TABLE 3.
Accuracy, overprediction, and underprediction of each of the predictive equations compared to RMR measured by Fitmate GS in participants.
| Male athletes |
Female athletes |
Males |
Females |
||||||||||||||||||||||||||
| A* |
OP+ |
UP++ |
A* |
OP+ |
UP++ |
A* |
OP+ |
UP++ |
A* |
OP+ |
UP++ |
||||||||||||||||||
| n | % | n | % | n | % | RMSE | n | % | n | % | n | % | RMSE | n | % | n | % | n | % | RMSE | n | % | n | % | n | % | RMSE | p** | |
| Harris-Benedict | 10 | 40 | 9 | 36 | 6 | 24 | 252 | 12 | 50 | 10 | 42 | 2 | 8 | 221 | 5 | 25 | 15 | 75 | 0 | 0 | 264 | 8 | 29 | 20 | 71 | 0 | 0 | 331 | 0.034 |
| Mifflina | 10 | 40 | 6 | 24 | 9 | 36 | 267 | 17 | 71 | 4 | 17 | 3 | 13 | 195 | 9 | 45 | 11 | 55 | 0 | 0 | 182 | 9 | 32 | 19 | 68 | 0 | 0 | 267 | 0.037 |
| Mifflinb | 15 | 60 | 2 | 8 | 8 | 32 | 419 | 14 | 58 | 4 | 17 | 6 | 25 | 298 | 16 | 80 | 2 | 10 | 2 | 10 | 212 | 13 | 46 | 13 | 46 | 2 | 7 | 167 | 0.218 |
| Schofield | 11 | 44 | 7 | 28 | 7 | 28 | 261 | 13 | 54 | 9 | 38 | 2 | 8 | 223 | 6 | 30 | 14 | 70 | 0 | 0 | 265 | 9 | 32 | 19 | 68 | 0 | 0 | 330 | 0.293 |
| Cunningham | 10 | 40 | 13 | 52 | 2 | 8 | 260 | 13 | 54 | 9 | 38 | 2 | 8 | 225 | 5 | 25 | 15 | 75 | 0 | 0 | 271 | 7 | 25 | 21 | 75 | 0 | 0 | 334 | 0.106 |
| Owen | 12 | 48 | 1 | 4 | 12 | 48 | 259 | 9 | 38 | 14 | 58 | 1 | 4 | 267 | 16 | 80 | 3 | 15 | 1 | 5 | 264 | 11 | 39 | 15 | 54 | 2 | 7 | 277 | 0.025 |
| Liu’s | 12 | 48 | 3 | 12 | 10 | 40 | 339 | 16 | 67 | 5 | 21 | 3 | 12 | 236 | 12 | 60 | 8 | 40 | 0 | 0 | 121 | 12 | 43 | 16 | 57 | 0 | 0 | 235 | 0.309 |
| De Lorenzo | 10 | 40 | 10 | 40 | 5 | 20 | 284 | 10 | 42 | 14 | 58 | 0 | 0 | 192 | 3 | 15 | 17 | 85 | 0 | 0 | 164 | 1 | 4 | 27 | 96 | 0 | 0 | 233 | 0.002 |
| Bernstein | 5 | 20 | 0 | 0 | 50 | 80 | 257 | 4 | 17 | 2 | 8 | 18 | 75 | 304 | 8 | 40 | 0 | 0 | 12 | 60 | 307 | 15 | 54 | 0 | 0 | 13 | 46 | 406 | 0.001 |
| Nelson | 15 | 60 | 2 | 8 | 8 | 32 | 270 | 8 | 33 | 2 | 8 | 14 | 58 | 209 | 16 | 80 | 2 | 10 | 2 | 10 | 118 | 16 | 57 | 2 | 7 | 10 | 36 | 137 | 0.001 |
| Johnstone | 13 | 52 | 6 | 24 | 6 | 24 | 274 | 13 | 54 | 7 | 29 | 4 | 17 | 252 | 11 | 55 | 9 | 45 | 0 | 0 | 115 | 10 | 36 | 18 | 64 | 0 | 0 | 137 | 0.457 |
| Roza | 6 | 24 | 11 | 44 | 8 | 32 | 310 | 9 | 38 | 15 | 63 | 0 | 0 | 232 | 8 | 40 | 11 | 55 | 1 | 5 | 133 | 7 | 25 | 21 | 75 | 0 | 0 | 294 | 0.517 |
**p < 0.05. Chi-squared test was used to compare the accurate predictions in participants grouped according to the gender and physical activity level.
RMSE was calculated to indicate the model’s predictive performance in our data.
*The percentage of participants predicted by the RMR equation within ± 10% of the RMR measured by Fitmate GS.
+The percentage of participants predicted by the RMR equation within > 10% of the RMR measured by Fitmate GS. ++The percentage of participants predicted by the RMR equation within < 10% of the RMR measured by Fitmate GS.
A, Accurate; OP, Over-Predicted; UP, Under-Predicted; RMSE, root-mean-squared prediction error.