Skip to main content
. 2021 Feb 3;4:28–44. doi: 10.1016/j.crfs.2021.01.002

Table 5.

Random Forest (RF) applications in hyperspectral image analysis of food products.

Study Wavelength range (nm) Spectral pre-processing Image processing Random Forest characteristics
RF Computational software Classification accuracy References
Number of decision trees Training set: Validation set
Detection of scab disease on potatoes 900–1700 Greedy Stepwise; Image thresholding: Otsu algorithm; Gaussian blurring cluster 500 75:25 WEKA 97% Dacal-Nieto et al. (2011)
Detection of bruises in apple 400–1000 Image thresholding: Otsu algorithm 130 75:25 PYTHON 100% Che et al. (2018)
Identification of rice seed cultivar 900–1700 Image thresholding 75:25 MATLAB R2009b 100% Kong et al. (2013)
Classification of degree of bruising in apples 400–1000 Standard normal variate (SNV), 1st Derivative, Savitzky-Golay (SG) smoothing Image thresholding 70:30 MATLAB 9.0;
PYTHON
92% Tan et al. (2018)
Determination of honey floral origin 400–1000 Image thresholding 70:30 MATLAB R2012a 92% Minaei et al. (2017)
Inspection for varietal purity of rice seed 900–1700 Image thresholding 500 75:25 MATLAB 84% Vu et al. (2016)
Identification of freezer burn on frozen salmon surface 900–1700 Standard normal variate (SNV) Image thresholding 50 75:25 MATLAB R2015b 98% Xu et al. (2016)
Detection and classification of virus on tobacco leaves 400–1000 Standard normal variate (SNV); Successive projections algorithm (SPA) Image thresholding 71 67:33 MATLAB 85% Zhu et al. (2017)
Discrimination of kiwifruits treated with different concentrations of forchlorfenuron 900–1700 Standard normal variate (SNV); Successive projections algorithm (SPA) Image thresholding 200 67:33 MATLAB R2012a 94% Dong et al. (2017)
Detection of fungal infection in strawberry 400–1000 Baseline correction; Savitzky-Golay second derivate Image thresholding 10 75:25 WEKA 89% Siedliska et al. (2018)