Skip to main content
. 2021 Feb 3;4:28–44. doi: 10.1016/j.crfs.2021.01.002

Table 3.

Support Vector Machines (SVM) applications in hyperspectral image analysis of food products.

Study Wavelength range (nm) Spectral pre-processing Image processing SVM characteristics
SVM Computational software Classification accuracy References
Kernel function Parameter values/Pertinent particulars Cross validation Training set: Validation set
Detection of early decay in strawberry through prediction of total water-soluble solids 1000–2500 Standard normal variate correction (SNV); successive projection algorithm (SPA) Image masking Radial basis function Gamma (γ): 1
Penalty factor (c): 3.16
Five-fold 70:30 MATLAB R2014 94% Liu et al. (2019)
Detection and identification of fungal infection in cereals 400–1000 Successive projection algorithm (SPA) Image cropping and thresholding Radial basis function Grid search optimization method: Kernel parameter values Five-fold 67:33 99% Lu et al. (2020)
Classification of foodborne bacterial pathogens grown on agar plates 400–1000 Standard Normal Variate (SNV); CARS (Competitive Adaptive Weighted sampling) Image thresholding Radial basis function Optimization algorithm: Particle Swarm Optimization;
Kernel parameter (γ): 46.20;
Penalty factor (c): 1.45
Five-fold 70:30 MATLAB R2018a 98% Bonah et al. (2020)
Classification of infected maize kernels 900–1700 Successive projection algorithm (SPA)
Image cropping
Ostu segmentation and watershed algorithms Radial basis function Grid search optimization method: Kernel parameter values Five-fold 70:30 MATLAB R2013b 100% Chu et al. (2020)
Degree of aflatoxin contamination in peanut kernels 400–720 Fisher method: obtaining narrow band spectrum De-noising, contrast enhancement; Image thresholding Radial basis function Grid search optimization method: Kernel parameter values Five-fold 70:30 MATLAB R2015b 96% Zhongzhi et al. (2020)
Detection of black spot disease in pear 400–1000 1st order derivative, multiplicative signal correction (MSC), and mean centering Image segmentation: Spectral angle mapper Radial basis function Five-fold 70:30 MATLAB R2017a 98% Pan et al. (2019)
Identification of adulterated cooked millet flour 900–1700 CARS (Competitive Adaptive Weighted sampling) Image thresholding Radial basis function Grid search optimization method: Kernel parameter values Ten-fold 67:33 MATLAB R2011b 100% Shao et al. (2018)
Determination and visualization of soluble solids content in winter jujubes Spectral range 1: 400–1000; Spectral range 2:
900–1700
Wavelet transform and moving average smoothing; area normalization; successive projection algorithm (SPA) Image segmentation: mask creation Radial basis function on LS-SVM Regularization parameter (γ): 5.750 ​× ​107;
Kernel parameter (σ2): 9.760 ​× ​104
70:30 MATLAB R2017b Spectral range 1: 89%; Spectral range 2: 87% Zhao et al. (2020)
Classification of maize seed 400–1000 Normalization Image segmentation: Adaptive threshold segmentation Radial basis function Ten-fold 50:50 MATLAB R2009b 94% Xia et al. (2019)
Determination of viability of corn seed 1000–2500 Standard normal variate (SNV), Savitzky-Golay 2nd derivative Image thresholding Linear basis function Ten-fold 70:30 100% Wakholi et al. (2018)