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Visual Abstract

EPO overexpression stimulates postnatal maturation of the
GABAergic system
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Several neurodevelopmental disabilities are strongly associated with alterations in GABAergic transmission,
and therapies to stimulate its normal development are lacking. Erythropoietin (EPO) is clinically used in neona-
tology to mitigate acute brain injury, and to stimulate neuronal maturation. Yet it remains unclear whether EPO
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Significance Statement

Using a mouse model that overexpresses recombinant human erythropoietin (EPO) in the CNS, we ob-
served stimulation of the postnatal maturation of GABAergic transmission in the hippocampus, notably ac-
celerated maturation of parvalbumin (PV)+ interneurons, enhanced glutamatergic inputs onto these
interneurons, and enhanced IPSCs onto pyramidal cells. We show that EPO receptors (EPORs) are ex-
pressed on pyramidal cells, therefore the impact of EPO on GABAergic maturation is likely to be indirect.
Our data show that EPO can modulate hippocampal network maturation and support ongoing trials of the
\use of EPO in clinical neonatology to stimulate neuronal maturation after perinatal brain injury (PBI). /

can stimulate maturation of the GABAergic system. Here, with the use of a transgenic mouse line that consti-
tutively overexpresses neuronal EPO (Tg21), we show that EPO stimulates postnatal GABAergic maturation in
the hippocampus. We show an increase in hippocampal GABA-immunoreactive neurons, and postnatal eleva-
tion of interneurons expressing parvalbumin (PV), somatostatin (SST), and neuropeptide Y (NPY). Analysis of
perineuronal net (PNN) formation and innervation of glutamatergic terminals onto PV+ cells, shows to be en-
hanced early in postnatal development. Additionally, an increase in GABAaergic synapse density and IPSCs in
CA1 pyramidal cells from Tg21 mice is observed. Detection of EPO receptor (EPOR) mRNA was observed to
be restricted to glutamatergic pyramidal cells and increased in Tg21 mice at postnatal day (P)7, along with re-
duced apoptosis. Our findings show that EPO can stimulate postnatal GABAergic maturation in the hippocam-
pus, by increasing neuronal survival, modulating critical plasticity periods, and increasing synaptic transmission.

Our data supports EPO’s clinical use to balance GABAergic dysfunction.
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Introduction

Perinatal brain injury (PBI) might lead to psychiatric dis-
orders associated with alterations in GABAergic transmis-
sion (Marin, 2012; Cunha-Rodrigues et al., 2018; Lacaille
et al., 2019). A significant reduction of several markers of
GABAergic transmission, including glutamic acid decar-
boxylase (GAD), GABA, GABA, receptors (GABAARS),
and perturbed parvalbumin (PV) and somatostatin (SST)
expression in cortical interneurons, have been reported in
the neonatal brain after injury (Robinson et al., 2006;
Komitova et al., 2013). In addition, postmortem samples
from human preterm infants with brain injury, as well as
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the hippocampus of rat models of prematurity, showed
reduced potassium-chloride co-transporter 2 (KCC2) ex-
pression (Jantzie et al., 2014). Perturbations of the
GABAergic system in PBI might disrupt the excitatory/in-
hibitory balance and lead to long-lasting deficits in brain
function (Komitova et al., 2013). Therefore, there is an ur-
gent need for new therapeutic strategies protecting the
GABAergic system in clinical neonatology.

Erythropoietin (EPO), the erythropoietic hormone
(Farrell and Lee, 2004). is a leading therapy in neona-
tology as a neuroprotective agent (Juul et al., 2015;
Juul and Pet, 2015; Natalucci et al., 2016). EPO sig-
naling, leads to activation of several downstream
pathways including the STAT5, ERK1/2, and PI3K/Akt
pathways (Lombardero et al., 2011). EPO’s immediate
neuroprotective effects are anti-apoptotic, anti-in-
flammatory, and anti-oxidative (Noguchi et al., 2007;
Rangarajan and Juul, 2014). In the long-term, EPO
stimulates angiogenesis (Zhu et al., 2014), neurogene-
sis (Castaneda-Arellano et al., 2014). and oligoden-
drogenesis (Jantzie et al., 2013; Juul et al., 2015). EPO
has also been shown to restore deficits in KCC2 ex-
pression (Jantzie et al., 2014), and enhance synaptic
plasticity and cognition (Adamcio et al., 2008; Kamal
et al.,, 2011; Sargin et al., 2011; Almaguer-Melian et
al., 2015), while facilitating inhibitory synaptic transmis-
sion (Wojtowicz and Mozrzymas, 2008; Roseti et al., 2020).
Nevertheless, it is not yet established whether EPO pro-
motes the development of GABAergic neurons and
GABAergic neurotransmission.

EPO and its receptor [EPO receptor (EPOR)] are ex-
pressed in human and mouse brain (Digicaylioglu et al.,
1995; Marti et al., 1996). Specifically, they are reported to
be expressed in the embryonic neocortex in areas close
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to ventricles and deeper layers, regulating radial migration
and laminar positioning of granular neurons (Constanthin
et al., 2020). Here, we report that EPORs are highly ex-
pressed postnatally in the cornu ammonis (CA)1 hippo-
campus from mice, increasing their expression to reach
a zenith toward adulthood. Additionally, we showed in a
transgenic mouse line constitutively overexpressing
human EPO in the CNS, without hematopoietic changes
(Tg21; Wiessner et al., 2001), a strong activation of the
AKT pathways in the postnatal CA1 hippocampus
(Jacobs, R. A., Aboouf M. A,, Laouafa S., Arias-Reyes C.,
Koester-Hegmann C., Thiersch M., Soliz J., Gassmann
M, and Schneider Gasser E.M., Comm biology, unpub-
lished observations). AKT phosphorylation has a strong
antiapoptotic action and can increase the number of
GABAARs on the plasma membrane increasing synaptic
transmission in neurons (Wang et al., 2003). Therefore,
we hypothesize an important role for EPO signaling in
postnatal hippocampal GABAergic maturation.

During the second postnatal week, GABAergic trans-
mission in the CA hippocampus switches from excitatory,
because of elevated intracellular chloride concentration,
to inhibitory at around postnatal days (P)13-P15 (Tyzio et
al., 2007), an age that coincides with a peak in synapto-
genesis, and the formation of adult neuronal networks
(Ben-Ari et al., 2007). GABAergic transmission is essential
for establishing critical periods of enhanced synaptic
plasticity during development (Hensch and Bilimoria,
2012). Perineuronal nets (PNNs) are specialized extracel-
lular matrix (ECM) structures composed of chondroitin
sulfate proteoglycans that are responsible for synaptic
stabilization, a process that influences the closing of criti-
cal periods of plasticity. In the hippocampus PNNs are
found around the somata and proximal dendrites of PV+
interneurons, with an onset at P8, a time point when the
expression of PV increases and also the midpoint in the
switch from excitatory to inhibitory GABAergic transmis-
sion. PNNs are good indicators of brain maturation and
contribute to the maintenance of the excitatory/inhibitory
balance (Hensch, 2005; Fowke et al., 2018). Several se-
creted factors, including neurotrophic factors, also modu-
late the maturation of inhibitory circuits and consequently
the timing of PNN formation (Huang et al., 1999; Begum
and Sng, 2017). It remains to be elucidated whether EPO
regulates the formation of PNNs.

In this work, we quantified the numbers of interneurons
immunoreactive for GABA, PV, SST, and neuropeptide
Y (NPY), analyzed the formation of PNNs, evaluated the
glutamatergic innervation of PV+ neurons, we quanti-
fied the density of GABAergic synapses in the CA1 area
and recorded spontaneous IPSC (sIPSC) and miniature
IPSC (mIPSC) in pyramidal cells using whole-cell elec-
trophysiology. Finally, we determined, the cellular
mMRNA expression of EPORs in the CA1 area and eval-
uated EPORs and PV+ cell numbers in GAD65-cre’®*,
EPOR™™ mice. Our data show that EPO increases
postnatal neuronal survival, enhances GABAARs and
conductance onto pyramidal cells; increases glutama-
tergic inputs onto PV+ cells, and accelerates PNN for-
mation. Thus, EPO is a potential drug to stimulate
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hippocampal GABAergic maturation without causing
any network imbalance.

Materials and Methods

Animals

Animal experiments were performed following the
ARRIVE guidelines and were approved by the Cantonal
Veterinary Office of Zurich, Switzerland. Mice were bred
on a C57BL/6 background at the Laboratory Animal
Service Centre of the University of Zurich and kept in
standard housing conditions with food and water pro-
vided ad libitum. At least three animals per genotype and
age from three different litters were used for each
experiment.

TgN(PDGFB-EPQ)3222bZ (Tg21)

The Tg21 transgenic mouse line overexpressing EPO in
the CNS was generated by pronuclear microinjection of
the full-length human EPO cDNA driven by the platelet-
derived growth factor (PDGF) B-chain promoter into fertil-
ized oocytes derived from B6C3 hybrid mice (Ruschitzka
et al., 2000; Wiessner et al., 2001). The resulting hemizy-
gous offspring was then backcrossed with C57BL/6 mice
and bred to homozygosity to generate transgenic TgN
(PDGFB-EPQ)322ZbZ (Tg21) and wild-type (WT) mouse
lines with the same genetic background. Experiments
were performed in mice of both sexes, and group sizes
are reported with the statistical analyses.

GADG65-cre, EPOR™™

Heterozygous GAD65-Cre (kind gift from H. U. Zeilhofer,
University of Zurich, Switzerland) male mice were bred with
homozygous EPOR floxed (fx) female mice (kind gift from
C. Grimm, University of Zurich, Switzerland). Cre-positive,
EPOR™™ offspring were bred again with homozygous EPOR
floxed mice. Cre-positive, EPOR™™ offspring was then used
for immunostaining and fISH analysis and compared with
Cre-negative, EPOR™™ mice.

Immunohistochemistry
Tissue preparation for immunoperoxidase staining

WT and Tg21 mice of both sexes were collected at P7,
P11, P14, P21, and P60; GAD65-cre-positive, EPOR™™
and GAD65-cre-negative, EPOR™™ were collected
at P11, and anesthetized by intraperitoneal pentobarbital
injection (Nembutal: 50mg/kg; i.p., Kantonsapotheke
Zirich). They were then perfused transcardially with PBS
(pH 7.4) to rinse blood, followed by fixative containing 4%
paraformaldehyde in 0.15 m Na-phosphate buffer, pH 7.4.
Brains were immediately dissected, cut sagittal through
the midline, and postfixed in the same fixative for 24 h for
P7,18 hfor P11, 12 hfor P14, and 3 h for P21 and P60 tis-
sue. After postfixation, brains were transferred to 30% su-
crose (in PBS) at 4°C for 24-72 h until tissue sank, for
cryoprotection. Brains were cut into sagittal serial sec-
tions at 50 um for P7, and 40-um thickness for other ages
using a sliding blade freezing microtome (HM400;
Microm). Six serial sections were collected for brains at
P7, eight serial sections for P11, 10 serial sections for
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Table 1: Primary antibodies used for immunohistochemistry
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Target Host species Dilution  Catalog# Company/origin References
y-aminobutyric acid (GABA) Rabbit 1:1000 A-2052 Sigma Dzyubenko et al. (2017)
Neuronal nuclei (NeuN) Mouse monoclonal 1:1000 MAB377 Merck Mullen et al. (1992)

PV Rabbit 1:5000 PV-28 SWant Vaghi et al. (2014)

NPY Rabbit 1:1000 T-4069 Peninsula Lab. Mackay al. (2019)

SST Rabbit 1:500 sc-13099 Santa Cruz Yang et al. (2008)

VGAT Mouse monoclonal 1:2000 131011 Synaptic Systems Pan-Vazquez et al. (2020)
Gephyrin Rabbit monoclonal 1:1000 147008 Synaptic Systems  Schneider Gasser et al. (2006)
GABAAR 7v> Guinea pig 1:2000 N/A Home made Fritschy and Mohler (1995)
vGIuT1 Guinea pig 1:1000 135304 Synaptic Systems ~ Wei et al. (2016)

vGIuT2 Guinea pig 1:3000 AB2251 Merck Holl6 et al. (2017)

Cleaved caspase-3 Rabbit 1:200 9661 Cell Signaling Teoh et al. (2017)

P14, and 12 serial sections for P21 and P60. Sections
were stored at —20°C in antifreeze solution until use.

Tissue preparation for immunofluorescence

WT and Tg21 mice of both sexes collected at P11, P14,
P21, and P60, were deeply anesthetized with an intraperi-
toneal injection of sodium pentobarbital (50 mg/kg), and
perfused transcardially at a constant flow rate with 8-12
ml/min of ice-cold oxygenated artificial CSF (ACSF), pH
7.4. Following immediate decapitation, the brain was dis-
sected, cut sagittal through the midline and postfixed in
ice-cold 4% paraformaldehyde (dissolved in 0.15 m Na-
phosphate buffer, pH 7.4) 3 h for P11 and P14 and 90 min
for P21 and P60. Brains were then rinsed twice with cold
PBS, transferred to 30% sucrose in PBS for cryopreser-
vation and stored for 3 d at 4°C. Brains were frozen with
dry ice and kept at —80°C until further use. Sagittal sec-
tions were cut as described above.

Immunoperoxidase staining

PV-immunoreactive, SST-immunoreactive, NPY-immu-
noreactive, and CB-immunoreactive interneurons in the
hippocampus were quantified in sections processed for
immunoperoxidase staining. Free-floating sections were
washed three times for 10 min each with Tris-Triton buffer,
pH 7.4 followed by incubation with rabbit primary anti-
body against PV (Table 1) in a solution containing 2%
Triton X-100 and 2% normal goat serum (NGS) in Tris-
Triton buffer, pH 7.4, overnight at 4°C under continuous
agitation. The next day, the sections were rinsed again
three times for 10 min each with Tris-Triton buffer, pH 7.4
before being incubated at room temperature (RT) for
30min with the biotinylated secondary antibody (goat
anti-rabbit, Jackson ImmunoResearch, 1:300) in a solu-
tion containing 2% NGS in Tris-Triton buffer, pH 7.4. After
another washing step of three times 10 min, the sections
were incubated for 30 min in avidin-biotin complex solu-
tion (Vectastain Elite kit; Vector Laboratories) and rinsed
again three times for 10min. To allow equal penetration
of the tissue, the sections were preincubated in diami-
nobenzidine (DAB) solution (0.5 x g/L DAB in Tris-Triton
buffer, pH 7.7) for 5min under agitation, before the re-
action was started by adding 2 ml of DAB solution con-
taining 0.01% hydrogen peroxidase. After 5-7min,
depending on the intensity of the staining, the reaction
was stopped by transferring the sections into ice-cold
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PBS followed immediately by another washing step of
three times 10 min in PBS. The sections were mounted
on gelatin-coated glass slides and left to dry overnight.
On the following day, they were dehydrated in ethanol
of increasing concentrations (2 x 70%, 2 x96%, 3 x
100%) for 5 min each followed by clearing in xylene four
times for 5 min. Finally, the sections were cover-slipped
with Eukitt mounting medium (Merck).

Immunofluorescence staining

Double or triple immunofluorescence staining was used
to analyze multiple markers within the same section.
Free-floating sections were washed three times for 10 min
each in Tris-Triton buffer, pH 7.4 before being incubated
overnight at 4°C under continuous agitation with the pri-
mary antibodies raised in different species (Table 1) in a
solution containing 2% Triton X-100 and 2% NGS in Tris-
Triton buffer, pH 7.4. The next day, the sections were
again rinsed three times for 10 min with Tris-Triton buffer,
pH 7.4 followed by incubation with secondary antibodies
raised in goat against the different species of the primary
antibodies and coupled to either Alexa Fluor 488, Cy3, or
Alexa Fluor 647 [or the plant lectin Wisteria floribunda ag-
glutinin (WFA) coupled to Cy3 for staining of PNNs] in a
solution containing 0.5 ul DAPI and 2% NGS in Tris-Triton
buffer, pH 7.4 at RT for 30 min in the dark. After another
washing step of three times 10 min with Tris-Triton buffer,
pH 7.4, sections were mounted on gelatin-coated glass
slides and cover-slipped with Dako fluorescence mount-
ing medium (Dako).

Fluorescence in situ hybridization (fISH)
Tissue preparation for fISH

WT, Tg21 mice of both sexes at postnatal ages P7, P11,
P21, and P60, and GAD65-cre-positive, EPOR™™, and
GADG65-cre-negative, EPOR™™ mice at postnatal age P11,
were deeply anesthetized with an intraperitoneal injection
of sodium pentobarbital (50 mg/kg) followed by decapita-
tion and dissection of brain tissue on ice. Hemispheres
where then frozen on dry ice and stored at —80°C until use.
Serial brain sections of 10 um were cut using a cryostat
(Leica Biosystems), mounted on Superfrost slides and
stored at —80°C.
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fISH

fISH of murine EPOR (RNAscope Probe-Mm-Epor) was
performed, using the RNAscope Multiplex Fluorescent re-
agent kit v2 from Advanced Cell Diagnostics and the fluoro-
phore Opal 520 from PerkinElmer. Positive and negative
control probes (RNAscope 3-plex positive and negative
control probes) were always run in parallel.

Fresh frozen tissue was postfixed for 30 min at 4°C in
4% paraformaldehyde prepared in 0.15 m Na-phosphate
buffer (pH 7.4), treated 10 min with hydrogen peroxide at
RT, target retrieval for 10 min at 85°C (RNAscope Target
Retrieval reagent) and protease treatment with Protease
Plus for 30 min at 40°C. Probes were hybridized for 2 h at
40°C. Slides were washed in Tris-Triton buffer, pH 7.4 fol-
lowed by amplification steps (RNAscope Amp1) and sig-
nal development (HRP-C1 + fluorophore 1). Finally, slides
were incubated for 3 min in DAPI and coverslipped.

Image acquisition
Bright-field microscopy

Sections processed for immunoperoxidase staining
were visualized and photographed with an Axioscope 2
microscope (Carl Zeiss AG) equipped with a color digital
camera (AxioCam MRcb5) and its corresponding software,
AxioVision 4.5 (Carl Zeiss AG). Images of the whole hippo-
campus were taken with bright-field illumination using a
5x objective (NA 0.15).

Fluorescence microscopy

Images of cleaved caspase-3 and DAPI samples were
imaged with a Zeiss Axio Imager 2 fluorescent micro-
scope (Carl Zeiss AG). Image stacks (five slices, 2-um in-
tervals) from CA3 and CA1 areas were taken with a 10x
objective, with a scan zoom of 1x and image size of
1024 x 1024 pixels.

Confocal laser-scanning microscopy

Immunofluorescence GABA and NeuN-stained tissue
sections were imaged using a Zeiss LSM 700 confocal
laser scanning microscope (Carl Zeiss AG) with a 40x oll
immersion objective with a numerical aperture (NA) of 1.4.
Images were taken as z-stacks (five slices, 1-pum intervals)
with a scan zoom of 1x for CA3 area and 0.5x for the
CA1 area and an image size of 1024 x 1024 pixels.

For GABAergic synaptic cluster analysis, vesicular
GABA transporter (VGAT), gephyrin and GABAsRy2 sub-
units were stained, and sections were imaged using a
Zeiss LSM 800 confocal laser scanning microscope (Carl
Zeiss AG). For glutamatergic inputs, vesicular glutamate
transporter (vglut)1-2 and PV cells stained sections were
imaged. A 63x oil immersed objective with a NA of 1.4
was used for synapse analysis. Images were taken as z-
stacks (five slices, 0.2-um intervals) with a scan zoom of
1.5x and an image size of 1024 x 1024 pixels. Imaging
parameters were kept constant over all conditions. After
acquisition, images were processed using 2D super reso-
lution Airy Scan processing run in automated mode.
image acquisition was conducted in the stratum pyrami-
dale and stratum radiatum of the CA1 and CAS3 region.
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For analysis of PNNs around PV+ interneurons, dou-
ble-stained sections were imaged using a Zeiss LSM 800
confocal laser scanning microscope (Carl Zeiss AG) with
a 10x objective (NA 0.45) and taking image stacks com-
posed of 22 slices at a z-intervals of 0.4 um. Image acqui-
sition was performed in the CA1 and the CA3 area of the
hippocampus and image settings were kept constant be-
tween genotypes within every age.

fISH image acquisition. Samples were imaged with a
Zeiss LSM 700 confocal laser scanning microscope (Carl
Zeiss AG). Image stacks (six optical sections, 0.5-um step
size) from CA1 and CA3 stratum pyramidale and radiatum
were acquired with at 40 x objective, N.A. 1.4.

Stereology

Unbiased counting of PV+, SST+, and NPY+ interneur-
ons in the hippocampus was performed using the 10x objec-
tive (NA 0.45) of an Axioplan 2 bright-field microscope (Carl
Zeiss AG) equipped with a digital camera (MicroFIRE,
Optronics AG). First, the hippocampal CA1 and CA3 areas
containing the different subregions: stratum oriens, stratum
pyramidale, stratum radiatum and stratum lacunosum molec-
ulare, were delineated with Mercator Pro software (Explora
Nova) according to the mouse brain atlas (Paxinos, 2007).
Subsequently, immunoreactive cells were counted in each of
these areas with no distinction of subregions. Data collection
was done in serial sections throughout the whole hippocam-
pus, analyzed with a serial sampling fraction (ssf) of three for
P7, four for P11, five for P14, and six for P21 and P60. Six ani-
mals per genotype and age were analyzed, except for SST
analysis where only four animals per genotype were
analyzed.

The total volumes (Vyo1) of the CA1 and CA3 were calcu-
lated from the ssf, the areas delineated in every section
(Ai — An; n = number of sections analyzed) and the section
thickness (h) as follows:

n
Vtot =ssf x E A,' x h.
i=1

Subsequently, the total number of immuno-positive
cells (Qio) in the CA1 and CAS3 were calculated using the
ssf and the positive cell numbers per section (Q)):

Qtot = ssf x E Q[.
i=1

Total number of NeuN+, and GABA+ cells were quanti-
fied with the optical Fractionator using the Stereo
Investigator software (v10.50, MBF Bioscience) equipped
for fluorescence imaging, with a 63x lens (Zeiss 1.4 Oil).
Neu+ and GABA+ cells were counted independently in a
frame of 40 x 40 um with a step size of 120 um. Total cell
numbers (N) were calculated using the formula:

N = Z ( )( >WhereZlethetotalnumber
asf

of counted cells, and asf the area sampling factor. A mean
of 200 cells was counted per animal. For more details on
stereological estimates (Slomianka and West, 2005).

eNeuro.org



eMeuro

Optical density analysis

PV immunoperoxidase staining intensity was assessed
by densitometry analysis using the MCID software (MCID
Elite 6.0, InterFocus Imaging Ltd.). Images were digitzed
using a precision illuminator (Northern Light Model B95,
Imaging Research Inc., Brock University, St. Catharines,
Canada) and CoolSNAP cf. photo-camera (Photometrics)
with a Micro-Nikkor (55 + 12 mm) objective (Nikon Corp.).
Next, a gray value calibration (Kodak step tablet no.
310ST607) was performed, and the intensity was meas-
ured in the different regions of interest (ROIs). To correct
for variations in background staining, the intensity value
was normalized to the intensity of the corpus callosum. A
total of five images per animal and three animals per ge-
notype, were analyzed.

Caspase-3 analysis

Four brain sections were imaged per mouse and maxi-
mum intensity projections were created from z-stacks.
Cell densities of caspase-3+ cells were directly quantified
from each field of view. All imaging parameters were kept
constant between groups. Images were processed with
Fiji Imaged (NIH).

PNN analysis

Raw confocal images were preprocessed to 8-bit gray-
scale tiff files, before being z-projected into a sum slices
image using Imaged (NIH) software, allowing the image to
be analyzed in two dimensions without losing any informa-
tion. In a next step, PV+ cells and PNN number, size and
area were analyzed using the Perineuronal net Intensity
Program for the Standardization and Quantification of ECM
Analysis (PIPSQUEAK) macro (Slaker et al., 2016) in FlJI
(Imaged, NIH) software. The macro was run in semi-auto-
mated mode, which allowed the manual confirmation of
PV+ cells and PNNs. Background subtraction was
achieved with Rolling Ball Radius followed by the selection
of 20 ROIs around the perimeter of an image. After removal
of high and low outlier ROIs, a mean background value
could be calculated to remove variability in background
staining (Slaker et al., 2016). Analysis of PV and PNN fluo-
rescence intensity was performed in average projection im-
ages from z-stacks using a custom-made macro in ImageJ
(NIH) software. Processing of both channels included
thresholding method Yen for PNN and Otsu for PV, back-
ground subtraction, Gaussian blurring, and size restrictions.
Six animals per age and genotype were used for the analy-
sis. Data points represent average values of the total quanti-
fied cells per animal.

Synaptic cluster analysis

Morphologic quantification of synaptic cluster densities
was performed in maximal intensity projection images
from three images in the z-stack, using a custom-made
macro in Imaged software (NIH). Processing of all chan-
nels included background subtraction with Rolling Ball
Radius, Gaussian blurring, thresholding for selecting ROIs
of high staining intensity (representing local accumulation
of synaptic proteins), as well as shape (circularity: 0.4-1)
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and size (minimal area 0.1 pm®) restrictions for cluster de-
tection, using the same parameters in all images per ge-
notype and age. GABAergic synapses were detected based
on colocalization of a y>-GABAAR, gephyrin, and VGAT-im-
munofluorescence. vGlut1-2 inputs onto PV+ cells were
quantified by colocalization of both channels. To determine
apposition of presynaptic markers (vVGAT and vGIuT), the size
of the cluster was increased by one pixel all around
(Tyagarajan et al., 2011; Frih et al., 2016). Four mice per ge-
notype and age were used for the analysis.

fISH analysis

Analysis was done in z-stack images with maximum in-
tensity projection, using a custom-made cluster analysis
macro in Imaged (NIH) software. Processing of EPOR par-
ticles (green channel) was separately analyzed, with back-
ground subtraction using rolling ball radius, Gaussian
blurring, and thresholding for selecting ROIs of high stain-
ing intensity, as well as shape (0.5-1 circularity) and size
(0.1-1 pm in diameter) restrictions. The same parameters
were used in all images per genotype and age. Six ani-
mals were used for the analysis.

Electrophysiology
Acute brain slice preparation

WT and Tg21 in the postnatal age ranges of P13-P15
and P19-P22 were briefly anaesthetized with isoflurane
and decapitated. The number of recordings for each group
are as follows; at P13-P15, WT nceiis) = 8, N(animais) = 4 and
for T921 Nicells) = 9, N@nimals) = 5; at P19-P22, WT Nicells) = 8,
N(animats) = 6 and for Tg21 Nceiis) = 8, Nianimais) = 6. The brain
was quickly removed and transferred to ice-cold dissection
solution containing 65 mm NaCl, 2.5 mm KCI, 1.25 mm
NaH,PQO4, 25 mm NaHCO3, 7 mm MgCl,, 0.5 mm CaCl,, 25
mwm glucose and 105 mwm sucrose, saturated with 95% O,
and 5% CO,. 350 um-thick sagittal slices containing the
hippocampus were cut from the tissue block with a vibra-
tome (Leica) and kept in oxygenated ACSF (315 mOsm)
containing 125 mm NaCl, 2.5 mm KCI, 1.25 mm NaH,POy,
25 mm NaHCO3, 1 mm MgCl,, 2 mm CaCl,, and 25 mwm glu-
cose at 32°C for 25 min and then at RT until use.

Whole-cell recordings

For recording, individual slices were transferred to a re-
cording chamber perfused with oxygenated ACSF (as
aforementioned) at a flow rate of 1-2 ml/min at RT (21—
23°C). Whole-cell patch clamp recordings were made
from hippocampal CA1 pyramidal neurons visualized
using differential interference contrast (DIC) with an up-
right microscope (Axioscope, Examiner.A1, Carl Zeiss) at
a low, 10x (water immersion objective) magnification;
high, 63 x (water immersion objective) magnification was
used for approaching the cell and achieving a high-resist-
ance (gigaohm) seal. sIPSCs were recorded from CA1 py-
ramidal cells, clamped at a holding potential of =70 mV, in
the presence of 20 um NBQX, 50 um AP-5 and 0.5 um
Strychnine to block glutamatergic and glycinergic trans-
mission. For mIPSCs, 1 um tetrodotoxin (TTX) was further
added to block events caused by action potentials firings.
Recordings with an unstable baseline or a holding current
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greater than —120pA were rejected. Recording pipettes
were made from borosilicate glass (1.5-1.8 O.D., 0.2 mm
thick, Kimble), pulled with a vertical puller (Narishige PC-10),
had resistances of 7-9 MQ when immersed in ACSF and
filled with internal solution containing the following: 130 mm
K-gluconate, 5 mm NaCl, 10 mm HEPES, 1 mm EGTA, 5 mm
Mg-ATP, and 0.5 mm Na-GTP; pH 7.4, 290-300 mOsm.
sIPSCs and mIPSCs were recorded with an internal solution
containing the following: 120 mm CsCl, 4 mm MgCl,, 10 mm
HEPES, 10 mm EGTA, 2 mm Mg-ATP, and 0.5 mm Na-GTP;
pH 7.4, 290-310 mOsm. Recordings were performed using
Multiclamp 700B amplifier (Molecular Devices), data were
digitized with Digidata 1440A (Molecular Devices) and ac-
quired with the acquisition software Clampex 10.0 (Molecular
Devices). All experiments were performed at RT (21-23°C).

sIPSCs and mIPSCs currents were filtered off-line
using a Butterworth low-pass filter (2 kHz), digitized at
10kHz and analyzed as 2-min epochs following the addi-
tion of the pharmacological blockers for 2 min, using the
Mini-Analysis Program 6.0.7 (Synaptosoft,). Recordings
with leak increasing>120pA and access resistance
changing >30% between the beginning and the end of
the recording were discarded. At least 200 events were
analyzed for any condition in all experiments. Synaptic
events were identified by setting the event detection
threshold at least 2-fold higher than the baseline noise
level and by ensuring that events had (1) rise times faster
than the decay time, (2) rise times >0.5ms, and (3)
decay times >1.5ms; only events adhering to these pa-
rameters were included in further analysis. Event ampli-
tudes, interevent intervals, rise and decay times were
averaged within each experiment. The frequencies were
calculated from the interevent intervals and the resulting
means were averaged between experiments.

Statistical analyses

All statistical analyses were performed using GraphPad
Prism 8 (GraphPad Software). Parametric data with two
conditions were analyzed using an unpaired, two-tailed
Student’s t test. Data in different brain areas that were in-
fluenced by one factor were analyzed with multiple t test.
To compare data influenced by two factors, a two-way
ANOVA with Bonferroni multiple comparisons post hoc
test was used. Probability distributions were tested using
the Kolmogorov-Smirnov (KS) test. For all statistical
tests, p <0.05 was considered statistically significant.
Data are presented as mean * SD. In order to confirm
appropriate sample sizes for experiments, a Power
Analysis was conducted using G*Power software
(Heinrich Heine Universitat, Dusseldorf, Germany; Faul
et al., 2007). Changes in total PV number across ages
was evaluated in R program with a square root curve pol-
yfit (yp = sqrt” number + age + genotype) and the inter-
ference value was evaluated with grofit.

Results

Increased number of GABA-immunoreactive neurons
in the hippocampus from Tg21 mice

To determine whether constitutive overexpression of
human EPO in the CNS influences GABAergic
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neurotransmission in the hippocampus, the total number
of neurons (immunoreactive for NeuN) and the total num-
ber of GABA-immunoreactive neurons were stereologi-
cally quantified together in the CA3 and CA1 regions of
Tg21 mice at P7, P14, P21, and P60 and compared with
the WT control mice (Fig. 1A,B). Representative images
of the CA3 and CA1 areas double-stained for NeuN and
GABA at P21 are shown in Figure 1A. A significant effect
of age and genotype was observed for NeuN-positive
cells in the CA area, with increased numbers in Tg21
mice at P21 and P60 (two-way ANOVA, Fy 49 = 16.3,
p =0.0002; Fig. 1B, upper graph). Likewise, the number
of GABAergic neurons was higher in the Tg21 mice start-
ing at P14 (two-way ANOVA, F(4 40) = 77.90, p <0.0001;
Fig. 1B, middle graph). The early increase of GABA im-
munoreactivity resulted in a significantly higher ratio of
GABA cells in Tg21 mice at P14 (two-way ANOVA,
F@,40)=16.53, p=0.0002; Fig. 1B, lower graph).

To determine whether this early increase of GABA im-
munoreactivity at P14 occurs in specific subpopulations
of interneurons, we quantified the total number of PV+,
SST+, and NPY+, interneurons in CA1 and CAS3 at this
age (Fig. 1C,D). The results showed region-specific differ-
ences, being the increased number of GABAergic neu-
rons in CA3 mainly because of an increase in PV+ and
NPY+ cells (multiple t test, p=0.024 and p=0.044, re-
spectively; Fig. 1D), whereas in CA1 mainly because of
SST+ and NPY+ cells (multiple t test, p=0.005 and
p=0.018, respectively; Fig. 1D). These findings indicate
that EPO overexpression accelerates maturation of inter-
neuron subpopulations in a region-specific manner during
postnatal development.

Early onset of PV expression in the hippocampus from
Tg21 mice

Given the importance of PV+ cells for the regulation of
pyramidal cell activity and synchronization during post-
natal development, we further explored the effect of EPO
on PV+ cell numbers, focusing on the CA1 and CA3
areas at P7, P11, P14, P21, and P26 (Fig. 2). These time
points were selected because PV immunoreactivity in
the mouse hippocampus appears between P4-P7 and
peaks between P14 and P21 (Solbach and Celio, 1991).
Quantification of immunolabeled PV cells revealed a
highly significant age effect in CA3 and CA1 regions,
along with a genotype effect in CA3, strongest at P7,
where PV+ cells were still absent in most WT mice but
already expressed in all Tg21 mice (multiple t test,
p=0.007; Fig. 2B). Also, at P11 PV+ cells were in-
creased in number in CA3 (multiple t test, p =0.046; Fig.
2B). Normalization and analysis [Poly fit (yp = sqrt(10),
y, 1)] of PV cells across development showed a signifi-
cant increase in PV+ cells at P7, 11 and 14 in CAS (grofit
analysis, p =0.0003; Fig. 2C). Interestingly, not only was
the number of PV + cells higher in the CAS3 area at P7, P11,
and P14, but the neuropil was also more intensely stained in-
cluding at P21, as illustrated in Figure 2A and measured by
optical density (two-way ANOVA, F 50)=32.43, p < 0.0001;
Fig. 2D). In the CA1 area a higher PV staining intensity was
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Figure 1. Increased number of GABA-immunoreactive neurons in the hippocampus from Tg21 mice. A, Representative im-
ages of double immunofluorescence staining against GABA (green) and NeuN (magenta) for CA3 and CA1 areas of WT and
Tg21 mice at P21. so: stratum oriens, sp: stratum pyramidale, sr: stratum radiatum. B, Unbiased quantification of NeuN+
(upper graph) and GABA+ (middle graph) cells in total CA3 and CA1 area of WT and Tg21 mice, showing age-specific differ-
ences between genotypes. Ratio of GABA+/NeuN+ cells (lower graph) in WT and Tg21 mice, shows a significant increase of
GABA+ cells at P14. Data are given as mean = SD of total neuronal numbers in the CA1 and CAS area of the hippocampus;
N=6 animals per age and genotype. Two-way ANOVA test, *p <0.05, **p <0.01, ***p <0.001, ****p <0.0001. Scale bar:
50 um. C, Representative images of PV+, SST+, and NPY+ immunoperoxidase staining in hippocampus of WT and Tg21
mice at P14 illustrate the stronger immunoreactivity in PV, SST, and NPY in Tg21 mice. DG: dentate gyrus. D, Unbiased
quantification of the total cell numbers in CA3 and CA1 areas, revealing increased numbers of PV+ cell in CAS, increased
number of SST+ cells in CA1, and increased number of NPY + cells in CA3 and CA1 in Tg21 mice. Data are given as mean *+
SD, N=6 animals per genotype for PV and NPY and N =4 animals per genotype for SST staining. Multiple t test; *p <0.05,
**p < 0.01. Scale bar: 200 um.
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Figure 2. Early onset of PV expression in the hippocampus from Tg21 mice. A, Representative images of PV immunoperoxidase
staining in CA3 and CA1 areas of WT and Tg21 mice at P7, P11, and P21. Note the earlier appearance of PV+ cells in the CA3 area
(P7). Scale bar: 50 um. B, Unbiased quantification of the total PV+ cell numbers at each represented postnatal time point for WT
and Tg21 mice. Multiple t test; *p <0.05, *p < 0.01. C, Significant differences in PV+ cell numbers between genotypes occur in
CAS3 area at P7, P11, and P14. Grofit interference analysis, *p < 0.05, **p < 0.01. D, Significant difference in PV+ intensity is to ob-
serve in the CA3 area at postnatal ages: 7, 11, 14, and 21; and in the CA1 area at postnatal ages: 14 and 21. Data are given as scat-
ter dot plots and mean = SD, N=6 animals per genotype. Two-way ANOVA test; *p <0.05, *p < 0.01, **p <0.001, **p < 0.0001.
E, Representative images of cleaved caspase-3 (green) and DAPI (blue) staining in CA1 areas of WT and Tg21 mice at P7. Scale
bar: 50 um. F, Cleaved caspase-3 quantification in WT and Tg21in CA3 and CA1 area at P7 and P11. A significant reduction in apo-

ptosis at P7 is observed in Tg21 mice. Two-way ANOVA; *p < 0.05.

measured at P14 and P21 (two-way ANOVA, F 46 =21.29,
p < 0.0001; Fig. 2D).

Taken together, our results point to an accelerated mat-
uration of GABAergic neurons in the hippocampus, along
with a neurotrophic effect resulting in higher numbers of
all neurons persisting until reaching adulthood in Tg21
mice.

January/February 2021, 8(1) ENEURO.0006-21.2021

Because EPO is an antiapoptotic cytokine (Ghezzi and
Brines, 2004) and many interneurons undergo programmed
apoptosis early in postnatal development (Southwell et al.,
2012; Priya et al., 2018), we analyzed apoptosis in the CA1
and CAS areas at postnatal ages P7 and P11 (Fig. 2E,F). A re-
duction in cleaved caspase-3+ cells was observed in the
stratum pyramidale and stratum oriens at P7 in Tg21 mice
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(two-way ANOVA, F o0 =11.29, p=0.003; Fig. 2E,F). Thus,
EPO promotes survival of neurons at the second postnatal
week.

EPO influences PNN formation around PV+ cells in
the hippocampal CA1 and CA3 areas

To determine whether EPO increases PV+ cell matura-
tion and synapse stabilization, we evaluated the formation
of PNNs around PV+ cells, at P7, P11, P14, P21, and P26
in Tg21 and WT mice. The plant lectin WFA, which selec-
tively binds to ECM glycoproteins in the PNNs, was vi-
sualized together with PV immunofluorescence (Fig. 3).
The following parameters were evaluated in CA1 and CA3
areas: total number of PV+ cells surrounded by PNNs
(Fig. 3B), WFA fluorescence intensity (Fig. 3C), PV fluores-
cence intensity (Fig. 3D), correlation between PV and
WFA intensity at P11 (Fig. 3E). Additionally, soma size and
PV intensity were compared between PV+ cells sur-
rounded or not by PNN at P11 (Fig. 3F,G). No genotype
effect was observed in number of PV+/WFA+ cells (Fig.
3B). However, the intensity of WFA was significantly high-
erin Tg21 mice in CA3 and CA1 areas at P11, and in CA1
at P14 (CA3: two-way ANOVA, F(150=8.71, p=0.0048
and CA1: two-way ANOVA, F 50 =18.36, p <0.0001;
Fig. 3C). Also, PV intensity of WFA surrounded cells was
higher in CA3 and CA1 at P11 (CA3: two-way ANOVA,
Fi50=3.8, p=0.049 and CA1: two-way ANOVA,
F1,500=3.78, p=0.049; Fig. 3D), which suggest that con-
stitutive EPO overexpression modulates the formation of
PNNs at this early stage of development. Since quantifi-
cation of PV+ cells surrounded by PNNs (i.e., WFA+)
showed similar values in the CA3 and CA1 areas, the in-
creased cell numbers at P7, P11 and P14 in CA3 from
Tg21 mice reflects uncovered (i.e., WFA-) cells. At P11, a
positive correlation between PV and WFA fluorescence in-
tensity was seen in both genotypes [Pearson correlation
analysis (), p <0.01; Fig. 3E]. Also the soma size of PV+/
WFA+ cells was significantly larger for both genotypes in
the CA3 and CA1 areas (CA3, two-way ANOVA, F4 2q) = 8,
p=0.01; CA1, two-way ANOVA, Fu1.0 = 25.26,
p <0.0001; Fig. 3F) and even larger in the Tg21 mice than
WT in the CA1 area (CA1, two-way ANOVA, F g =
4.893, p=0.0388; Fig. 3F). A comparison of PV fluores-
cence intensity of PV+/WFA- and PV+/WFA+ cells
showed that interneurons surrounded by PNNs have a
significantly higher PV staining intensity than PV+/WFA-
cells in both genotypes (CA3, two-way ANOVA, F1 2 =
9.814, p=0.0052; CA1, two-way ANOVA, F o = 21.7,
p=0.0002; Fig. 3G), likewise with a significant genotype
effect in the CA1 area, with PV+/WFA+ cells in Tg21
mice being more strongly fluorescent than in WT (CA1,
two-way ANOVA, F 20 = 5.342, p=0.037; Fig. 3G). In
brief, our data show that EPO increases the number of
PV+/WFA- cells during the first two postnatal weeks and
accelerates PNN formation at specific early postnatal de-
velopment windows.

Increased GABAR cluster density in CA1 pyramidal
cells of Tg21 mice at P14

Next, we examined morphologically, whether the den-
sity of GABAergic synapses is affected in Tg21 mice. We
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studied both perisomatic synapses (primarily formed by
PV+ basket cells) in the CA1 stratum pyamidale and den-
dritic synapses in the CA1 stratum radiatum at P14, P21,
and P60. Synapses were identified by triple immunofluo-
rescence staining for the VGAT as a marker of presynaptic
terminals, the GABAAR 7y>-subunit, which is ubiquitous in
GABAergic postsynaptic densities, and the scaffolding
protein gephyrin, which closely interacts with GABAARs
(Fig. 4).

Colocalization of these three markers in puncta (clus-
ters) detected by confocal laser scanning microscopy
was considered to represent individual GABAergic syn-
apses, which were quantified accordingly. At P14, a 2-
fold increase in cluster density was observed in the
Tg21 mice as compared with WT (t test, p =0.0105; Fig.
4E). At later developmental time points P21 and P60, no
differences were detected between genotypes (Fig. 4F,
G). We observed that at P14 all individual markers (Fig.
4B-D) were increased in the same proportion (~20-
30%) in Tg21 mice (Fig. 4B-D, left column, C, t test,
p=0.047, D, t test, p =0.0050), although VGAT staining
did not reach statistical significance (t test, p=0.1507;
Fig.4B).

Assessing the size of VGAT+ puncta, representing
presynaptic terminals, and GABAARy2/gephyrin post-
synaptic clusters, by cumulative frequency analysis
(Tyagarajan et al., 2011), we observed a significant in-
crease for all three markers at P14 (KS test, p <0.0001;
Fig. 4B-D, right column), suggesting that EPO influen-
ces both the size of presynaptic terminals and the ag-
gregation of GABAARs at postsynaptic sites. These
results indicate that EPO increases the formation of
GABAergic synapses at the soma and proximal den-
drites of CA1 pyramidal cells. Our data corroborates
what was previously observed in the formation of
PNNs, that EPO accelerates the maturation of the
GABAergic system.

We also analyzed EPO’s impact on the density of
GABAergic synapses in pyramidal cells and interneuron
dendrites in the stratum radiatum of the CA1 area. In con-
trast to our observations in the stratum pyramidale, no
significant difference in GABAergic synaptic clusters was
detected (data not shown), suggesting that EPO mainly
affects GABAergic synapses from PV interneurons which
occur preferentially on the soma and proximal dendrites
of pyramidal cells.

Enhancement of GABAergic synaptic transmission in
CA1 area of Tg21 mice at P13-P15

The increase in synaptic GABAergic markers in CA1
pyramidal cells at P14 raised the possibility that this
morphologic change has a functional correlate. We
measured sIPSCs and action potential-independent
miniature (mIPSCs). Since we obtained very similar
findings for both populations of IPSCs, only the re-
sults from the mIPSC analysis are presented here
(Fig. 5).

In pyramidal cells recorded in acute hippocampal slices
of WT and Tg21 mice at P13-P15, mIPSC baseline noise
of WT and Tg21 animals was in average 2pA. Tg21
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Figure 3. EPO influences PNN formation around PV+ cells in the hippocampal CA1 and CA3 areas. A, Representative images of
double labeling for PV immunoreactivity (magenta) and WFA fluorescence that identify PNNs (green) and merged images in CA3
and CA1 areas at P11. Scale bar: 100 um. B, Quantification of PV+ cells surrounded by PNN (WFA+) in CA3 and CA1 across post-
natal ages. No increase in WFA+ cells nor change in the onset is observed between genotypes. C, WFA intensity in CA3 and CA1
across postnatal ages. WFA fluorescence intensity is stronger in Tg21 mice CA3 area at P11 and in CA1 area at P11 and P14. D, PV
intensity in WFA+ cells in CA3 and CA1 area across postnatal ages. PV intensity is stronger in CA3 and CA1 areas at P11 in Tg21
mice. E, Correlation analysis of PV and WFA fluorescence intensity in WT and Tg21 mice CA1 area at P11. r: Pearson correlation. F,
PV+ cells soma size at P11. PV+ cells covered by WFA have larger cell somas in CA3 and CA1 area from WT and Tg21 mice.
WFA-+/PV+ cells are larger in Tg21 mice CA1 area. G, PV immunofluorescence intensity at P11. PV intensity is stronger in WFA+
cells, and the intensity is even higher in Tg21 mice in CA3 and CA1 areas. Graphs (B-F) show scatter dot plots and mean bars =
SD, N =6 animals per age and genotype. Two-way ANOVA; *p <0.05, *p <0.01, **p < 0.001, ***p < 0.0001.
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Figure 4. Increased GABAAR cluster density in CA1 pyramidal cells of Tg21 mice at P14. A, Representative images of immunofluo-
rescence staining against VGAT: vesicular GABA transporter (blue), gephyrin (green), and y2-GABAAR subunit (red) in WT and Tg21
mice. B, Quantification of presynaptic (VGAT) terminals in WT and Tg21 mice showing increased terminal size (cumulative plot) in
Tg21 mice. C, Quantification of postsynaptic clusters of gephyrin showing increased cluster number (bar graph) and size (cumula-
tive plot). D, Quantification of y,-GABAAR subunits in WT and Tg21 mice showing increased density (bar graph) in Tg21 mice.
Density of postsynaptic (triple labeled) clusters in WT and Tg21 mice at P14 (E), P21(F), and P60 (G). Bar graphs show mean = SD,
data points represent individual mice, N=5 animals per age and genotype, Student’s t test (B-J). Cumulative frequency plots show
total number of quantified clusters in WT and Tg21 animals; *p < 0.05, **p < 0.01, **p <0.001, ***p < 0.0001. Scale bar: 10 um.

animals had shorter interevent intervals (KS test, p < 0.01;
Fig. 5B) and hence higher frequency (t test, p <0.001); as
well as larger amplitudes (KS test, p <0.0001, t test,
p <0.01; Fig. 5C) compared with WT. Additionally, the
Tg21 kinetics were slower, with rise-time and decay-time
constants being significantly longer than in WT [rise time:
KS test, p < 0.0001, t test, p < 0.05 (Fig. 5D); decay time:

January/February 2021, 8(1) ENEURO.0006-21.2021

KS test, p=0.0002, t test p < 0.001 (Fig. 5E)]. Therefore,
overall GABAergic transmission onto pyramidal cells of
Tg21 mice is enhanced. The larger amplitude of mIPSC
correlates well with the increased size of GABAAR clusters
and suggests an increase in synaptic strength.

In slices taken from P19-P22 mice, no differences in in-
terevent intervals/frequency (Fig. 5G) or event amplitude
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Figure 5. Enhancement of GABAergic synaptic transmission in CA1 area of Tg21 mice at P13-P15. A, Representative raw
and averaged mean traces of the mIPSCs in WT and Tg21 mice at P13-P15. B-E, Cumulative frequency distribution plots
and data points graphs at P13-P15 of (B) IEls and frequency, (C) amplitude, (D) rise-time constant, and (E) decay-time con-
stant of the mIPSCs from WT (black bars) and Tg21 (red bars). An increase in frequency, amplitude, rise time, and decay
time is observed in Tg21mice at P13-P15. F, Representative raw and averaged mean traces of the mIPSCs for WT and Tg21
mice at P19-P22. G-J, Cumulative frequency distribution plots at P19-P22 of (G) IEls and frequency, (H) amplitude, (/) rise-
time constant, and (J) decay-time constant. No differences are observed in Tg21 mice at P19-P22. Graphs show mean =
SD, data points represent individual mice, N=9 animals per genotype (P13-P15) and N =8 animals (P19-P22), Student’s
t test. Cumulative frequency plots show total number of events in WT and Tg21 animals, KS tests; *p <0.05, **p <0.01,
***p <0.001, ****p <0.0001.
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Figure 6. EPORs expression in the CA1 area is restricted to principal cells. Representative images of flISH for mRNA EPORs (green
dots) colabeled with DAPI (gray) in WT and Tg21 mice at P7, P11, and P21 in (A) stratum pyramidale (SP) and (C) stratum radiatum
(SR). Negative control (P7): fluorophore; positive control (P7): housekeeping gene. Scale bar: 10 um. Quantification of EPOR mRNA
dots in CA1 SP (B) and CA1 SR (D) at different postnatal ages, showing its selective presence in SP throughout postnatal develop-
ment. More EPOR mRNA dots are quantified at P7 in Tg21 mice. Data are given as mean with individual values += SD, N = 6 animals

per genotype and age. Two-way ANOVA test; CA1 SP, **p < 0.001.

(Fig. 5H) of GABAergic mIPSCs were observed between
Tg21 and WT mice. These results are in line with the mor-
phologic analysis of GABAergic synaptic density at P21,
in which no differences in synaptic clusters were observed
between genotypes. At this age, mIPSCs kinetics in Tg21
mice became faster and equal to WT mice (Fig. 5/,J).
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EPORs are highly expressed in Tg21 mice CA1
pyramidal cells during early postnatal development
We next evaluated the cellular expression of EPORs in
the hippocampus from WT and Tg21 mice. To this end,
we performed fISH (RNA scope) of EPOR mRNA at post-
natal ages P7, P11, P21, and P60. In both genotypes,
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Figure 7. Constitutive deletion of EPORs from Gad65 cells has no impact on the GABAergic system. A, Representative images of
fISH for EPORs in GAD65-cre ', EPOR™™ mice and GAD65-creTY ", EPOR™™ (GADG5: Glutamat decarboxylase isoform 65) mice
at P11 in CA1 stratum pyramidale area. B, Quantification of EPOR mRNA dots in CA1 area, showing no effect of the targeted muta-
tion. C, Representative images of PV immunoperoxidase staining in GAD65-cre /", EPOR™™ mice and GAD65-creT¥ ", EPOR™™
mice at P11 showing no change in PV immunostaining. D, Unbiased quantification of PV* cell numbers in CA1 area shows no alter-
ation in cell numbers on deletion of EPOR in interneurons. Data are given as mean = SD, N = 3 animals and 3 hippocampi per geno-
type for fISH and N = 6 animals per genotype for PV stereology. Two-way ANOVA test. Scale bars: 10 um (A) and 200 pm (C).

EPOR expression was found in pyramidal cells of the
CA1 area (Fig. 6A,B) and in a reduced number also in
cells in the stratum radiatum (Fig. 6C,D). This finding
strongly suggests a selective expression of EPOR mRNA
in pyramidal cells throughout postnatal development.
Quantification of EPOR mRNA probes in the stratum pyrami-
dale of the CA1 area showed a significant age effect with in-
creasing density of mMRNA puncta until P60. Between P7 and
P11, EPOR mRNA expression was mostly increased, reach-
ing values like P21 and not significantly different from P60. At
P7, Tg21 mice showed a 2-fold higher EPOR mRNA expres-
sion. No change in EPOR between genotypes was observed
at any other age.

Constitutive deletion of EPORs from Gad65 cells has
no impact on the GABAergic system

To further ensure that EPORs are mainly expressed in
principal cells, fISH of EPOR mRNA along with immuno-
labeling of PV+ cells was performed but no EPORs were
found on PV+ cell in the hippocampus. Furthermore, the
lack of EPOR expression on GABAergic cells was con-
firmed with the conditional deletion of EPOR (EPOR™™) in
the GADB5-Cre'®*, EPOR™™ mouse line. In this line,
EPOR expression was measured by fISH analysis at P11
(age when EPORs are highly incremented) in CA1 stratum
pyramidale. Similar numbers of labeled puncta were
detected in GADB5-Cre™*, EPOR™™ and control
GAD65-Cre™*, EPOR™™ (unpaired t test, p =0.063;
Fig. 7A,B). Also, the number of PV+ cells in hippocam-
pus were quantified at P11, showing no differences
between control and gene-targeted mice (two-way
ANOVA, F(1,12=0.036, p=0.8523; Fig. 7C,D), nor in

January/February 2021, 8(1) ENEURO.0006-21.2021

neuropil formation, suggesting that the effects of EPO
on the GABAergic system are most likely independent
of EPOR expression in interneurons.

Increased density of glutamatergic terminals on PV+
interneurons of Tg21 mice at P14

Selective EPOR mRNA expression in principal cells of
WT and Tg21 mice suggests that EPO might exert a
trophic effect on pyramidal cells, which are known to
strongly innervate neighboring PV+ cells (feed-forward
excitation). Therefore, we tested the hypothesis that glu-
tamatergic input might be increased in PV+ interneurons
in Tg21 mice. To this end, we used double immunofluo-
rescence for PV and the two VGIuT1 and VGIUT2 in the
CA1 and CA3 area at P14, the postnatal age where
most changes in GABAergic transmission were observed
(Fig. 8). Overall density of VGIuT1/2-immunoreactive
puncta revealed a significantly higher density of VGIuT1/
2-immunoreactive terminals contacting PV+ interneurons
in CA1 and CAS3 (unpaired t test, p=0.0011; Fig. 8A,B),
with no change in the size of these terminals (Fig. 8C,D),
suggesting that increased synaptic excitatory inputs onto
PV cells might drive the accelerated maturation of PV+
cells observed in Tg21 mice.

Thus, in summary, we conclude that the effect of EPO
on GABAergic postnatal maturation results from pyrami-
dal regulation of interneuron network formation and
survival.

Discussion
The present study shows that constitutive neuronal
overexpression of EPO stimulates maturation of the
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Figure 8. Increased density of glutamatergic terminals on PV+ interneurons of Tg21 mice at P14. A, Representative images of dou-
ble immunofluorescence staining for VGIuT1-2 (magenta) and PV (blue) in hippocampus of WT and Tg21 mice. B, Quantification of
VGIuT1&2+ puncta in PV+ cells, showing higher numbers in Tg21 mice. C, D, No change in puncta size between genotypes was
observed. Bar graphs are given as mean *= SD, N = 4 animals per genotype and 2 hippocampi per animal. 10 to 15 PV+ cells were
quantified per hippocampi and area. Student’s t test, **p, 0.01, KS tests n.s. Scale bar: 10 mm.

GABAergic system in the mouse hippocampus. EPO
overexpression affected numerous aspects of GABAergic
maturation during the second and third postnatal window,
namely elevated expression of GABAergic cells and
markers of GABAergic neurons (mainly PV, SST, and
NPY), increased GABAergic synapse density and function
in pyramidal cells, faster maturation of PV+/WFA+ cells,
and increased innervation of PV+ interneurons by gluta-
matergic terminals. All these changes suggest enhanced
GABAergic function during a critical period for the proper
formation of brain circuits. EPO overexpression in neu-
rons caused a reduction in apoptosis in the CA1 and CA3
hippocampus during the first postnatal week, when
EPORs were upregulated in principal cells of the Tg21
mice. Therefore, survival of interneurons during this post-
natal window is essential for postnatal development and
circuit formation. The lack of EPORs on interneurons,
confirmed by the lack of a phenotype observed in the
Gad65-cre, EPOR™™ mice, additionally suggests pyrami-
dal cells to regulate interneuron survival (Wong et al.,
2018). Our results support the notion that EPO can indi-
rectly stimulate the development of GABAergic transmis-
sion, which in turn is a key driver of neural circuit
formation. Therefore, EPO could be highly beneficial in
pathologic conditions that affect GABAergic neurons and
might protect the brain against an imbalance of excita-
tory/inhibitory transmission.

We showed an increase in GABAergic neurons (mainly
PV, SST, and NPY) during postnatal hippocampal
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development caused by a decrease in apoptosis during
the first postnatal week. The reduction in apoptosis was
mainly observed in the stratum pyramidale of CA3 and
CA1 areas and in the CA1 stratum oriens, which com-
press oriens-lacunosum moleculare interneurons (O-LM)
that express SST and NPY. The restricted location of cell
somata in the CA1 stratum oriens dictates that the source
of excitatory inputs is mainly from pyramidal cells, there-
fore survival and enhancement of glutamatergic inputs is
also expected to occur in SST and NPY cells. At P14 PV-
expressing cells are increased mainly in the CA3 area,
whereas SST-expressing cells were increased in the CA1
area. Most cells in the CA1 stratum oriens showed re-
duced apoptosis at P7, therefore the increase in SST
number could be linked to survival.

Whether EPO-mediated enhancement of interneurons
is also linked to EPO signaling on inhibitory neurons dur-
ing embryonic origin is unlikely, since deletion of EPORs
on Gad65-cre cells had no effect on normal GABAergic
development, and EPORs start to express postnatally in
the hippocampus. In the neocortex, EPO and EPORs are
expressed embryonically in the neurogenic ventricular
zone and EPO signaling is required for radial migration
and laminar positioning of upper-layer excitatory neurons
(Constanthin et al., 2020). In contrast to the cortex,
we show in this study that EPO signals in the hippocam-
pus postnatally. We show that EPORs are expressed on
CA1 pyramidal neurons and the expression increases
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postnatally to reach a zenith at early adulthood (P60). It is
important to emphasize that in we have confirmed activa-
tion of the ERK and AKT pathway across postnatal devel-
opment in the hippocampus of Tg21 mice and in a model
of stroke (Kilic et al., 2005). Therefore, EPO-mediated ac-
tivation of PISBK-AKT and Erk1/2 extends from neuropro-
tection to influencing neuronal differentiation postnatally.
Activation of AKT signaling is known to mediate phospho-
rylation of the GABAAR 7y, subunit, resulting in increased
GABAR trafficking to the postsynaptic membrane and
facilitation of GABAergic inhibitory transmission (Wang et
al., 2003). Furthermore, clustering of gephyrin at postsy-
naptic sites is modulated by various posttranslational
modifications, notably by PI3K/Akt (Tyagarajan and
Fritschy, 2014). Modulation of gephyrin phosphorylation
has been shown to influence the density of GABAergic
synapses on dendrites in vitro and in vivo (Tyagarajan et
al., 2011). In our model, we observed an increase in
GABAAR Yy, postsynaptic clusters and an increase in
GABAAR 7v> and gephyrin cluster size, along with en-
hanced IPSCs during the postnatal development. Since
EPORs are highly expressed in CA1 pyramidal cells start-
ing from P11, we propose that EPO signaling onto pyrami-
dal cells activates the PI3K/Akt pathway, leading to an
increase in GABAR trafficking to the membrane and re-
sulting in increased synaptic GABAergic function in CA1
pyramidal cells. ERK1/2 phosphorylation is also impli-
cated in the differentiation of neurons (Li et al., 2006) and
synaptic hippocampal plasticity in the CA1 area
(Kanterewicz et al., 2000). However, no evidence for in
vivo ERK1/2 regulation of GABAARSs has been reported so
far. Furthermore, EPO causes an increase in presynaptic
VGAT size. Therefore, the effect of EPO overexpression
on the GABAergic synapses is likely presynaptic and
postsynaptic, through the bidirectional signaling of the
neuroligin-neurexin complex (Shen and Scheiffele, 2010).
Additionally, it is possible that EPO acts via activation of
the TrkB/BDNF pathway, causing an increase in presyn-
aptic VGAT expression (Wang and Xia, 2015).

We show, by the evaluation of PNN formation, that EPO
overexpression does not change the onset nor the num-
ber of PV+ cells surrounded by PNNs but enhances PV
and PNN staining intensity. This suggests that EPO accel-
erates interneuron maturation. The increase in maturation
is in line with the observed increase of excitatory VGIuT1
and VGIuT2 inputs to PV+ cells and the strengthening of
inhibitory synapses to pyramidal neurons in the CA1 area,
as seen at P13-P15 by the increase in mIPSC frequency
and amplitude. Interestingly, in Tg21 mice, PV+/WFA+
cells exhibit significantly larger soma at P11, leading to
the question of whether PV + cell size is also related to in-
creased synaptic plasticity. PV expression is linked to
synaptic density ratios. Specifically; high PV expression
means more differentiation and a higher excitatory/in-
hibitory ratio (Donato et al., 2013). Additionally, PNNs
preferentially form around more mature PV+ cells with a
higher staining intensity (Donato et al., 2013). No
changes in PV staining intensity and soma size were
seen at other postnatal ages, and at P26 the number of
PV+ cells surrounded by PNNs was equal in both
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genotypes. Therefore, EPO may stimulate the matura-
tion of late PV-basket cells, which exhibit plasticity
when the critical period of plasticity is induced (Donato
et al., 2015). Indeed, an increase in PV+/WFA- cells, in
which plasticity remains high, was quantified in Tg21
mice at P11.

PV+ basket cells provide powerful perisomatic feed-
forward and feedback inhibitory inputs onto CA1 py-
ramidal cells (Klausberger and Somogyi, 2008). The
maturation stage of PV-basket cells has been impli-
cated in different forms of learning since each interneur-
on type selectively gates distinct information flow to
pyramidal cells. Accordingly, changes at different times
within the period of plasticity might differ in network for-
mation and the response to specific learning require-
ments. The capability of EPO to increase, on the one
hand, the number of immature PV+ cells and to stimu-
late, on the other hand, the maturation of PV-basket
cells makes this paradigm relevant for therapeutic ap-
plications in the treatment of developmental disabilities.

One of the central interests in neurodevelopmental
therapy is to identify pharmacological interventions that
stimulate neural synaptic plasticity. Moreover, the hippo-
campus is an area of high clinical interest, since the in-
tegrity of synaptic function is implicated in several
disease states caused by perinatal injury (Travaglia et al.,
2016; Alberini and Travaglia, 2017), and early interven-
tions are required. Many studies reported EPO as an effi-
cient neuroprotective agent in models of experimental
stroke (Wiessner et al., 2001), cerebral hypoxic-ische-
mia, PBI, and neuroinflammation (Sirén et al., 2009). In
the hippocampus, it inhibits apoptosis associated with
glutamate toxicity, and promotes survival and neurogen-
esis (Doggrell, 2004; Mennini et al., 2006; Hassouna et
al., 2016; Zhang et al., 2018). Several clinical trials in
neonatology using a high dose of recombinant human
EPO given in the first days of life (from 500 to 5000 IU/kg,
i.p., to pass the blood brain barrier) have shown that EPO
cannot only reduce acute injury but represents a promising
tool for long-lasting prevention of trauma-induced develop-
mental delay, as well as cognitive and neurobehavioral
dysfunction (Sirén et al., 2009; Natalucci et al., 2016).
Accumulating evidence from animal studies suggests EPO
is an enhancer of hippocampal synaptic plasticity and cog-
nition in the mature hippocampus (Adamcio et al., 2008;
Dias et al., 2018), as well as in patients with psychiatric dis-
eases (Ehrenreich et al., 2007a,b, 2008; Miskowiak et al.,
2010, 2015, 2016). However, whether EPO can stimulate
neurodevelopment and specifically the maturation of the
inhibitory synaptic transmission has remained elusive. With
this work, we provide an ideal model to amplify EPO’s
physiological effects during postnatal brain development
without altering blood cell production. We could show
EPQO’s potential in stimulating postnatal maturation of neu-
rons in the hippocampus, and additionally, we identified
the targets through which EPO signals. The impact of EPO
on GABAergic interneurons is a network effect in which in-
creased glutamatergic inputs to PV+ cells and increase
GABAergic inputs to pyramidal cells is observed early in
postnatal development.

eNeuro.org



eMeuro

Our work supports the use of EPO to stimulate neuro-
development. Since EPO is controlled via the HIF-2/prolyl
hydroxylase 2 (PHD2) pathway (Takeda et al., 2008;
Gassmann and Muckenthaler, 2015), inhibitors of PHD2
to stabilize the a-subunit of HIF-2 and subsequently in-
crease transcription of the EPO gene are being commer-
cialized (Soni, 2014). These components are small and
can cross the blood brain barrier, so it is to be expected
that they will inhibit PHD2 activity in neurons, thus being a
potential therapy to increase neuronal EPO production
and stimulate neuronal maturation.

In summary, our data provide evidence that EPO accel-
erates the maturation of the GABAergic system in the
neonatal (P7-P14) hippocampus, without causing net-
work imbalance. The results support the use of EPO as a
therapeutic agent to stimulate normal brain development
after PBI.
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