Table 3.
Optimum ANN architecture for the prediction of MCPA adsorption capacity.
| no. | neurons | training |
testing |
validation |
||||||
|---|---|---|---|---|---|---|---|---|---|---|
| R2 | R2adj | RMSE | R2 | R2adj | RMSE | R2 | R2adj | RMSE | ||
| 1 | [3] | 0.985 | 0.920 | 1.723 | 0.989 | 0.983 | 1.541 | 0.977 | 0.962 | 1.750 |
| 2 | [4] | 0.996 | 0.953 | 0.686 | 0.997 | 0.994 | 0.612 | 0.978 | 0.971 | 0.608 |
| 3 | [5] | 0.986 | 0.981 | 1.511 | 0.988 | 0.981 | 1.420 | 0.986 | 0.981 | 1.407 |
| 4 | [6] | 0.998 | 0.985 | 1.095 | 0.999 | 0.997 | 1.201 | 0.977 | 0.970 | 1.540 |
| 5 | [7] | 0.997 | 0.991 | 2.188 | 0.998 | 0.995 | 2.321 | 0.967 | 0.918 | 3.053 |
| 6 | [8] | 0.998 | 0.996 | 0.088 | 0.999 | 0.997 | 0.024 | 0.981 | 0.979 | 0.066 |
| 7 | [9] | 0.998 | 0.994 | 1.620 | 0.990 | 0.988 | 1.511 | 0.965 | 0.964 | 1.657 |
| 8 | [10] | 0.996 | 0.987 | 2.797 | 0.989 | 0.981 | 2.833 | 0.982 | 0.981 | 4.729 |
| 9 | [5 5] | 0.988 | 0.913 | 1.668 | 0.932 | 0.931 | 0.321 | 0.941 | 0.930 | 0.944 |
| 10 | [5 7] | 0.934 | 0.922 | 0.392 | 0.912 | 0.908 | 1.443 | 0.910 | 0.906 | 1.321 |
| 11 | [7 6] | 0.911 | 0.902 | 1.866 | 0.905 | 0.910 | 1.832 | 0.909 | 0.899 | 1.612 |