrated and a methylated molecule (HYD - MET) as well as result-
ing from a methoxylation followed by the loss of an ethyne group
(MOX - ETY). Thus, for these ‘multiple options’ (MO)-type biotrans-
formations, the reactions within a particular candidate substrate
and candidate product pair differ from those of another feature pair
with the same mass difference. From the variety of possible reac-
tion sequences, it might be expected that these MO-type biotrans-
formations frequently occur in all organs, yet most of them seem to
be restricted to only one or a few organs (Table 3). This suggests
that a particular biotransformation pathway is prevailing for at
least some of these mass differences, implying that some of these
mass differences would better fit in one of the former biotransfor-
mation classes. The selection of the relevant, i.e. frequently occur-
ring, mass differences was based on all LC-MS features, whereas
structural characterization of the candidate substrates and prod-
ucts of the biotransformations was restricted to the LC-MS features
for which CID spectra were recorded. Therefore, the correct annota-
tion of the MO-type biotransformations might have been prevented
by the sometimes low number of characterized compounds on
which the characterization of the biotransformations, and thus
the biotransformation classification, was based. Vice versa, bio-
transformations that were classified as ‘decoration’-, ‘structural’-
or ‘core transfer’-type biotransformations might include feature
pairs of which the mass difference results from an alternative bio-
transformation pathway than the one proposed in Table 3.

PCA-based organ clustering of the maize metabolome data sets
was similar when using either biotransformation frequencies or
feature abundances. This indicates that the separation between
the different organs on the PCA plot based on biotransformation
frequencies reflects both the different metabolic classes and the
differentially enriched biotransformations in these organs. Conse-
quently, many of the biotransformations that explain most of the
variation between the PCA clusters represent ‘core transfer’-type
biotransformations (180.078 Da, GUN58 + RED; 104.026 Da, BEN;
118.041 Da, PHA; 144.041 Da, HADI; Fig. 2D; Table 3). For example,
oligolignols were enriched in stems, and the clustering of this
organ upon PCA could be related to the frequent occurrence of
the ‘GUN58 + RED’ biotransformation (180.078 Da; Fig. 2D;
Table 3), reflecting the oxidative coupling of a lignin monomer.
‘Structural’-type biotransformations may also contribute to the
PCA-based organ clustering (28.031 Da, ETH; Fig. 2D; Table 3).
For example, the earlier mentioned mass difference of
108.021 Da occurs more frequently in the tassel (Table 3) than in
other organs, and is the consequence of the rich variety of O- and
C-glycosylated flavonoids in the tassel (Table 2) and their struc-
tural difference with the phenylpropanoid glycosides that are pre-
sent in all organs. These ‘structural’-type biotransformations were
generally observed between glycosylated molecules from different
specialized metabolic classes. Therefore, the effect of the
‘structural’-type biotransformations on the PCA clustering results
in part from the large number of glycosides present in the maize
metabolome data set (Supplemental Data Set 1). The high number
of glycosylated molecules among the characterized compounds
highlights the large number of glycosyl- and acyltransferases oper-
ating in the maize specialized metabolism and/or the broad sub-
strate specificities of these enzymes, allowing the anchoring of
specialized metabolites from different classes onto the same sugar
moieties. This results in the observation of many glycosylation and
acylation reactions, and the great variety of high-molecular-weight
(mixed) glycosides in the CSPP network. Many of these high-
molecular-weight mixed glycosides represented concatenation
products between phenylpropanoid glycosides and benzoic acids,
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flavonoids, phenylethanoids and indolics (Supplemental Data Set
1). Acylation is established by either cytosolic CoA-dependent
BAHD acyltransferases or vacuolar/apoplastic acylsugar-
dependent serine carboxypeptidase-like (SCPL) acyltransferases
[49]. Many of the SCPL enzymes have a broad substrate specificity
and are implemented in transesterification reactions, e.g., the for-
mation of disinapoyl glucose from two sinapoyl glucoses [50],
leading to, among others, the high-molecular-weight (mixed) gly-
cosides in the vacuole [51,52]. In addition, the presence of vacuolar
glycoside hydrolases (GHs) that hydrolyze or rearrange glycosidic
bonds suggests that these (mixed) glycosides are actively metabo-
lized [53] and that the released sugars and aglycones can be
exported to the cytosol [54]. Glycosylation and sugar ester forma-
tion are generally accepted as a strategy of the plant to detoxify, to
increase the solubility, and/or to alter the biological activity of spe-
cialized metabolites [53]. However, the abundant presence of high-
molecular-weight (mixed) glycosides and the metabolic malleabil-
ity of the mixed glycosides suggest the importance of mixed gly-
coside biosynthesis as a strategy of the plant to store metabolites
from different classes of primary and specialized metabolism. In
addition, the coupling of multiple core structures onto one sugar
unit might be essential in controlling the osmotic pressure and/
or in reducing the sugar amount that would otherwise be trapped
when storing low-molecular-weight glucosides.

4.3. Phenylpropanoids are prominent in all five investigated maize
organs

The PCA plot based on feature abundances indicated more dif-
ferences in the maize metabolome among different organ types
than among different genotypes (Fig. 2A, Table 2). The metabolic
fingerprint of the organ types was also reflected in the CSPP net-
work. In the CSPP networks, features that are candidate substrates
and products are linked via the selected candidate biotransforma-
tions. Consequently, compounds that belong to the same metabolic
class typically represent sub-networks within the CSPP network.
Coloring the nodes in the CSPP network, according to the organ
in which the abundance of the corresponding feature was the high-
est, revealed a pattern closely associated with the metabolite class-
based sub-networks (Fig. 5). For instance, indolics were more
abundant in the tassel as compared to other organs, and oligolig-
nols were more abundant in stem internodes. Based on the con-
structed CSPP networks, most specialized compound classes
prevailed in a restricted set of maize organs. A notable exception
were phenylpropanoids that were common in all organs (Table 2).

Among the phenylpropanoids, many p-coumarate esters/
amides, and to a lesser extent caffeate and ferulate esters/amides,
were observed. These phenylpropanoids were bearing moieties
derived from glycolaldehyde (in its hydrate form, i.e., ethanetriol),
2-hydroxyglutaric acid, 2-hydroxyadipic acid, isocitric acid, putres-
cine, hexaric acid, threonic/erythronic acid, shikimic acid, hexose,
quinic acid, glycerol, tyramine, and hydroxycitric acid. Many of
these acids and amines are chiral and are therefore of interest for
the chemical and pharmaceutical industries. For example, hydrox-
ycitric acid has received a lot of attention owing to its anti-obesity
effect [55,56] and as a promising agent for the treatment of kidney
stones [57,58]. High concentrations of hydroxycitric acid have been
found in a few tropical plant species such as Hibiscus sabdariffa [59]
and Garcinia species [60], and extracts from the latter are already
used as food ingredients or as dietary supplements [61,62].

4.4. A variety of auxin storage forms differentially accumulate in late
cob and tassel

A remarkable CSPP sub-network represented a variety of auxin-
related compounds that were almost solely present in the late cob
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and the tassel (Fig. 5). Most of these compounds were not only
never described in maize, but were also not present in the Pub-
chem database (Supplemental Data Set 1). Because the presence
of many of these auxin-related compounds was often associated
with specific maize organs, we used this class to illustrate the
potential of our findings in the construction of putative biosyn-
thetic pathways.

The conjugation of aspartate or glutamate to indole-3-acetic
acid (IAA), the core structure of the indolics, and to phenylacetic
acid (PAA), the core structure of the phenylethanoids, is an impor-
tant aspect of auxin homeostasis in plants [63,64]. Of these four
conjugates, only IAA aspartate and PAA aspartate were found in
this study. IAA aspartate was detected at higher levels in the late
cob than in the tassel, whereas the aspartate amide of PAA was
more abundant in the tassel. IAA and PAA are both auxins and have
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been proposed to be synthesized via parallel biosynthetic path-
ways starting from tryptophan and phenylalanine, respectively
(Fig. 6) [65,66]. In these pathways, a transamination is followed
by an oxidative decarboxylation [65,66]. For IAA, this pathway
occurs via TAA (TRP AMINOTRANSFERASE of ARABIDOPSIS) and
YUCCA family members [67]. For PAA biosynthesis, the transami-
nation step of phenylalanine might not be necessary because
phenylpyruvic acid is also a precursor of phenylalanine biosynthe-
sis, but the YUCCA family members do play a role [68]. In line with
the enrichment of the indolic and phenylethanoid metabolic
classes in late cob and tassel, several members of the TAA and
the YUCCA gene families are highly expressed in the cob and tassel
according to the Maize eFP browser [69], making them candidate
genes involved in the biosynthesis of IAA and PAA in the respective
tissues. In addition to the aspartate amides of IAA and PAA, two
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hexose derivates of hydroxyindole-3-acetic acid were present in
especially late cob and tassel: the hexose ester of 2-
hydroxyindole-3-acetic acid (2-hydroxylAA) was more abundant
in the tassel, whereas the hexoside of 5-hydroxyindole-3-acetic
acid (5-hydroxylAA) was prevalent in the late cob. The former
compound is likely the glucose ester of 2-hydroxylAA, and is
formed via the oxidation of IAA by DAO (DIOXYGENASE FOR AUXIN
OXIDATION) and a subsequent glucosylation by the uridine
diphosphate glycosyltransferase UGT74D1 [63]. The tassel also
showed high abundances of the hexose esters of PAA and hydrox-
yphenylacetic acid (HPAA). In maize, 2-hydroxyIAA is an interme-
diate in the biosynthesis of zeanoside C and, accordingly, the latter
compound was highly abundant in the tassel.

Hydroxylation of IAA might yield the aglycone of the 5-
hydroxylAA hexoside, yet such a reaction has not yet been docu-
mented to our knowledge. An alternative pathway might start
from serotonin (Fig. 6). In plants, serotonin biosynthesis involves
the decarboxylation of tryptophan to tryptamine, which is then
hydroxylated to serotonin. Despite being undetected in this study,
serotonin is known to be synthesized in maize [70]. Furthermore,
tryptamine is produced by tryptophan decarboxylase, and a mem-
ber of the associated gene family has been shown to be highly
expressed in the tassel and to a lesser extent in the cob [69]. In
addition, a tryptamine 5-hydroxylase, encoded by CYP71A1, which
converts tryptamine to serotonin, has been characterized in rice
[71] and the corresponding enzyme in maize could be annotated
when blasting the amino acid sequence via UniProt (https://
www.uniprot.org/blast/; 88.6% identity). In human metabolism,
once formed, serotonin can be converted to 5-hydroxyindole-3-
acetaldehyde and, finally, to 5-hydroxylAA by the subsequent
actions of monoamine oxidase (MAO) and aldehyde
dehydrogenase [72]. Some aldehyde dehydrogenase-encoding
genes have been shown to be highly expressed in the tassel and
to a lesser extent in cobs [69], yet their substrates are still
unknown. However, to date, no MAO-encoding gene is known in
plants. Consequently, although both the IAA-dependent and -
independent pathways are plausible routes for the biosynthesis
of 5-hydroxylAA, gene function analysis remains necessary to pin-
point which biosynthesis path is functional in plants. Nevertheless,
knowledge about the presence or absence of specific metabolites in
a particular organ is a crucial first step in the construction of puta-
tive biosynthetic pathways and in the understanding of the rele-
vance of these pathways in specific organs.

In conclusion, this study shows the benefit of combining differ-
ent types of CID spectra for structural characterization both via
hands-on spectral interpretation and via matching with spectral
databases. Despite concluding that spectral matching yielded hits
for only 1-2% of the spectra, the use of both MS/MS and MS" spec-
tral elucidation doubled the number of hits with public databases
as compared to the use of either type of CID spectrum alone. To
allow this spectral metadata analysis, a tool (RDynLib) was created
to align chromatograms from different instruments, to analyze the
multitude of recorded CID spectra, and to combine this with the
analysis of mass-difference networks, such as CSPP networks, for
structural characterization. This resulted in the structural charac-
terization of 427 of the 5,420 profiled compounds, of which most
had not been described in maize before. Towards the future, the
RDynLib package will further benefit from the increase in the num-
ber of CID spectra in spectral databases, as well as from the
increase in the number of features for which different types of
CID spectra are available. The resulting set of characterized com-
pounds revealed the nature of prevailing mass differences among
all features, representing enzymatic conversions, and also struc-
tural differences between well-known core molecules within spe-
cialized metabolism. The latter type of prevailing mass
differences is at least partially due to the common nature of the

1142

Computational and Structural Biotechnology Journal 19 (2021) 1127-1144

various decorations, e.g., methylation or oxygenation, and the ten-
dency of plants to concatenate specialized metabolite aglycone
structures into high-molecular-weight mixed glycosides.

By utilizing different types of CID spectra recorded under differ-
ent ionization modes, the DynLib database will aid the interpreta-
tion of structural features in future comparative metabolome
studies in maize (and, likely, other monocots). Besides the spectra
of 427 characterized compounds, all recorded unknown spectra are
available via an online webtool (https://bioit3.irc.ugent.be/dynlib/
). Using this database, the authors intend to continue their own
structural elucidation efforts, but welcome proposed structures,
which can be uploaded via the webtool associated with the DynLib
database, via the metabolomics community.

CRediT authorship contribution statement

Sandrien Desmet: Conceptualization, Formal analysis, Method-
ology, Software, Writing - original draft, Writing - review & editing.
Yvan Saeys: Conceptualization, Software, Writing - review & edit-
ing. Kevin Verstaen: Software, Writing - review & editing. Rebecca
Dauwe: Conceptualization, Methodology, Writing - review & edit-
ing. Hoon Kim: Formal analysis, Writing - review & editing. Clau-
diu Niculaes: Formal analysis, Methodology, Writing - review &
editing. Atsushi Fukushima: Writing - review & editing. Geert
Goeminne: Formal analysis, Writing - review & editing. Ruben
Vanholme: Conceptualization, Methodology, Writing - review &
editing. John Ralph: Formal analysis, Writing - review & editing.
Wout Boerjan: Conceptualization, Methodology, Writing - original
draft, Writing - review & editing. Kris Morreel: Conceptualization,
Formal analysis, Methodology, Software, Writing - original draft,
Writing - review & editing.

Acknowledgements

We thank Dr. Annick Bleys for proofreading and preparing the
manuscript, and Dr. Meng Peng for fruitful discussions. We also
thank Steven Vandersyppe (VIB Metabolomics Core Ghent), and
Kirin Demuynck for excellent assistance. This research is finan-
cially supported by the Vlaams Instituut voor Biotechnologie
(VIB) and Ghent University, by funding through the SBO projects
ARBOREF (Grant no. 140894) and BIOLEUM (Grant no. 130039),
by grants from the Fonds voor Wetenschappelijk Onderzoek Vlaan-
deren (FWO) for S.D. (151562), by the ERC-Advanced-Grant POP-
MET, by ERA-CAPS (BENZEX) for C.N., and, by grants from the
Database Integration Coordination Program by the National Bio-
science Database Center (Japan) and by Cabinet Office, Govern-
ment of Japan, Cross-ministerial Strategic Innovation Promotion
Program (SIP), “Technologies for Smart Bio-industry and Agricul-
ture” (funding agency: Bio-oriented Technology Research Advance-
ment Institution, NARO). JR and HK were funded by the DOE Great
Lakes Bioenergy Research Center (DOE Office of Science BER DE-
SC0018409). We also thank the Hercules program of Ghent Univer-
sity for the Synapt Q-Tof (Grant AUGE/014); the Bijzonder
Onderzoeksfonds-Zware Apparatuur of Ghent University for the
Fourier transform ion cyclotron resonance mass spectrometer
(174PZA05).

Conflict of interests
The authors declare that they have no conflict of interest.

Author contributions

SD and KM designed the research. SD, CN, GG, and KM per-
formed research. SD, RD, HK, JR, and KM analyzed the data. SD,


https://www.uniprot.org/blast/
https://www.uniprot.org/blast/
https://bioit3.irc.ugent.be/dynlib/

S. Desmet, Y. Saeys, K. Verstaen et al.

RV, and KM contributed new analytic tools. SD, AF, and KM con-
tributed new computational tools. KV and YS developed the data-
base and webtool. SD, RD, RV, KM, and WB wrote the paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.csbj.2021.01.004.

References

[1] Chen C, Somavat P, Singh V, Gonzalez de Mejia E. Chemical characterization of
proanthocyanidins in purple, blue, and red maize coproducts from different
milling processes and their anti-inflammatory properties. Ind Crop Prod
2017;109:464-75.

[2] Feltus F, Vandenbrink JP. Bioenergy grass feedstock: current options and
prospects for trait improvement using emerging genetic, genomic, and
systems biology toolkits. Biotechnol Biofuels 2012;5(1):80. https://doi.org/
10.1186/1754-6834-5-80.

[3] Luo Z, Li P, Cai Di, Chen Q, Qin P, Tan T, et al. Comparison of performances of
corn fiber plastic composites made from different parts of corn stalk. Ind Crop
Prod 2017;95:521-7.

[4] Vermerris W. Survey of genomics approaches to improve bioenergy traits in
maize, sorghum and sugarcane. ] Integr Plant Biol 2011;53:105-19.

[5] Buckler IV ES, Stevens NM. Maize origins, domestication, and selection. In:
Motjey TJ, Zerega N, Cross H, editors. Darwin’s harvest - New approaches to
the origins, evolution, and conservation of crops. New York: Columbia
University Press; 2006. p. 67-90.

[6] Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, et al. The B73
maize genome: complexity, diversity, and dynamics. Science 2009;326
(5956):1112-5.

[7] Strable J, Scanlon M]. Maize (Zea mays): a model organism for basic and applied
research in plant biology. Cold Spring Harb Protoc 2009;2009(10). pdb.emo132
pdb.emo132.

[8] Tenaillon MI, Sawkins MC, Long AD, Gaut RL, Doebley JF, Gaut BS. Patterns of
DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp
mays L.). Proc Natl Acad Sci USA 2001;98(16):9161-6.

[9] Castorina G, Persico M, Zilio M, Sangiorgio S, Carabelli L, et al. The maize
lilliputian1 (lil1) gene, encoding a brassinosteroid cytochrome P450 C-6
oxidase, is involved in plant growth and drought response. Ann Bot
2018;122:227-238.

[10] Xie Ke, Wu S, Li Z, Zhou Y, Zhang D, Dong Z, et al. Map-based cloning and
characterization of Zea mays male sterility33 (ZmMs33) gene, encoding a
glycerol-3-phosphate acyltransferase. Theor Appl Genet 2018;131(6):1363-78.

[11] Li F, Wang L, Zhang Z, Li T, Feng ], Xu S, et al. ZmSMR4, a novel cyclin-
dependent kinase inhibitor (CKI) gene in maize (Zea mays L.), functions as a
key player in plant growth, development and tolerance to abiotic stress. Plant
Sci 2019;280:120-31.

[12] Rai A, Yamazaki M, Saito K. A new era in plant functional genomics. Curr Opin
Syst Biol 2019;15:58-67.

[13] Saito K, Matsuda F. Metabolomics for functional genomics, systems biology,
and biotechnology. Annu Rev Plant Biol 2010;61(1):463-89.

[14] Metsamuuronen S, Sirén H. Bioactive phenolic compounds, metabolism and
properties: A review on valuable chemical compounds in Scots pine and
Norway spruce. Phytochem Rev 2019;18(3):623-64.

[15] Tanase C, Cosarca S, Muntean D-L. A critical review of phenolic compounds
extracted from the bark of woody vascular plants and their potential biological
activity. Molecules 2019;24(6):1182. https://doi.org/10.3390/molecules
24061182.

[16] Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai A. Flavonoids
and other phenolic compounds from medicinal plants for pharmaceutical and
medical aspects: an overview. Medicines 2018;5(3):93. https://doi.org/
10.3390/medicines5030093.

[17] Newman DJ, Cragg GM. Natural products as sources of new drugs over the
nearly four decades from 01/1981 to 09/2019. J Nat Prod 2020;83(3):770-803.

[18] Horai H, Arita M, Kanaya S, Nihei Y, Ikeda T, Suwa K, et al. MassBank: a public
repository for sharing mass spectral data for life sciences. ] Mass Spectrom
2010;45(7):703-14.

[19] Tautenhahn R, Cho K, Uritboonthai W, Zhu Z, Patti GJ, Siuzdak G. An
accelerated workflow for untargeted metabolomics using the METLIN
database. Nat Biotechnol 2012;30(9):826-8.

[20] Vinaixa M, Schymanski EL, Neumann S, Navarro M, Salek RM, Yanes O. Mass
spectral databases for LC/MS-and GC/MS-based metabolomics: state of the
field and future prospects. Trends Anal Chem 2016;78:23-35.

[21] Allen F, Greiner R, Wishart D. Competitive fragmentation modeling of ESI-MS/
MS spectra for putative metabolite identification. Metabolomics 2015;11
(1):98-110.

[22] Diithrkop K, Shen H, Meusel M, Rousu ], Bocker S. Searching molecular
structure databases with tandem mass spectra using CSI:FingerID. Proc Natl
Acad Sci USA 2015;112(41):12580-5.

[23] Heinonen M, Rantanen A, Mielikdinen T, Kokkonen ], Kiuru ], Ketola RA, et al.
FiD: a software for ab initio structural identification of product ions from

1143

Computational and Structural Biotechnology Journal 19 (2021) 1127-1144

tandem mass spectrometric data. Rapid Commun Mass Spectrom 2008;22
(19):3043-52.

[24] Rasche F, Svatos Ales, Maddula RK, Bottcher C, Bocker S. Computing
fragmentation trees from tandem mass spectrometry data. Anal Chem
2011;83(4):1243-51.

[25] Ridder L, van der Hooft JJ], Verhoeven S, de Vos RCH, Vervoort |, Bino RJ. In silico
prediction and automatic LC-MS" annotation of green tea metabolites in urine.
Anal Chem 2014;86(10):4767-74.

[26] Tsugawa H, Kind T, Nakabayashi R, Yukihira D, Tanaka W, Cajka T, et al.
Hydrogen rearrangement rules: computational MS/MS fragmentation and
structure elucidation using MS-FINDER software. Anal Chem 2016;88
(16):7946-58.

[27] van der Hooft JJ], Wandy J, Barrett MP, Burgess KEV, Rogers S. Topic modeling
for untargeted substructure exploration in metabolomics. Proc Natl Acad Sci
USA 2016;113(48):13738-43.

[28] Wolf S, Schmidt S, Miiller-Hannemann M, Neumann S. In silico fragmentation
for computer assisted identification of metabolite mass spectra. BMC Bioinf
2010;11:148.

[29] Wang M, Carver J], Phelan VV, Sanchez LM, Garg N, Peng Y, et al. Sharing and
community curation of mass spectrometry data with Global Natural Products
Social Molecular Networking. Nat Biotechnol 2016;34(8):828-37.

[30] de Hoffmann E. Tandem mass spectrometry: a primer. ] Mass Spectrom
1996;31(2):129-37.

[31] Breitling R, Ritchie S, Goodenowe D, Stewart ML, Barrett MP. Ab initio
prediction of metabolic networks using Fourier transform mass
spectrometry data. Metabolomics 2006;2(3):155-64.

[32] Jourdan F, Breitling R, Barrett MP, Gilbert D. MetaNetter: inference and
visualization of high-resolution metabolomic networks. Bioinformatics
2008;24:143-145.

[33] Aguilar-Mogas A, Sales-Pardo M, Navarro M, Guimera R, Yanes O. iMet: A
network-based computational tool to assist in the annotation of metabolites
from tandem mass spectra. Anal Chem 2017;89(6):3474-82.

[34] Watrous ], Roach P, Alexandrov T, Heath BS, Yang ]JY, Kersten RD, et al. Mass
spectral molecular networking of living microbial colonies. Proc Natl Acad Sci
USA 2012;109(26):E1743-52.

[35] Morreel K, Saeys Y, Dima O, Lu F, Van de Peer Y, Vanholme R, et al. Systematic
structural characterization of metabolites in Arabidopsis via candidate
substrate-product pair networks. Plant Cell 2014;26(3):929-45.

[36] Laitinen T, Morreel K, Delhomme N, Gauthier A, Schiffthaler B, Nickolov K,
et al. A key role for apoplastic H,0, in Norway spruce phenolic metabolism.
Plant Physiol 2017;174(3):1449-75.

[37] Li D, Heiling S, Baldwin IT, Gaquerel E. [lluminating a plant’s tissue-specific

metabolic diversity using computational metabolomics and information

theory. Proc Natl Acad Sci USA 2016;113(47):E7610-8.

Padilla-Gonzélez GF, Amrehn E, Frey M, Gémez-Zeled6n ], Kaa A, Da Costa FBD,

et al. Metabolomic and gene expression studies reveal the diversity,

distribution and spatial regulation of the specialized metabolism of yacén

(Smallanthus sonchifolius, Asteraceae). Int ] Mol Sci 2020;21(12):4555. https://

doi.org/10.3390/ijms21124555.

Morreel K, Ralph J, Kim H, Lu F, Goeminne G, Ralph S, et al. Profiling of

oligolignols reveals monolignol coupling conditions in lignifying poplar xylem.

Plant Physiol 2004;136(3):3537-49.

R Core Team. R: a language and environment for statistical computing.

Foundation for Statistical Computing, Vienna, Austria (http://www.R-project.

org/). 2017.

[41] Lé S, Josse ], Husson F. FactoMineR: an R package for multivariate analysis. ]
Stat Softw 2008;25:1-18.

[42] Chen H, Boutros PC. VennDiagram: a package for the generation
of highly-customizable Venn and Euler diagrams in R. BMC Bioinf 2011;
12:35.

[43] Sawada Y, Nakabayashi R, Yamada Y, Suzuki M, Sato M, Sakata A, et al. RIKEN
tandem mass spectral database (ReSpect) for phytochemicals: a plant-
specific MS/MS-based data resource and database. Phytochemistry 2012;82:
38-45.

[44] Wishart DS. Computational strategies for metabolite identification in
metabolomics. Bioanalysis 2009;1(9):1579-96.

[45] Vaniya A, Fiehn O. Using fragmentation trees and mass spectral trees for
identifying unknown compounds in metabolomics. Trends Anal Chem
2015;69:52-61.

[46] Kim S, Thiessen PA, Bolton EE, ChenJ, Fu G, Gindulyte A, et al. PubChem Substance
and Compound databases. Nucleic Acids Res 2016;44(D1):D1202-13.

[47] Demarque DP, Crotti AEM, Vessecchi R, Lopes JLC, Lopes NP. Fragmentation
reactions using electrospray ionization mass spectrometry: an important tool
for the structural elucidation and characterization of synthetic and natural
products. Nat Prod Rep 2016;33(3):432-55.

[48] Wang S, Alseekh S, Fernie AR, Luo J. The structure and function of major plant
metabolite modifications. Mol Plant 2019;12(7):899-919.

[49] Wilson AE, Matel HD, Tian Li. Glucose ester enabled acylation in plant
specialized metabolism. Phytochem Rev 2016;15(6):1057-74.

[50] Fraser CM, Thompson MG, Shirley AM, Ralph ], Schoenherr JA, Sinlapadech T,
et al. Related Arabidopsis serine carboxypeptidase-like sinapoylglucose
acyltransferases display distinct but overlapping substrate specificities. Plant
Physiol 2007;144(4):1986-99.

[51] Ciarkowska A, Ostrowski M, Starzynska E, Jakubowska A. Plant SCPL
acyltransferases: multiplicity of enzymes with various functions in
secondary metabolism. Phytochem Rev 2019;18(1):303-16.

[38]

[39]

[40]


https://doi.org/10.1016/j.csbj.2021.01.004
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0005
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0005
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0005
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0005
https://doi.org/10.1186/1754-6834-5-80
https://doi.org/10.1186/1754-6834-5-80
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0015
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0015
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0015
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0020
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0020
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0025
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0025
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0025
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0025
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0030
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0030
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0030
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0035
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0035
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0035
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0040
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0040
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0040
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0050
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0050
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0050
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0055
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0055
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0055
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0055
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0060
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0060
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0065
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0065
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0070
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0070
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0070
https://doi.org/10.3390/molecules24061182
https://doi.org/10.3390/molecules24061182
https://doi.org/10.3390/medicines5030093
https://doi.org/10.3390/medicines5030093
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0085
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0085
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0090
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0090
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0090
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0095
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0095
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0095
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0100
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0100
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0100
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0105
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0105
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0105
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0110
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0110
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0110
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0115
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0115
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0115
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0115
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0120
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0120
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0120
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0120
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0120
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0125
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0125
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0125
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0125
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0130
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0130
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0130
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0130
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0135
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0135
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0135
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0140
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0140
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0140
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0145
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0145
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0145
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0150
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0150
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0155
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0155
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0155
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0165
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0165
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0165
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0170
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0170
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0170
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0175
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0175
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0175
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0180
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0180
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0180
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0180
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0180
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0185
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0185
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0185
https://doi.org/10.3390/ijms21124555
https://doi.org/10.3390/ijms21124555
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0195
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0195
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0195
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0205
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0205
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0210
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0210
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0210
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0215
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0215
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0215
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0215
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0220
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0220
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0225
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0225
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0225
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0230
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0230
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0235
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0235
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0235
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0235
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0240
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0240
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0245
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0245
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0250
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0250
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0250
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0250
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0255
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0255
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0255

S. Desmet, Y. Saeys, K. Verstaen et al.

[52] Dima O, Morreel K, Vanholme B, Kim H, Ralph ], Boerjan W. Small glycosylated
lignin oligomers are stored in Arabidopsis leaf vacuoles. Plant Cell 2015;27
(3):695-710.

[53] Le Roy J, Huss B, Creach A, Hawkins S, Neutelings G. Glycosylation is a major
regulator of phenylpropanoid availability and biological activity in plants.
Front Plant Sci 2016;7:735.

[54] Martinoia E. Vacuolar transporters - Companions on a longtime journey. Plant
Physiol 2018;176(2):1384-407.

[55] Li S, Yang Z, Zhang H, Peng M, Ma H. (—)-Hydroxycitric acid influenced fat
metabolism via modulating of glucose-6-phosphate isomerase expression in
chicken embryos. ] Agric Food Chem 2019;67(26):7336-47.

[56] Li L, Zhang H, Yao Y, Yang Z, Ma H. (—)-Hydroxycitric acid suppresses lipid
droplet accumulation and accelerates energy metabolism via activation of the
adiponectin-AMPK signaling pathway in broiler chickens. ] Agric Food Chem
2019;67(11):3188-97.

[57] Kyada A, Mansuri N, Patel P. In vitro investigation of some alternative
therapeutic agents for antiurolithiatic activity. ] Pharm Res 2017;11:955-61.

[58] Kelland MA, Mady MF, Lima-Eriksen R. Kidney stone prevention: dynamic
testing of edible calcium oxalate scale inhibitors. Cryst Growth Des 2018;18
(12):7441-50.

[59] Da-Costa-Rocha I, Bonnlaender B, Sievers H, Pischel I, Heinrich M. Hibiscus
sabdariffa L. - A phytochemical and pharmacological review. Food Chem
2014;165:424-43.

[60] Jena BS, Jayaprakasha GK, Singh RP, Sakariah KK. Chemistry and biochemistry
of (-)-hydroxycitric acid from Garcinia. ] Agric Food Chem 2002;50(1):
10-22.

[61] Seethapathy GS, Tadesse M, Urumarudappa SKJ, V. Gunaga S, Vasudeva R,
Malterud KE, et al. Authentication of Garcinia fruits and food supplements
using DNA barcoding and NMR spectroscopy. Sci Rep 2018;8(1). https://doi.
0rg/10.1038/s41598-018-28635-z.

1144

Computational and Structural Biotechnology Journal 19 (2021) 1127-1144

[62] Semwal RB, Semwal DK, Vermaak I, Viljoen A. A comprehensive scientific
overview of Garcinia cambogia. Fitoterapia 2015;102:134-48.

[63] Casanova-Séez R, Vol U. Auxin metabolism controls developmental decisions
in land plants. Trends Plant Sci 2019;24(8):741-54.

[64] Gan Z, Fei L, Shan N, Fu Y, Chen J. Identification and expression analysis of
Gretchen Hagen 3 (GH3) in Kiwifruit (Actinidia chinensis) during postharvest
process. Plants 2019;8(11):473. https://doi.org/10.3390/plants8110473.

[65] Cook SD, Nichols DS, Smith ], Chourey PS, McAdam EL, et al. Auxin
biosynthesis: are the indole-3-acetic acid and phenylacetic acid biosynthesis
pathways mirror images?. Plant Physiol 2016;171:1230-41.

[66] Aoi Y, Tanaka K, Cook SD, Hayashi K-I, Kasahara H. GH3 auxin-amido
synthetases alter the ratio of indole-3-acetic acid and phenylacetic acid in
Arabidopsis. Plant Cell Physiol 2020;61:596-605.

[67] Dai X, Mashiguchi K, Chen Q, Kasahara H, Kamiya Y, Ojha S, et al. The
biochemical mechanism of auxin biosynthesis by an Arabidopsis YUCCA flavin-
containing monooxygenase. J Biol Chem 2013;288(3):1448-57.

[68] Sugawara S, Mashiguchi K, Tanaka K, Hishiyama S, Sakai T, Hanada K, et al.
Distinct characteristics of indole-3-acetic acid and phenylacetic acid, two
common auxins in plants. Plant Cell Physiol 2015;56(8):1641-54.

[69] Sekhon RS, Lin H, Childs KL, Hansey CN, Buell CR, et al. Genome-wide atlas of
transcription during maize development. Plant ] 2011;66:553-563.

[70] Erland LAE, Saxena PK. Beyond a neurotransmitter: the role of serotonin in
plants. Neurotransmitter 2017;4:e1538.

[71] Fujiwara T, Maisonneuve S, Isshiki M, Mizutani M, Chen L, Wong HL, et al.
Sekiguchi lesion gene encodes a cytochrome P450 monooxygenase that
catalyzes conversion of tryptamine to serotonin in rice. J Biol Chem
2010;285(15):11308-13.

[72] Jayamohananan H, Manoj Kumar MK, T P A. 5-HIAA as a potential biological
marker for neurological and psychiatric disorders. Adv Pharm Bull 2019;9
(3):374-81.


http://refhub.elsevier.com/S2001-0370(21)00008-8/h0260
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0260
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0260
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0265
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0265
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0265
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0270
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0270
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0275
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0275
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0275
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0275
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0280
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0280
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0280
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0280
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0280
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0285
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0285
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0290
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0290
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0290
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0295
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0295
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0295
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0300
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0300
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0300
https://doi.org/10.1038/s41598-018-28635-z
https://doi.org/10.1038/s41598-018-28635-z
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0310
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0310
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0315
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0315
https://doi.org/10.3390/plants8110473
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0325
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0325
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0325
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0335
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0335
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0335
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0340
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0340
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0340
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0350
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0350
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0355
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0355
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0355
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0355
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0360
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0360
http://refhub.elsevier.com/S2001-0370(21)00008-8/h0360

	Maize specialized metabolome networks reveal organ-preferential mixed glycosides
	1 Introduction
	2 Methods
	2.1 Growth, harvest and metabolite extraction conditions
	2.2 LC-MS profiling
	2.3 Data processing, database and RDynLib construction, and structural elucidation
	2.4 CSPP network construction and data analyses

	3 Results
	3.1 Adding LC-MS data to the DynLib database
	3.2 Added value of including both MS/MS and MSn spectra for structural elucidation
	3.3 Characterizing the maize specialized metabolome via RDynLib
	3.4 Mass differences of feature pairs
	3.5 Obtaining insight into organ-preferential biotransformations via CSPP networks

	4 Discussion
	4.1 Structural characterization is enhanced using spectral metadata
	4.2 Compound abundances as well as biotransformation frequencies reflect organ-preferential metabolism
	4.3 Phenylpropanoids are prominent in all five investigated maize organs
	4.4 A variety of auxin storage forms differentially accumulate in late cob and tassel

	CRediT authorship contribution statement
	ack20
	Acknowledgements
	Conflict of interests
	Author contributions
	Appendix A Supplementary data
	References


