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To the Editor, 

COVID-19 resemble immune dysregulation conditions, with hyper- 
activated immune system and cytokine storm [1,2]. In relation, molec-
ular mimicry is drawing attention among possible mechanisms of 
autoimmune phenomena in COVID-19 [3–10]. Kanduc and Shoenfeld 
[11–16] searched related potential adverse events and peptide sharing 
between proteins of human and such pathogens, including SARS-CoV-2 
[12–14]. In line with those studies, here it is aimed to draw attention to 
7–9 residue matches in several known human proteins with a 15mer 
palindromic SARS-CoV-2 peptide (Table 1). Respective aligned se-
quences are predicted to contain peptides that both bind strongly to the 
same MHC supertype representative, based on predictions by 
NetMHCcons 1.1 and/or NetCTLpan 1.1 tools [17,18]. 

Associated diseases of some of those proteins listed in Table 1 are 
obtained from the human gene database GeneCards [20]. Accordingly, 
associated diseases of neuronal acetylcholine receptor subunit alpha-2 
associated diseases involve Epilepsy and Nocturnal Frontal Lobe, 4, 
and Autosomal Dominant Nocturnal Frontal Lobe Epilepsy; that of 
Arginyl-tRNA synthetase-like involve Pontocerebellar Hypoplasia 6, 
Type 6 and Type 1; that of Tsukushin involve Barre-Lieou Syndrome and 
Spondylolisthesis; that of Golgi pH regulator B involve Chromosome 
1Q21.1 Deletion Syndrome, 1.35-Mb and Hemochromatosis, Type 2A; 
that of Phospholipid phosphatase-related protein type 5 involve deaf-
ness, Autosomal Dominant 1, and Bardet-Biedl Syndrome 10; that of 
Solute carrier family 15 member 5 involve Dicarboxylic Aminoaciduria 
and Hydranencephaly; that of Adenosine receptor A2b involve Priapism 
and Cholera; that of Slit homolog 2 protein involve Cakut and Crohn’s 
Colitis; that of Solute carrier family 35 member B1 involve Dicarboxylic 
Aminoaciduria and Hydranencephaly; that of Metabotropic glutamate 
receptor 5 involve Fragile X Syndrome and Fragile X-Associated 
Tremor/Ataxia Syndrome; that of Protein crumbs homolog 1 involve 
Leber Congenital Amaurosis 8 and Retinitis Pigmentosa 12. Relation-
ships of those proteins with autoimmunity can be mentioned further. E. 

g., plasminogen activation system has important functions, and its 

deregulation is connected to pathological conditions like cancer, bac-
terial infection, fibrosis, neurogenerative diseases, muscular dystrophy, 
and rheumatoid arthritis [21]. Besides, elevated plasmin(ogen) was 
suggested to be a risk factor for COVID-19 susceptibility [22]. Plas-
minogen receptor KT is a membrane protein, expression of which in-
creases on the surface upon inflammatory stimuli, like in case of several 
other plasminogen receptors [21]. Its contribution to the inflammatory 
diseases, together with the cell-surface associated plasmin activity, is yet 
to be elucidated, particularly in conditions where macrophages play a 
preeminent role in the pathogenesis, for being highly expressed at the 
proinflammatory macrophages [21]. Examples of such diseases are 
microglial cells and neuroinflammatory disease, Kupfer cells and hepa-
totoxic injury, Mi-type adipose tissue macrophage and obesity [21]. 
Another one, adenosine receptor A2b was suggested to play a role in 
inflammation [23], and immunoglobulin heavy chain variable 5–51, 
was reported to be among the modulated-genes in the patients with 
systemic sclerosis, which is characterized by immune system alterations, 
for being an autoimmune connective tissue disease [24]. Immunoglob-
ulin heavy chain variable 5–51 is also among the 115 genes that are co- 
occurring with the disease autoimmune hemolytic anemia, in the ab-
stracts of biomedical publications from the DISEASES Text-mining Gene- 
Disease Association Evidence Scores dataset [25]. Last, antibodies 
against metabotropic glutamate receptor 5 is among the antibodies that 
are possibly associated with autoimmune encephalitis [26,27]. In-
hibitors of metabotropic glutamate 5 receptor were offered as a thera-
peutic strategy to fight against COVID-19 [28], and it was suggested that 
the therapeutic effect would be acting through interfering with the viral 
hijacking of the host protein synthesis [28]. It is worth to mention in the 
end that, other than one immunoglobulin heavy chain junction region 
(sequence ID MCG41834.1), the highest statistical significance in the 
alignments are observed for the peptides of slit homolog 2 protein and 
the solute carrier family proteins, among the proteins that are 
mentioned above. 
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Table 1 
Human proteins that align with SARS-CoV-2 peptide CFLGYFCTCYFGLFC [19] with more than 7 residue matches. They are predicted to contain epitopes with at least 5 
residue matches to the respective epitope regions in the query. Alignments are displayed as they are presented in the original file, but matching residues are written 
bold. Those residues in the predicted epitope parts are still bold if present. Yet they are further underlined if present in both query and subject epitopes. Gaps in the 
alignments are not shown in the epitopes. Numbers in front of the epitope pairs indicate the HLA allele and the predictor, as specified at the title row. However, only the 
epitopes predicted by NetMHCcons are displayed when significant predictions that are indicated at both 1 and 2, or 3 and 4, are present.  

Alignments, top: 
query 

1 HLA-A*24:02, 
NetMHCcons 

3 HLA-A*02:01, 
NetMHCcons 

Protein name 

(Matches in bold) 2 HLA-A*24:02, 
NetCTLpan 

4 HLA-A*01:01, 
NetCTLpan 

Sequence ID (only the 1st) 

CFLGYFCTCYFGLFC 1 CFLGYFCTCYFGLF   hCG1995581, partial 
CFSSYF——FLLFC 2 CFSSYFFLLF   EAW57092.1 
CFLGYFCTCYFGLF 1 CFLGYFCTCYFGLF   Immunoglobulin heavy chain junction region 
CFVG—SC-FGLF 2 CFVGSCFGLF   MON77051.1 
CFLGYFCTCYFGLF 1 CFLGYFCTCYFGLF   Neuronal acetylcholine receptor subunit alpha-2 
CFLG—T–IGLF 2 CFLGTIGLF   NP_001334636.1 
CFLGYFCTCYFGLF 1 CFLGYFCTCYFGLF 3 FLGYFCTCYFGL arginyl-tRNA synthetase-like, isoform CRA_b, partial 
CFL–FI–YFILF 2 CFLFIYFILF  FLFIYFILF EAW48585.1 
FLGYFCT—CYFGLFC   4 FLGYFCTCY immunoglobulin heavy chain variable region, partial 
FIGY- 

CSSTSCYTGGFC    

FIGYCSSTSCY CEF94348.1 

CFLGYFCTC—YFGLF 1 CFLGYFCTCYFGLF   unnamed protein product; E2IG4; tsukushin isoform b precursor 
CFPG–CQCEVETFGLF  CFPGCQCEVETFGLF   BAG52371.1; AAF09483.1; NP_001245139.1 
FLGYFCTCYFGLFC   3 FLGYFCTCYFGL G protein-coupled receptor 89C, partial; Golgi pH regulator B; unnamed protein 

product; Golgi pH regulator A 
FLGYF——FSIYC   4 FLGYFFSI CAI17085.1; NP_001337112.1; BAG63613.1; NP_001091082.2 
FLG-YFCTCYFGLF   3 FLGYFCTCYFGL unnamed protein product; PAP2D protein, partial; Phospholipid phosphatase- 

related protein type 5 
FLGIY–T–FGLF    FLGIYTFGL BAG58540.1; AAH40174.1; XP_011539140.1 
FLGYFCTCYFGLF 1 GYFCTCYFGLF   Solute carrier family 15 member 5 
FLEYFSTC—LF 2 EYFSTCLF   NP_001164269.1 
CFLGYFCTCYFGL   3 FLGYFCTCYFGL Immunoglobulin heavy chain junction region 
CALG—TCYYGL    ALGTCYYGL MOL37243.1 
FLGYFCTCY-FGLF   3 FLGYFCTCYFGL Phospholipid phosphatase-related protein type 2 
FLG——VYSFGLF    FLGVYSFGL XP_024307423.1 
CFLGYFCTCYFGL 1 CFLGYFCTCYFGLF 3 FLGYFCTCYFGL Immunoglobulin heavy chain junction region 
CYLGYW—YFDL 2 CYLGYWYFDL  YLGYWYFDL MCC33910.1 
CFLGYFCTCYFGL   3 FLGYFCTCYFGL Immunoglobulin heavy chain junction region 
CFLHY——YYGL    FLHYYYGL MOQ87140.1 
FLGYFCTCYFGLF 1 GYFCTCYFGLF   Adenosine receptor A2b 
FLGY–MVYFNFF 2 GYMVYFNFF   EAX04485.1 
FLGYFCTCYFGLF   3 FLGYFCTCYFGL [Protein ADP-ribosylarginine] hydrolase-like protein 1 
FLGSLCT—ALF    FLGSLCTAL NP_954631.1 
FLGYFCTCYFGLF 2 GYFCTCYFGLF 3 FLGYFCTCYFGL Transmembrane protein 250 
FLLYF-SC–SLF  LYFSCSLF  FLLYFSCSL NP_001243455.1 
FLGYFCTCYFGL 1 GYFCTCYFGLF   chromosome 9 open reading frame 46; Plasminogen receptor (KT) 
FLKYFGT-FFGL 2 KYFGTFFGL   EAW58764.1; XP_005251569.1 
FL-GYFCTCYFGL 1 GYFCTCYFGLF 3 FLGYFCTCYFGL Immunoglobulin heavy chain junction region 
FLTGYYATPYFDL 2 GYYATPYFDL 4 FLTGYYATPYFDL MOM08080.1 
LGYFCT—CYFGLF 1 GYFCTCYFGLF   Immunoglobulin heavy chain junction region 
LGY-CSSTSCYFGFF 2 GYCSSTSCYFGFF   MCG41834.1 
GYFCTC—YFGLFC 1 GYFCTCYFGLF   Slit homolog 2 protein 
GYTCICPEGYSGLFC  GYTCICPEGYSGLF   XP_011512212.2 
FLGYFCTCYFGL   3 FLGYFCTCYFGL Immunoglobulin heavy chain junction region 
FLGY——YYGL    FLGYYYGL MOP50498.1 
CFLGYFCTCYF 2 CFLGYFCTCYF 4 FLGYFCTCY unnamed protein product; Solute carrier family 35 member B1 
CFLGVF-VCYF  CFLGVFVCYF  FLGVFVCY BAG58831.1; XP_011522481.1 
LGYFCTCYFGL 2 GYFCTCYFGL   Chain A, Metabotropic glutamate receptor 5, Lysozyme and Endolysin 
LGYLCT–FXL  GYLCTFXL   4OO9_A and 6FFH_A 
LGYFCTCYFGL   4 FLGYFCTCY Immunoglobulin gamma 2 heavy chain variable region, partial 
LGTF-TYYYGL    LGTFTYYY ADM43945.1 
GYFCTCYFGLF 1 GYFCTCYFGLF   hypothetical protein; Protein crumbs homolog 1 
GYSCLC-FGNF 2 GYSCLCFGNF   CAE45845.1; XP_011507671.1 
GYFCTCYFGL 2 GYFCTCYFGL   Immunoglobulin heavy chain junction region 
GYFY–YFGL  GYFYYFGL   MOL71978.1 
GYFCTCYFGL 2 GYFCTCYFGL   Immunoglobulin heavy chain junction region 
GYFTTGYFDL  GYFTTGYFDL   MOM22920.1 
GYFCTCYF 1 GYFCTCYFGLF   hCG2028737 
GYFCTNYF 2 GYFCTNYF   EAW73174.1  
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