Skip to main content
. 2021 Feb 3;4:28–44. doi: 10.1016/j.crfs.2021.01.002

Table 1.

Artificial Neural Network (ANN) applications in hyperspectral image analysis of food products.

Study Wavelength range (nm) Spectral pre-processing Image processing ANN characteristics
ANN Computational software Classification accuracy References
Network type Network topology
Training set: Validation set
Input layer
Hidden layer
Output layer
Number Nodes Number Nodes Number Nodes
Detection of mechanical damage in mushrooms 900–1700 Savitzky-Golay Second derivative Harris corner detection algorithm Polak–Ribie're conjugate gradient Back propagation 101 01 30 05 80:20 MATLAB R2012b 91% Rojas-Moraleda et al. (2017)
Estimation of wheat hardness (single kernel) 1000–2500 Savitzky-Golay first derivates (SGD1); mean centering (MC) and orthogonal signal correction (OSC) Image thresholding Two-layer Back Propagation neural Network (BPNN) 01 02 03 01 80:20 MATLAB 8.2 90% Erkinbaev et al. (2019)
Detection of cold injury in peaches 400–1000 Back-propagation feed-forward neural network 01 420 01 03 01 02 80:20 96% Pan et al. (2015)
Detection of adulteration in honey 400–1000 Savitzky-Golay algorithm (2nd-order polynomial with 3-point window) Otsu algorithm for image thresholding Back-propagation feed-forward neural network 01 01 10 01 70:30 MATLAB 95% Shafiee et al., 2016
Detection of mites in flour 400–800 Multiplication scatter correction (MSC); Successive projections algorithm (SPA) and ant colony optimization (ACO) Image thresholding Back Propagation Neural Network 01 01 05 01 03 67:33 MATLAB R2017b 98% He et al. (2020)
Detection of stored insects in rice and maize 400–1000 Normalization Otsu algorithm for image thresholding Back Propagation Neural Network 01 03 01 60:40 MATLAB R2009b 98% Cao et al. (2014)
Prediction of firmness in kiwi fruit 400–1000 Sawitzky–Golay algorithm with 2nd order polynomial Image thresholding Back-propagation feed-forward neural network 01 03 01 03 01 01 70:30 MATLAB 97% Siripatrawan et al. (2011)
Detection of chilling injury in apple 400–1000 Global thresholding Back-propagation feed-forward neural network 01 826 01 05 01 02 66:34 MATLAB 7.0 98.4% Elmasry et al. (2009)
Differentiation of wheat classes 900–1700 Image cropping and statistical mean centering BPNN
Wardnet BPNN
01
01
75
75
01
01
79
78
01
01
08
08
60:40 for BPNN; 70:30 for Wardnet BPNN MATLAB 7.0 90% Mahesh et al. (2008)
Identification of wheat classes 900–1700 Normalization Image cropping and thresholding Back propagation neural network 01 100 01 01 08 60:40 MATLAB R2006a 92.1% Choudhary et al. (2008)