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Abstract

Numerous studies have established that estimated brain age, as derived from statistical models 

trained on healthy populations, constitutes a valuable biomarker that is predictive of cognitive 

decline and various neurological diseases. In this work, we curate a large-scale heterogeneous 

dataset (N = 10,158, age range 18 - 97) of structural brain MRIs in a healthy population from 

multiple publicly-available sources, upon which we train a deep learning model for brain age 

estimation. The availability of the large-scale dataset enables a more uniform age distribution 

across adult life-span for effective age estimation with no bias toward certain age groups. We 

demonstrate that the age estimation accuracy, evaluated with mean absolute error (MAE) and 

correlation coefficient (r), outperforms previously reported methods in both a hold-out test set 

reflective of the custom population (MAE = 4.06 years, r = 0.970) and an independent life-span 

evaluation dataset (MAE = 4.21 years, r = 0.960) on which a previous study has evaluated. We 

further demonstrate the utility of the estimated age in life-span aging analysis of cognitive 

functions. Furthermore, we conduct extensive ablation tests and employ feature-attribution 

techniques to analyze which regions contribute the most predictive value, demonstrating the 

prominence of the frontal lobe as well as pattern shift across life-span.

In summary, we achieve age estimation performance comparable to previous studies but with a 

more heterogenous dataset confirming the efficacy of deep learning and the added utility of 

training with data both in larger number and more uniformly distributed than in previous studies. 

We demonstrate the regional contribution to our brain age predictions through multiple routes and 
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confirm the association of divergence between estimated and chronological brain age with 

neuropsychological measures.
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1. Introduction

Age estimation is the task of estimating an individual’s age based on a set of other 

covariates. In particular, a large body of research focuses on the task of predicting brain age 

based on imaging studies[1, 2, 3]. In addition to its utility in studying the aging process 

itself, estimated age, as derived from models trained on a healthy population, has emerged as 

a useful biomarker for diseases[4]. Specifically, the divergence of one’s estimated age from 

chronological age has been associated with various diseases, especially those thought to 

mimic an advanced age state[5, 6].

Typically, models for estimating brain age are trained on datasets representing a normal 

aging population free of obvious disease. When subsequently applied on (possibly 

abnormal) participants, predicted brain age has been linked to education and self-reported 

physical activity [7] and has been utilized to characterize diseases including Alzheimer’s 

Disease (AD) [8], schizophrenia [9], traumatic brain injury [10], etc., where deviation from 

normal aging trajectory occurs alongside disease state. Related to this, healthy individuals 

are generally recruited such that their age overlap with the age range of the disease being 

studied; that is, healthy controls for schizophrenia studies will be younger than those for 

AD. When creating a selection of structural neuroimaging it is likely that the source data 

will oversample certain age ranges.

There are three components necessary to determine brain age with this paradigm: 1) 

covariates: the measured brain characteristics which serve as inputs to the model, 2) 

dataset: the precise cohort of normal aging participants upon which the model is trained, 3) 

model: the precise algorithms used to estimate the brain age given the available covariates.

While brain characteristics can be derived via many methods, neuroimaging is the most 

common and comprehensive way to characterize the “brain state” in vivo. Within 

neuroimaging, past studies have addressed EEG (Electroencephalogram) [11], DTI 

(diffusion tensor imaging) [12], and resting state BOLD fMRI (blood-oxygen-level 

dependent functional MRI) [13], which reflect different physiological brain measures. 

However, T1-weighted (T1w) structural MRI, which reveals features of the underlying 

anatomical characteristics of the brain, including gray and white matter delineation and gyral 

and sulcal patterns, is the most common modality in brain age estimation research. Imaging-

derived neuroanatomical characteristics are biomarkers particularly sensitive to the aging 

process [14]. Practically, as one most widely available and standardized neuroimaging 

modalities, T1w structural MRI can be easily acquired for a large population. And within 

structural MRI domain, studies have used derived summary variables such as regional 
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volumes or thickness estimation [15], requiring additional software processing to generate 

such values, and also unprocessed MRI scans [16].

We believe that, for these tools to be broadly useful, they must be trained on adequately 

diverse datasets that reflect the diversity of the populations on which the model might 

potentially be deployed. This range of population can include location, scanner, protocol, 

recruitment criteria and age. In this study, we propose using a composite dataset aggregated 

from several publicly available multi-center neuroimaging datasets, representing a diverse 

healthy population. This healthy study population is both larger in scale than those 

investigated by most previous age estimation studies and specifically designed to enable 

training age estimation models, and their evaluation, with an approximately uniform age 

distribution across the adult life span.

Lastly, given a study population and selected brain characteristics, the age is estimated based 

on statistical machine learning techniques. Another way to formulate the age estimation 

problem is to extract generalizable features from the brain that best capture the 

chronological age of a person provided the individual is undergoing a typical aging process 

that is present in a general healthy population. Numerous traditional machine learning 

methods have been proposed for age estimation including relevance vector machines [17, 

18], Gaussian processes [19, 20], random forests [21], hidden Markov models [22], and non-

negative matrix factorization [23].

More modern deep learning based methods are especially well suited to this task provided 

enough training data, and have been previously applied by [16] who demonstrated favorable 

performance. Interpretability is a critical aspect of any deep neural network based method. 

We seek not only to achieve predictive performance, but also to derive insights by 

understanding which features are most predictive. In this work, we explore regional 

contributions in the regression task by considering both feature ablation experiments and an 

activation map based post hoc interpretation method.

In summary, we utilize a 3D deep convolutional neural network based regression model to 

estimate age using T1w structural MRI volumes from a diverse multi-study population that 

is sampled with even age distribution across adult age span. We seek to extend and improve 

upon existing age-prediction studies by evaluating uniform and non-uniform age 

distributions in training and by performing analyses examining the regional contribution of 

prediction. This model performs well in both the hold-out test set from the same population 

and also in an independent life-span evaluation dataset. The deviance of the estimated age 

from chronological age is linked to neuropsychological and neuromorphometric measures. 

We further demonstrate the involvement of the frontal lobe in brain age estimation, and the 

pattern variability across life-span.

2. Method

In this section, we first describe the population and the experimental setup used in this study. 

We then describe the MRI pre-processing steps and the convolutional neural network used to 

estimate age. Next, given our learned model for estimating brain age, we present analysis 
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that associates the divergence of the estimated age from the chronological brain age with 

neuropsychological and neuromorphometric measures. Finally, we describe multiple modes 

of regionality analysis for identifying which regions are most predictive. These consist of 

both ablation experiments and an extension of the class activation mapping method for 

interpreting feature importance in deep networks to the regression setting.

2.1. Study Population

It is necessary to build an adequate neuroimaging dataset for age prediction in the full adult 

life span, especially given study recruitment criteria the dataset is not necessarily evenly 

distributed across age. Increased participation in open data consortia and imaging datasets 

greatly facilitates the collection of such data. In this work, we collect more than 30,000 T1w 

MRI scans from multiple open neuroimaging datasets. All scans were acquired for studies 

approved by local institutional review board, research ethics committee, or human 

investigations committees. The list of the datasets used in this study with the full names and 

sources are listed in supplementary Table S2. Among those, we only include participants 

with clear indication of normal neurological evaluations contingent on the individual data 

providers criteria for a subject that is considered free of disease. Specifically, we exclude 

participants with any neurological or psychiatric disease, and also participants with no 

available diagnosis label. We also chose 18 as the minimum age to cover adulthood and also 

to avoid the neurodevelopmental stage. This results in 10,158 MRI sessions from 6,142 

unique participants, the statistics are summarized in Table 1.

However, as shown in Figure 1A and B, where we illustrate the age distribution of the 

10,158 sessions and 6,142 participants respectively, the age distribution of the population is 

poorly balanced. Although there are studies covering the full age span including normal 

aging studies Cam-CAN [24], IXI, SALD [25], DLBS [26], OASIS-1 [27], and consortium-

based studies such as CoRR [28], SchizConnect [29], many of the public imaging studies 

either focused on age-related disease in the older adult population including ADNI, AIBL 

[30], OASIS-2 [31], PPMI [32], NIFD; or on young participants including BGSP [33], 

SLIM [34]. To alleviate the potential bias toward a certain age segment, we sought to 

balance the age distribution that we ultimately use in the training population.

In this study, when constructing the dataset to be uniform across age-span, we adopt both 

‘oversampling’ and ‘undersampling’. Briefly, we oversample participants from age ranges 

with fewer participants by including the longitudinal follow-up sessions from the same 

participants, which could be regarded as a natural augmentation. For age ranges with more 

participants, we only include one scan per subject to increase the variability of the sample. If 

that number is still above the minimum across age bins, we further undersample stratified on 

confounding factors including acquisition site and gender.

We stratify the populations into age bins and use the bin with the minimum number of 

participants as the basis number. The age bins used in this study are [18, 20), [20, 25), [25, 

30), … , [85, 90), [90, 100).

One interesting observation is that the [35, 40), [40, 45) are the two age bins with fewest 

number of participants, so we use the number of participants in this age segment as the base 
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level and allow repeated scans from same participants. The other age bins having multiple 

scans per subject are the two age bins at the tail end: [85, 90) and [90, 100], because of the 

relative lower number in these two age bins. We undersample the participants in all other 

bins.

The final dataset consists of 2,852 MRI sessions from 2,694 participants covering age range 

18-97, with the mean age 54.34 years old, standard deviation 21.16 years old. The age 

distribution of the evenly-sampled adult age span dataset is shown in Figure 1C.

2.2. Experimental setup

We design training, validation and test sets of participants for model training and evaluation. 

We build a validation set reflecting of general MRI scan distribution and population 

distribution. Similarly, a test set representative of the same population as the training and 

validation sets is important for evaluation.

Given this uniform age-distributed dataset we described in the section above, we perform 

stratified split based on acquisition sites and gender within each age bin: 8/10 as training set, 

1/10 as validation set, 1/10 as test set, ensuring non-overlapping participants and similar 

distribution of age, gender and acquisition sites in the training, validation and test sets.

We also evaluate our model by testing it on an independent test set: Cam-CAN. Aiming to 

study the normal aging process through the adult life-span, Cam-CAN provided even age 

distribution across adult life-span and was previously used as an independent testing sample 

in another age estimation study [19]. We note that the trained model should be applicable to 

any similarly acquired structural neuroimaging within this age range. However, the result on 

an independent sample, which usually reflects a homogeneous population or acquisition 

setting, might be over- or under-optimistic.

Additionally, we also perform a test-retest experiment using an independent dataset of three 

participants scanned 40 times in 30 days [35] to evaluate the reproducibility of the model.

2.3. MRI Preprocessing

We apply basic pre-processing steps including nonparametric nonuniform intensity 

normalization (N3) based bias field correction [36], brain extraction using FreeSurfer [37], 

and affine registration to the 1mm3 isotropic MNI152 brain template with trilinear 

interpolation using FSL FLIRT [38]. The dimension of the 3D volume is 182 × 218 × 182 

(LR×AP×SI).

All the preprocessed scans were checked by a well-trained reviewer with visual inspection. 

Scans having obvious and severe MRI artifacts, brain extraction failure or poor registration 

were excluded.

2.4. Convolutional neural network

We use a three-dimensional convolutional neural network (3D-CNN) regression model for 

age estimation, with similar architecture as the 3D-CNN classification model for 

Alzheimer’s disease classification used in [39]. We follow a general CNN architecture 
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similar to the VGG classification architecture [40] with multiple interleaved convolutional 

blocks and max pooling layers and an increasing number of features along the depth. We 

replaced all 2D operations with 3D operations and included one fully-connected layer to 

reduce the number of parameters. We use convolutional layers with kernel size of 3 × 3 × 3, 

rectified linear unit (ReLU) as the activation function, and batch normalization (BN) layers 

before the activation functions. We flatten the output from the last convolutional layer and 

feed into a fully-connected (FC) layer. And the final activation is a linear operation instead 

of a softmax in classification tasks. We include weight l2 regularization to prevent 

overfitting with a factor of 1.0. The algorithm was optimized using Adam algorithm with 

mean absolute error (MAE) loss function, and with a batch size of 5. The initial learning rate 

was tuned in the range from 1e – 4 to 1e – 6 including [1e-4, 5e-5, 2e-5, 1e-5, 5e-6, 2e-6, 

1e-6] and was set at 2e-5.

We implemented the algorithm using Keras and TensorFlow. An illustration of the 

framework is shown in Figure 2. In this study, we use five (N in Figure 2) stages. The feature 

dimension of the first layer is 16 and increases by a factor of 2 in each subsequent stage. The 

optimal model is selected as the model with the lowest validation MAE.

2.5. Comparison with model trained on unbalanced dataset

We also trained the model using all scans from unique participants (N = 6,142, Figure 1B). 

We applied the trained model on the independent Cam-CAN dataset and studied the 

distribution of MAE over chronological age groups.

Besides, a simple way to potentially correct the imbalance without adjusting the sampling of 

the dataset is re-weighting the samples, specifically, we assign different weights to different 

sample, with the weights in proportional to the inverse of the frequency of specific age 

segments. We note that while importance weighting is a principled statistical technique with 

well-known effects in traditional statistical models, its impact on the learned predictors in 

deep learning algorithms are a subject of active inquiry [41].

2.6. Neuropsychological and morphometric associations

To test the utility of the estimated age in studying cognitive functions across adult life-span, 

we evaluate the association between the summary scores of Benton face recognition test 

(BFRT) and the estimated age in Cam-CAN dataset.

Specifically, we use the signed difference of the estimated age and chronological age to 

reflect the deviance of individual brain age from their chronological age, and we refer to this 

value as agediff hereinafter. The BFRT is a commonly used neuropsychological instrument 

that can be easily and reliably administered in adult patients to test baseline visual memory 

and perception [42]. We adopted the SubScore-1, SubScore-2, TotalScore (SubScore-1 + 

SubScore-2) as dependent variables in individual linear regression models incorporating 

gender, chronological age, agediff, and the interaction of chronological age and agediff:

Score ∼ βageage + βagediffagediff + βagediff × ageage × agediff + βgendergender
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Additionally, we evaluate the association between agediff with cortical thickness generated 

using FreeSurfer [43] by performing a partial correlation with gender and chronological age 

as covariates. FreeSurfer parcellates the cortex into 68 cortical regions.

2.7. Age activation map

Class activation mapping [44, 45] is a commonly-used method for interpreting the 

classification using CNNs and has been previously used in CNN based medical image 

analysis [46] to marry potential disease pathology with classification findings. In this work, 

we use the idea of a class activation map in a regression setting by highlighting the small-

valued gradient in grad-CAM framework. We use functions in the keras-vis package (https://

github.com/raghakot/keras-vis/). We generate the average activation map within each age 

group to investigate the age-specific pattern of underlying substrates for age estimation.

2.8. Slice based age estimation

Besides the post hoc saliency map based activation map method, we also propose ablation 

analyses methods focusing on part of the input data. We apply serial 2D CNNs for age 

estimation with the input being three consecutive slices along each axis. By doing so, we 

take into consideration the inter-subject alignment precision (i.e. not using just one slice) 

and also the similarity among different channels (i.e. not using five slices). The network 

architecture of the 2D CNN is the identical to the 3D CNN architecture described in the 

previous section with the 3D operations replaced with the corresponding 2D operations. We 

report the predictive performance on various sets of 2D slices to analyze predictive 

importance.

2.9. Lobe based age estimation

Besides sliced based age estimation, we propose using another more anatomically-informed 

way to study the regionality through ablation experiments at the lobar level. The individual 

lobe masks were generated following a previous study [39]. The ages are estimated using 

each lobe individually.

3. Results

3.1. Age prediction

In the hold-out test set, whose instances are distributed identically as the training and 

validation set, our model achieves an MAE of 4.06 years and correlation coefficient r = 

0.970.

An independent normal aging life-span dataset—Cam-CAN—was tested in a previous brain 

age study [19]. In that study, when the Cam-CAN data were pre-processed with the optimal 

parameters selected from the independent training sample, their proposed model achieved an 

MAE of 6.08 years and correlation coefficient r = 0.929. We tested out our model in Cam-

CAN study processing the T1w MRI images using the same pipeline as the other samples. 

The relationship between the estimated age and chronological age in Cam-CAN is shown in 

Figure 3. The correlation coefficient r is 0.960, MAE is 4.21 years, which outperforms the 

result in the previous study [19]. We also observe two obvious “outliers” among the 652 
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participants tested, further investigation is needed to pinpoint potential sources of error, 

either methodological, constitutional or true poor estimation. The results demonstrate our 

proposed model achieves accurate estimation in all age segments.

3.2. Reproducibility

We evaluate the reproducibility of the algorithm in test-retest acquisitions. We show the 

results in Table 2 and Figure 4, observing that there is a difference in the estimated age and 

actual reported chronological age that is consistent over the sessions with approximately a 1 

year standard deviation.

3.3. Comparison with results using nonuniform dataset

We compare the results using nonuniform dataset with the MAE performance in Cam-CAN 

dataset. Using the nonuniform dataset achieves comparable overall MAE (4.27 years) as the 

balanced data. Re-weighting the samples helps slightly improves the MAE (4.17 years) than 

the balanced dataset despite using many more scans. Additionally, we observe the MAE 

using the nonuniform dataset is not evenly distributed across life-span: MAE is lower in the 

young age with more abundant data, as shown in Figure 5 (B). This could introduce 

potential bias in life-span studies. Using sample re-weighting (Figure 5 (C)) alleviates the 

problem and using balanced dataset generates generally even distribution across age-span 

(Figure 5 (A)).

3.4. Neuropsychological and neuromorphometric association

The association of the BFRT scores with the difference in the estimated age and the 

chronological age and its interaction with chronological age are summarized in Table 3, with 

the p-value of the regression corresponding to age, agediff and agediff × age.

The association of the cortical thickness measures with the agediff is illustrated in Figure 6. 

The thickness of cortical regions are significantly associated with the agediff. In addition, out 

of the 68 regions measured, 51 regions have a stronger correlation with the estimated age 

than the chronological age. This is expected as the age estimated through structural MRI 

image is in principle more coupled to structural phenotypes.

3.5. Age activation map

We expect the anatomical patterns characterizing different age groups to be different 

throughout lifetime but are consistent within a local age range. Thus we generate and 

illustrate the age activation maps every 5 years, in the same way as preparing the dataset. 

The 3D iso-surfaces of the average age activation maps are shown in Fig. 7. The average age 

activation maps overlaid on the MNI152 template are shown in Fig. 8 (Left). To 

accommodate the anatomical differences in different age groups, we also generated average 

T1w image within each age group, and overlaid the corresponding age activation map, as 

shown in Fig. 8 (Right).

3.6. Slice based age estimation

The age estimation performance using 2D MRI slabs sliced at different coordinate planes is 

shown in Figure 9. The slices with the best performance are also illustrated.
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3.7. Lobe based age estimation

The MAE trained using different lobes are shown in Table 4, where we show the best 

estimation performance achieved through frontal lobe. And temporal lobe achieved 

marginally lower performance.

4. Discussion

In this study, a large heterogeneous dataset of structural neuroimaging across the adult 

lifespan was aggregated from multiple publicly available data sources. A deep convolutional 

neural network was developed, trained and applied to predict the chronological age from the 

subject’s scan.

This uniformly distributed dataset is able to achieve estimation without appreciable bias 

towards a certain age group, while maintaining training efficiency compared with training on 

an nonuniform dataset. While this study aims to examine the aging process across the adult 

life-span, other studies aiming to examine the role of aging in other conditions would likely 

benefit from other specific training dataset inclusion criteria. For example, for studies of 

autism and prodromal psychosis where age of onset skews younger, studies would require 

the inclusion of participants below 18, and participants in middle and old age would likely 

be less informative.

The regionality analysis in this study reveals patterns of neuroanatomical contributions of 

normal aging. All analyses provide evidence for the prominence of frontal regions in all 

epochs of age estimation in the adult lifespan. Frontal regions have been implicated in 

normal aging through both neuropsychological studies and neuroimaging studies [47, 48, 

49]. In addition, the pattern shifts reflected in the age activation map based analysis imply a 

frontal lobe-focused locus of age-related structural changes. We found a negative correlation 

between several frontal lobe stucture’s cortical thickness measures and difference in age. 

This may be due to gray and white matter having differing contributions to the age-

prediction model.

Neuropsychological evaluations targeting different cognitive domains and brain regions 

might help reveal the underlying complexity in the aging-process. Although these saliency 

maps are not well understood, it may be possible they reflect patterns of intensity changes 

driven by either shrinkage or expansion of ventricles, or differences in the boundary of gray 

or white matter. More studies are needed to explain and understand these contributions.

Our analysis revealed the association between the divergence of estimated age from 

chronological age and BFRT performance. BFRT scores are strongly correlated to actual 

age, in that performance decreases with increased age. While deviations in estimated age 

versus BFRT reflect two processes that may independently deviate through different 

mechanisms from a subject’s age, it is useful to have a secondary independent measurement 

available upon which to compare chronological age. Deviations in BFRT and the difference 

in estimated age might reflect data points to study to improve the accuracy of the model, or 

provide insight into why young appearing brains perform worse, or older appearing brains 

perform better than expected. This suggests the potential utility of the estimated age at 
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normal aging evaluation, in complement to other cognitive test and neuroimaging based 

measures. The utility relates to an open question of the aging process. It still requires further 

validation how a scan’s predicted deviance would reveal an individual’s brain health status 

or even trigger clinical evaluations, since while inter-subject differences in normal aging 

process exist, they are not well understood. Moreover, it is unclear whether this inherent 

variability increases with age or stays constant throughout the life-span.

One consideration is that the set of participants with no current pathological symptoms 

might have disease at asymptomatic prodromal state that have yet to manifest in the clinical 

evaluation, such as pre-clinical AD. Such work would require follow-up data to preclude 

disease for a given period of time such that they remain stable as controls. Otherwise, one 

would be unable to determine the difference between prodromal Alzheimer’s disease and 

MCI. However, this was not available for all participants, and in a group of otherwise 

healthy individuals, it is likely that some healthy individuals do harbor occult disease. 

Additionally, participants were considered normal using criteria germane to the disease of 

focus in different studies.

Another consideration in uniform sampling is the tails, specifically the youngest and oldest 

group. For this study to focus on adult age prediction, there are practical limitations 

including the reduced imaging data available for very old individuals and that this study 

doesn’t include individuals under 18 years of age. Future studies should examine on 

stratification procedures keeping in mind the difficulty of obtaining indivdual scans and 

adolescent development.

One consideration is the leave-N-out validation scheme, in lieu of a cross-validation. 

Although computationally much more taxing, future studies using it may help explain 

variance in age estimation differences. While ideally one would want to include both 

methods, for large imaging studies it is important to consider when developing and 

evaluating a large-scale neuroimaging model.

We do not report that this model achieve the most superior age-prediction results using a 

deep learning or similar framework using T1-weighted structural images compared to 

existing studies, but that it in fact examines the contribution of age distribution in a training 

set. This is understudied in age-prediction when using large data-sets because there is 

limited diversity to the images chosen. In addition, there is added diversity of the studies 

from which the model was trained, and the protocols and acquisitions may vary across both 

site and study. This in fact benefits this model compared to individual studies of unified 

aging because the variance of acquisition differences are included in the training, compared 

to training data where a more cohesive protocol is used, alongside uniform age separation. 

Such inclusion without appreciable loss of accuracy supports the use of this type of model 

on a wider variety of baseline scans.

5. Conclusion

This study has demonstrated the high accuracy of an age estimation framework using routine 

structural neuroimaging and a deep convolutional neural network, trained on a large-scale 
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healthy population with uniform age distribution across adult age span. While there is 

considerable interest and value in a highly accurate estimation model that can be applied to a 

wide variety of structural MRI protocols, this study also demonstrates patterns of the 

regional contributions of aging across the lifespan using multiple methods, agnostic of tissue 

classes, structure delineation or surface parcellation. This study provides a framework that 

may have value in evaluating meaningful quantitative and visual biomarkers for both aging 

and broad neuroimaging applications. Further studies may examine the estimated age and 

the regional contributions to see if they may be useful in understanding one’s age divergence 

in the context of a particular disease or condition’s pathology.
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implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A 
complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/
ADNI_Acknowledgement_List.pdf

Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
(National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number 
W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical 
Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s 
Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers 
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Figure 1: 
The age distribution of the study population. A) The age distribution of the raw dataset 

consisted of 10,158 MRI sessions; B) the age distribution of the dataset consisted of 6,142 

unique participants; C) the age distribution of the evenly sampled dataset.
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Figure 2: 
The convolution neural network architecture. The inputs are 3D brain volumes. Each cube 

represents one 3D feature map. The size of the cube reflects the spatial dimension of the 

feature map, the number of the cubes reflects the number of feature maps (channel 

dimension) at a specific depth. The blue arrow denotes 3D convolution operation with 

rectified linear unit (ReLU), the green arrow denotes 3D convolution followed by batch 

normalization (BN) and ReLU, the yellow arrow denotes the max pooling operation. The 

basic unit enclosed in the bracket is repeated N = 5 times with increasing number of features 

and decreasing spatial dimension. The final convolutional output is flattened and fed into 

one fully-connected (FC) layer with linear output (red arrow), generating the final brain age 

prediction.
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Figure 3: 
The estimated age versus chronological age in an independent test set of adult life-span.
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Figure 4: 
The distribution of predicted ages in test-retest scans.
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Figure 5: 
Distribution of MAE across life-span. (Left) Age estimated using the balanced dataset. Each 

step in the red line indicate the MAE in that age group, the black dashed line indicates the 

overall MAE. (Middle) Age estimated using the nonuniform dataset. (Right) Age estimated 

using the nonuniform dataset but with sample re-weighting.
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Figure 6: 
The partial correlation coefficients of agediff and cortical thickness measures. The red dashed 

line indicates α = 0.05 under multiple comparison of N=34 regions.
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Figure 7: 
The 3D iso-surfaces (0.8) of the age activation maps at different age groups.
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Figure 8: 
The age activation maps at different age groups overlaid on the (Left) MNI152 template, and 

(Right) average T1w image within each age group, both with threshold at 0.8. Each slice is 

identified in the plane to identify the voxel of highest intensity.
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Figure 9: 
MRI 2D slice based age estimation. (Top row) The mean absolute error (MAE) of the 

estimated age on the test set using 2D slices at different locations, the red lines indicate the 

location with lowest MAE. MAEs larger than 10 are capped to 10 for illustration purpose. 

(Bottom row) The illustration of slices at the red lines in the top row from the MNI152 

template and the corresponding segmentation (the colors follow the FreeSurfer color lookup 

table).
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Table 2:

Reproducibility experiment result

subject actual age predicted age mean predicted age std

subj-1 26 25.19 1.07

subj-2 31 33.02 1.14

subj-3 30 27.06 0.81
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Table 3:

Association with Benton face recognition scores

Score
age age diff age diff × age

β p β p β p

SubScore-1 −2.51e-3 3.01e-6 −0.0127 0.0297 2.62e-4 0.0102

SubScore-2 −0.0605 1.24e-32 −0.157 2.90e-3 2.31e-3 0.0119

TotalScore −0.0630 5.07e-34 −0.170 1.54e-3 2.57e-3 5.88e-3
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Table 4:

Lobe based age estimation

Lobe Frontal Temporal Parietal Occipital Cerebellum Whole-brain

MAE 5.33 5.81 6.37 7.66 6.20 4.06
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