Skip to main content
. 2021 Jan 13;8(1):201553. doi: 10.1098/rsos.201553

Table 3.

Optimum ANN architecture for the prediction of MCPA adsorption capacity.

no. neurons training
testing
validation
R2 R2adj RMSE R2 R2adj RMSE R2 R2adj  RMSE
1 [3] 0.985 0.920 1.723 0.989 0.983 1.541 0.977 0.962 1.750
2 [4] 0.996 0.953 0.686 0.997 0.994 0.612 0.978 0.971 0.608
3 [5] 0.986 0.981 1.511 0.988 0.981 1.420 0.986 0.981 1.407
4 [6] 0.998 0.985 1.095 0.999 0.997 1.201 0.977 0.970 1.540
5 [7] 0.997 0.991 2.188 0.998 0.995 2.321 0.967 0.918 3.053
6 [8] 0.998 0.996 0.088 0.999 0.997 0.024 0.981 0.979 0.066
7 [9] 0.998 0.994 1.620 0.990 0.988 1.511 0.965 0.964 1.657
8 [10] 0.996 0.987 2.797 0.989 0.981 2.833 0.982 0.981 4.729
9 [5 5] 0.988 0.913 1.668 0.932 0.931 0.321 0.941 0.930 0.944
10 [5 7] 0.934 0.922 0.392 0.912 0.908 1.443 0.910 0.906 1.321
11 [7 6] 0.911 0.902 1.866 0.905 0.910 1.832 0.909 0.899 1.612