Table 3.
Study | Wavelength range (nm) | Spectral pre-processing | Image processing | SVM characteristics |
SVM Computational software | Classification accuracy | References | |||
---|---|---|---|---|---|---|---|---|---|---|
Kernel function | Parameter values/Pertinent particulars | Cross validation | Training set: Validation set | |||||||
Detection of early decay in strawberry through prediction of total water-soluble solids | 1000–2500 | Standard normal variate correction (SNV); successive projection algorithm (SPA) | Image masking | Radial basis function | Gamma (γ): 1 Penalty factor (c): 3.16 |
Five-fold | 70:30 | MATLAB R2014 | 94% | Liu et al. (2019) |
Detection and identification of fungal infection in cereals | 400–1000 | Successive projection algorithm (SPA) | Image cropping and thresholding | Radial basis function | Grid search optimization method: Kernel parameter values | Five-fold | 67:33 | – | 99% | Lu et al. (2020) |
Classification of foodborne bacterial pathogens grown on agar plates | 400–1000 | Standard Normal Variate (SNV); CARS (Competitive Adaptive Weighted sampling) | Image thresholding | Radial basis function | Optimization algorithm: Particle Swarm Optimization; Kernel parameter (γ): 46.20; Penalty factor (c): 1.45 |
Five-fold | 70:30 | MATLAB R2018a | 98% | Bonah et al. (2020) |
Classification of infected maize kernels | 900–1700 | Successive projection algorithm (SPA) Image cropping |
Ostu segmentation and watershed algorithms | Radial basis function | Grid search optimization method: Kernel parameter values | Five-fold | 70:30 | MATLAB R2013b | 100% | Chu et al. (2020) |
Degree of aflatoxin contamination in peanut kernels | 400–720 | Fisher method: obtaining narrow band spectrum | De-noising, contrast enhancement; Image thresholding | Radial basis function | Grid search optimization method: Kernel parameter values | Five-fold | 70:30 | MATLAB R2015b | 96% | Zhongzhi et al. (2020) |
Detection of black spot disease in pear | 400–1000 | 1st order derivative, multiplicative signal correction (MSC), and mean centering | Image segmentation: Spectral angle mapper | Radial basis function | – | Five-fold | 70:30 | MATLAB R2017a | 98% | Pan et al. (2019) |
Identification of adulterated cooked millet flour | 900–1700 | CARS (Competitive Adaptive Weighted sampling) | Image thresholding | Radial basis function | Grid search optimization method: Kernel parameter values | Ten-fold | 67:33 | MATLAB R2011b | 100% | Shao et al. (2018) |
Determination and visualization of soluble solids content in winter jujubes | Spectral range 1: 400–1000; Spectral range 2: 900–1700 |
Wavelet transform and moving average smoothing; area normalization; successive projection algorithm (SPA) | Image segmentation: mask creation | Radial basis function on LS-SVM | Regularization parameter (γ): 5.750 × 107; Kernel parameter (σ2): 9.760 × 104 |
– | 70:30 | MATLAB R2017b | Spectral range 1: 89%; Spectral range 2: 87% | Zhao et al. (2020) |
Classification of maize seed | 400–1000 | Normalization | Image segmentation: Adaptive threshold segmentation | Radial basis function | – | Ten-fold | 50:50 | MATLAB R2009b | 94% | Xia et al. (2019) |
Determination of viability of corn seed | 1000–2500 | Standard normal variate (SNV), Savitzky-Golay 2nd derivative | Image thresholding | Linear basis function | – | Ten-fold | 70:30 | – | 100% | Wakholi et al. (2018) |