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The immune‐related biomarker TEK 
inhibits the development of clear cell renal 
cell carcinoma (ccRCC) by regulating AKT 
phosphorylation
Siming Chen1, Mengxue Yu2,3,4, Lingao Ju2,3,4,5, Gang Wang2,3,4,5, Kaiyu Qian2,3,4,5, Yu Xiao1,2,3,4,5 
and Xinghuan Wang1,4,6* 

Abstract 

Background:  High immunogenicity is an important feature of ccRCC, but its underlying immune-related molecular 
mechanisms remain unclear. This study aimed to investigate the effect of immune-related gene TEK on ccRCC and its 
prognostic value.

Methods:  The immune-related differentially expressed genes (DEGs) and transcription factors (TFs) in ccRCC were 
screened based on The Cancer Genome Atlas (TCGA) database, and a regulatory network of TF was constructed. 
Prognostic-related immune genes were screened by univariate Cox regression analysis and functional annotation was 
performed. Univariate and multivariate Cox regression analyses were performed to construct the immune gene risk 
model and identify the hub gene TEK that independently affected the prognosis of ccRCC. The effectiveness of the 
TEK was verified by external microarray datasets. The relationship between TEK and immune cells in ccRCC was evalu-
ated based on Tumor Immune Estimation Resource (TIMER). The expression of TEK in clinical specimens was verified 
by qRT-PCR and immunohistochemical (IHC) staining. MTT and cloning formation assay were used to evaluate cell 
proliferation. Transwell assays were used to assess cell migration. Apoptosis was assessed by flow cytometry, and the 
expression of related proteins was detected by Western blot and immunofluorescence.

Results:  We constructed a prognostic model consisting of 12 hub genes and performed risk scores to determine 
the relationship between these scores and prognosis. Through Cox regression analysis and survival analysis, TEK, an 
immune marker highly related to survival prognosis, was obtained and validated. In vitro experiments showed that 
knockdown of TEK promoted the proliferation and migration of ccRCC cells, and we found that TEK promoted apopto-
sis by regulating the phosphorylation of AKT, thereby inhibiting cell proliferation.

Conclusions:  TEK plays an important role in risk assessment and survival prediction for ccRCC patients as a new 
immune gene and maybe an emerging target for immunotherapy for ccRCC patients.

Keywords:  Clear cell renal cell carcinoma, Tumor microenvironment, Survival prognosis, Tumor‐infiltrating immune 
cells, TEK
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Introduction
Renal cell carcinoma (RCC) is a relatively common 
urogenital malignancy with high mortality [1, 2], and 
the global incidence of RCC is on the rise. ccRCC is 
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the most common pathologic type and the leading 
cause of death in renal cancer patients [3, 4]. Clinical 
and basic research on renal cancer is now extensive 
and in-depth, we can treat the tumor through radical 
resection, immunotherapy and targeted therapy [5–7]. 
Moreover, there is growing evidence that checkpoint 
inhibitor immunotherapy could achieve anti-tumor 
effects by stimulating an immune response [8]. How-
ever, the pathogenesis and mechanism of renal cancer 
are still not well understood, and we need to find a bio-
marker to detect the survival prognosis of the immune 
response in ccRCC patients so as to promote diagnosis 
and treatment. Tumors are always in a complex tissue 
microenvironment, and changes in the immune micro-
environment might affect the occurrence, development 
and metastasis of tumors in different ways. Tumor 
immune escape and immunosuppression are the key 
factors of tumor development [9]. It is worth noting 
that many pieces of evidence showed that ccRCC was 
highly immunogenic [10]. It has high responsiveness 
and timeliness for immunotherapy [11].

Tumor microenvironment (TME) contains a large 
number of extracellular matrix, vascular structure, and 
tumor cells, as well as a large number of infiltrating 
immune cells, such as tumor-related macrophages, neu-
trophils, and dendritic cells [12]. TME is not only closely 
related to tumor growth and migration but also has a 
profound impact on the therapeutic effect [13]. Now 
there is increasing evidence that signaling pathways such 
as MAPK [14], PI3K [15, 16] and Wnt/β-catenin [17] in 
various types of cancer can impair immune function in 
the TME and thus resist immunotherapy. Therefore, 
understanding the composition and function of immune 
cells and molecules in TME is of great value and signifi-
cance for tumor diagnosis, prognosis and treatment.

With the rapid development of science and technol-
ogy, bioinformatics has been widely used in various fields 
[18–20]. Moreover, it now plays an important role in 
screening differentially expressed genes [21], discover-
ing and identifying biomarkers, etc. in tumors [22, 23]. In 
view of this, we can start from the immune direction, find 
immune-related molecular markers that can predict clin-
ical prognosis and provide clinical treatment directions, 
and build an effective clinical prognostic model.

In this study, we collected microarray data and relevant 
information on ccRCC patients from a public database 
and constructed a 12-gene predictive risk model. We 
have obtained a hub molecule, TEK, which may play a 
key role in immunotherapy and survival prediction. In 
addition, we also selected other data sets to further ver-
ify our results. Finally, we confirmed the high expression 
of TEK in ccRCC and its tumor-promoting mechanism 
through cellular functional experiments.

Materials and methods
Human kidney tissue samples
Postoperative cancer and adjacent tissues of ccRCC 
patients in Zhongnan Hospital were obtained, and 
informed consent of all subjects was obtained. The sam-
ples were histopathologically confirmed by two patholo-
gists independently. The inclusion criteria are as follows: 
(1) the histopathological type is confirmed as ccRCC, (2) 
not received anti-cancer treatment before nephrectomy, 
(3) underwent radical nephrectomy or nephron sparing 
partial nephrectomy, (4) no history of other malignant 
tumors. Exclusion criteria: (1) other pathological types 
of RCC, (2) metastatic ccRCC or other merge tumors, 
(3) patients who did not undergo surgery, (4) clinical 
pathological data is incomplete. The Ethics Committee 
of Zhongnan Hospital has passed the ethical approval of 
this study (approval number: 2,020,102).

Obtained raw biological microarray data and immune‐
related genes
First, in this study, data from the public domain was used. 
We downloaded 611 samples of HTSeq-FPKM tran-
scriptome data from the TCGA database, including 539 
ccRCC samples and 72 normal samples that matched 
[24]. And we through the GDC portal website to obtain 
the corresponding clinical information of each patient, 
including histological grade, pathological stage and a 
large number of follow-up information. We searched for 
DEGs using RNA-seq data and constructed risk predic-
tion models with clinical information. We collected the 
chip dataset GSE53757 from the GEO database. The 
dataset GSE53757 includes 72 ccRCC tissues and 72 cor-
responding para-cancer tissues, as well as clinical infor-
mation, to further verify our hub genes. We collected 
2498 immune genes from the ImmPort database (https​://
immpo​rt.niaid​.nih.gov) for the next analysis.

Screening of immune‐related DEGs
The expression matrix consisted of a raw count of each 
mRNA of each sample. First of all, we standardized the 
microarray, eliminated the bias of the data, ensured the 
homogeneity and integrity of the data, and finally got 
20,589 genes. Next, we executed the “limma” R package 
to screen for DEG in ccRCC tissues and normal kidney 
tissues [25]. The thresholds for screening DEGs were 
FDR < 0.05 and |log2 FC| > 1. The obtained DEGs inter-
sected with 2498  immune-related genes to obtain co-
existing 682 immune-related DEGs.

Univariate cox prognostic analysis and construction 
of multivariate cox risk model
Using the obtained 682  immune-related DEGs for uni-
variate cox prognosis analysis and plotting forest plots 
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(p < 0.001), 35 prognostic-related immune differential 
genes were obtained. Then a multivariate cox model was 
constructed for the prognostic-related DEGs screened 
by Univariate cox, which was used the Coxp function to 
build and step function to optimize. Finally, the 12 hub 
genes were determined to construct the model. The risk 
score calculation formula: risk score = 

∑
n

i=1(coefi* Expri) , 
Expri represented the expression of the patient’s gene i, 
and coef i represented the Cox coefficient of gene i. Then, 
we performed Cox regression model analysis to screen 
for the key factors affecting patient survival, including 
age (ref. low), gender (ref. female), grade (ref. grade1), 
stage (ref. stage1), pT stage (ref. T1), pM stage (ref. M0), 
risk score (ref. low) and expression of each hub gene (ref. 
low).

Functional annotation of prognostic related immune DEGs
To further determine the biological function of prog-
nostic-related immune DEGs, we used the “clusterPro-
filer” [26] software package in R for Gene Ontology (GO) 
function annotation [27] and the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment analy-
sis [28]. Thresholds were p < 0.05 and FDR < 0.05.

Construction of TF regulation network in ccRCC​
We collected 318 tumor-related TFs from the Cistrome 
cancer database and performed differential expression 
analysis using the “limma” R package. Thresholds were 
|log2 FC| > 1 and FDR < 0.05. Correlation analysis was 
then performed using the obtained TFs and the immune-
related DEGs in the ccRCC samples, with cor > 0.4 and 
p < 0.05 as the cutoff criteria. Finally, the molecular inter-
action network was visualized using Cytoscape [29].

Risk curve, survival analysis and ROC curve
Based on the risk score, we plotted risk value graphs, 
survival status charts, and survival heat maps. In order 
to determine survival differences among groups, we 
executed an intergroup survival analysis. In addition, we 
determined the accuracy of the model by drawing the 
ROC curve and calculated the AUC value.

Identification and validation of hub genes
We identified genes with p-values less than 0.05 in both 
univariate and multivariate cox analysis as hub genes that 
could be used as clinical prognostic markers. The expres-
sion of hub gene was determined as a binary variable 
(high and low), which meant that the median value of 
each hub gene was used as the threshold value to distin-
guish. We removed samples with a survival time of fewer 
than 90 days, and then performed survival analysis and 
correlation analysis of clinicopathological features. The 
clinical characteristics included age, gender, grade, stage, 

pM stage and pT stage. We use an independent data set, 
GSE53757, for external validation. Based on TIMER 
database (https​://cistr​ome.shiny​apps.io/timer​/), we ana-
lyzed the connection between the hub genes and immune 
infiltrating cells.

Cell culture and transfection
ACHN and Caki-1 cell lines were cultured in MEM and 
McCoy’s 5A medium containing 10 % FBS. We purchased 
siTEK from GenePharma. The corresponding sense 
sequences of TEK are as follows: siTEK-1(si-1): 5’-AGC​
UUG​CUC​CUU​UCU​GGA​ATT-3’, siTEK-2 (si-2): 5’-GCC​
GCU​ACC​UAC​UAA​UGA​ATT-3’, siTEK-3 (si-3): 5’-CCC​
AGA​UCC​UAC​AAU​UUA​UTT-3’. Lipofectamine 3000 
was used for cell transfection.

RNA isolation and qRT‑PCR
According to the kit instructions, we used the RNeasy 
Mini Kit (Cat. #74,101, Qiagen) to extract total RNA. 
Then the concentration of RNA was measured and 
reverse transcribed into cDNA. Finally, qRT-PCR analysis 
of cDNA was performed by iQ™ SYBR®Green Supermix 
(Bio-RAD). The primer sequences were as follows: TEK: 
5’-TTA​GCC​AGC​TTA​GTT​CTC​TGTGG-3’, 5’-AGC​ATC​
AGA​TAC​AAG​AGG​TAGGG-3’; FAS: 5’-TCT​GGT​TCT​
TAC​GTC​TGT​TGC-3’, 5’-CTG​TGC​AGT​CCC​TAG​CTT​
TCC-3’; BAX: 5’-CCC​GAG​AGG​TCT​TTT​TCC​GAG-
3’, 5’-CCA​GCC​CAT​GAT​GGT​TCT​GAT-3’; C-MYC: 
5’-CGT​CCT​CGG​ATT​CTC​TGC​TC-3’, 5’-GAT​TTC​TTC​
CTC​ATC​TTC​TTG​TTC​-3’; GAPDH: 5’-GGA​GCG​AGA​
TCC​CTC​CAA​AAT-3’, 5’-GGC​TGT​TGT​CAT​ACT​TCT​
CATGG-3’.

MTT assay, transwell assay, and cloning formation assay
For MTT assay, after 36  h of transfection, cells were 
planted into 96-well plates in different groups, then 
absorbance measurements were used to assess cell via-
bility at different times. For the cloning formation assay, 
1000 transfected cells were grown in a six-well culture 
dish, fixed and stained 14 days later. For transwell assay, 
the transfected cells were seeded into the upper cham-
bers (Corning), and 600 µL medium containing 10 % FBS 
was added into the lower chambers. After incubation for 
24 h, the cells were fixed and stained.

Western blot analysis
The collected cells were lysed in a mixture of RIPA buffer 
(Sigma-Aldrich, USA), phosphatase inhibitors and pro-
tease inhibitors in the ratio of 50:1:1 for 30 minutes on 
ice. We used a 10 % SDS / PAGE gel to separate proteins 
and transfer them to a PVDF membrane (Millipore), 
then sealed them with 5 % skimmed milk and incubated 
with primary and secondary antibodies. The primary 
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antibodies were as follows: anti-TEK, 1:1000 (Abcam); 
anti-GAPDH, 1:1000 (Santa Cruz); anti-N-cadherin, 
1:500 (CST); anti-E-cadherin, 1:500 (CST); anti-Vimen-
tin, 1:1000 (CST); anti-β-catenin, 1:1000 (CST); anti-
AKT(phosphoThr308), 1:1000 (CST); anti-AKT, 1:1000 
(CST); anti-Bcl-xL, 1:1000 (CST); anti-Bcl-2, 1:1000 
(CST).

Analysis of apoptosis by flow cytometry
The collected ccRCC cells were centrifuged and washed 
with cold PBS to prepare the experimental samples. 
Annexin V FITC Apoptosis Assay Kit I (BD Biosciences, 
USA) was used for staining in accordance with the 
instructions and analysis by flow cytometry.

Immunofluorescence and IHC staining
For immunofluorescence, the cells seeded on the cover-
slips were washed with PBS and fixed with 4 % PFA, then 
treated with 0.1 % Triton X-100. After blocking with goat 
serum, the cells were treated with primary antibody and 
FITC-labeled or Cy3-labeled secondary antibody, respec-
tively. The nuclei were labeled with DAPI and visualized 
by confocal microscope. For IHC, put the paraffin sec-
tions after deparaffinization in citrate buffer for antigen 
retrieval, and then blocked with 3 % H2O2. They were 
then incubated with primary and secondary antibod-
ies, and finally with the DAB chromogen solution and 
HRP substrate solution. The primary antibodies were 
as follows: anti-Ki-67, 1:200 (Novus); anti-TEK, 1:200 
(Abcam).

Statistical analysis
All results were performed more than 3  independent 
experiments. We used R software and GraphPad Prism 
7 (USA) statistical software to analyze the differences 
between the groups by two-tailed t-test. We reckoned 
p < 0.05 to be statistically significant.

Results
Screening of immune‐related DEGs and TF network 
construction
All 611 samples in the data set consisted of 539 ccRCC 
samples and 72 adjacent non-tumor kidney samples. 
|log2FC| > 1 and FDR < 0.05 were used as thresholds. 
We screened a total of 7,369 DEGs, including 5467 up-
regulated genes and 1902 down-regulated genes (Addi-
tional file 1: Table S1). The volcano plot was performed 
to represent DEGs between ccRCC tissues and normal 
tissues significantly (Additional file  1: Fig. S1). Then it 
overlapped with the list containing 2498  immune genes 
downloaded from the Immport database. As shown in 
Fig.  1a, the volcano plot showed all immune-related 
DEGs. Figure  1b showed 681  immune-related DEGs, of 

which 565 were up-regulated and 116 were down-regu-
lated (Additional file 1: Table S2).

The interaction between TFs and genes is an essential 
step in the regulation of gene expression. In abnormal tis-
sues, the interaction between TFs and genes may change 
significantly. Therefore, in order to define a common set 
of diagnostic goals for ccRCC, we downloaded tumor-
related TFs, and then extracted the expression values of 
these 318 TFs from the TCGA cohort. Using |log2FC| > 
1 and FDR < 0.05 as thresholds, and doing a propensity 
analysis to get a volcano plot (Fig.  1c), 60 differentially 
expressed TFs were obtained, including 41 up-regu-
lated TFs and 19 down-regulated TFs. Cistrome cancer 
was a comprehensive database of predicted TF targets 
and enhancer profiles from TCGA expression profiling 
cancers. To study the regulatory relationship between 
immune-related DEGs and differentially expressed TFs 
previously obtained in ccRCC, correlation analysis was 
performed on them, with cor > 0.4 and p < 0.05 as the cut-
off criteria. The results were imported into Cytoscape for 
visualization (Fig.  1d). It can be seen that in this study, 
20 up-regulated TFs that were highly related to immune-
related DEGs were BATF, CEBPA, E2F1, EOMES, EZH2, 
FOXM1 and so on. There were 8 down-regulated TFs 
such as PBX1, PRDM1, HEY1. In short, the construction 
of a regulatory network of immune genes and TFs pro-
vided a reference for further research on immune genes. 
They provided predictions for the mechanisms or path-
ways of immune genes causing or inhibiting tumor, which 
is conducive to exploring tumor immune regulation.

Acquisition of prognostic‐related immune genes and their 
GO enrichment and KEGG pathway analysis
After integrating 681  immune-related DEGs mRNA 
expression profiles and clinical information, we screened 
35  immune genes highly correlated with prognosis by 
univariate regression analysis (Additional file 1: Fig. S2a). 
The boxplot showed differences in expression levels of 
these genes between tumor tissues and normal tissues 
(Additional file 1: Fig. S2b).

We performed GO analysis and KEGG pathway enrich-
ment on the aforementioned immune genes related to 
prognosis to study the immune-related biological pro-
cesses in ccRCC. The biological process of gene ontol-
ogy analysis was mainly related to “positive regulation 
of MAPK cascade”, “positive regulation of cell adhesion”, 
“leukocyte migration” and so on. The molecular functions 
were mainly concentrated in “receptor ligand activity”, 
“receptor regulator activity” and “growth factor bind-
ing” (Fig. 2a). The results of KEGG pathway enrichment 
at the top of several pathways were related to immune 
pathways, such as “Ras signaling pathway”, “PI3K-Akt 
signaling pathway”, “Rap1 signaling pathway” and “EGFR 
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tyrosine kinase inhibitor resistance” (Fig. 2b). All of these 
indicated that the selected immune genes related to prog-
nosis were highly represented in the immune pathway, 
providing an accurate pathway basis for the further study 
of immunity. As shown in Fig. 2c, d, the Z-score greater 
than zero indicated a greater likelihood of enrichment in 
these pathways; on the contrary, a Z-score less than zero 
indicated a less likelihood of enrichment in these path-
ways. In addition, the heatmap showed the relationship 
between immune-related genes and pathways (Fig.  2e). 

The threshold was p < 0.05. Information on function 
notes was listed in Additional file 1 Tables S3 and S4.

Construction of risk model of immune‐related genes
In order to improve the robustness, we continued to ana-
lyze the 35 prognostic-associated immune genes that 
were previously screened. We used the “survival” pack-
age of R software, built the model with Coxp function, 
and optimized the model with step function. Finally, 
we obtained a multivariate cox model consisting of 12 

Fig. 1   Screening of ccRCC immune-related DEGs and construction of TF regulatory network. a The volcano plot visualized 1817 immune-related 
genes based on the TCGA database. Red indicated high expression and green indicated low expression. b Using Venn algorithm to obtain 
681 immune-related DEGs in ccRCC. c The volcano plot of 318 TFs based on the TCGA database. Red indicated high expression and green indicated 
low expression. d A TF regulatory network was constructed using differentially expressed TFs. Blue triangles represented TFs, red circles represented 
positively regulated genes, and green circles represented negatively regulated genes



Page 6 of 14Chen et al. Cancer Cell Int          (2021) 21:119 

prognostic-related immune genes (Fig.  3a) and calcu-
lated the patient’s risk score. Based on the risk score, 
we plotted risk value graphs, survival status charts, and 
survival heat maps (Fig. 3b–d). As can be clearly seen in 
the survival chart, the number of patients and survival 

time decreased significantly as the risk score increased. 
The survival heat map also showed that these 12 immune 
genes significantly correlated with the risk score. The 
survival curve showed an increase in the immune risk 
score indicated a poorer survival rate (Fig. 3e; p < 0.001). 

Fig. 2   Functional annotation of prognosis-related immune genes. a Performed GO analysis on immune genes related to prognosis. b KEGG 
pathway analysis of immune genes related to prognosis. c The x-axis represented the z-score, the y-axis represented the negative logarithm of the 
P-value, and the size of the circle was proportional to the number of genes. Green circles correspond to the biological process and red indicated 
the molecular function. d The outer circle showed a scatter plot for each term of the logFC of the assigned genes. Red displayed increase, and blue 
displayed decrease. e The heatmap showed the correlation between prognostic immune genes and pathways



Page 7 of 14Chen et al. Cancer Cell Int          (2021) 21:119 	

In order to evaluate the prognostic accuracy of the estab-
lished ccRCC patient model, we performed a ROC curve 
analysis. The AUC of the risk model was 0.717 (Fig. 3f ), 
which showed the accuracy of the immune gene risk 
model in the TCGA data set in predicting survival.

Clinical independent prognostic analysis and screening 
and validation of hub genes
First of all, univariate Cox analysis was executed on the 
TCGA cohort after integrating the mRNA expression 
profiles and clinical information of 12 hub genes (ULBP2, 
CXCL2, NDRG1, VAV3, IGKV1-12, IGLV9-49, BMP1, 
IL34, PMCH, KDR, TEK, TRBV7-4). As shown in Fig. 4a, 
age (ref. low), grade (ref. grade1), stage (ref. stage1), pT 
(ref. T1), pM (ref. M0), riskscore (ref. low), ULBP2, 
CXCL2, NDRG1, VAV3, IGLV9-49, BMP1, IL34, PMCH, 
KDR, TEK, TRBV7-4 (ref. low) had been proven to be an 
important predictor for patients with ccRCC (p < 0.05). 
Multivariate Cox analysis indicated that poor progno-
sis was significantly related to age (ref. low; HR = 1.029, 
p < 0.001), ULBP2 expression (ref. low; HR = 1.360, 
p < 0.001), TEK expression (ref. low; HR = 0.900, 
p = 0.013) and TRBV7-4 (ref. low; HR = 1.090, p = 0.030) 
(Fig. 4b). We then selected ULBP2, TEK, and TRBV7-4, 
three immune genes with significant differences in uni-
variate and multivariate cox analysis for further analysis. 
As shown in Fig.  4c–h, among these three hub genes, 
compared with normal kidney tissues, the expression of 
ULBP2 and TRBV-4 mRNA found in ccRCC tissues was 
significantly increased, while TEK mRNA expression in 
ccRCC tissues was significantly reduced. Survival analysis 
showed that the decrease in TEK mRNA expression was 
significantly associated with low survival rates (p < 0.001). 
However, there was no significant correlation between 
ULBP2 and TRBV7-4 mRNA expression and survival.

After extracting the TEK mRNA expression profile 
and clinical information, we performed a clinical corre-
lation analysis in the TCGA cohort. As demonstrated in 
Additional file  1: Fig.  S3, TEK was significantly related 
to age (p = 0.018), grade (p < 0.001), stage (p < 0.001), pT 
stage (p < 0 0.001), and pM stage (p < 0.001). In addition, 
according to the GEPIA database, high expression of 
TEK significantly increases the survival rate of patients 
(Additional file 1: Fig. S4a, b), indicating that TEK was a 
prognostic biomarker for ccRCC. It can be known from 
Additional file  1: Fig.  S4c, d that the protein expression 
of TEK gene in ccRCC tissues was significantly lower 

than that in normal tissues, which were provided and 
confirmed by The Human Protein Atlas database. The 
GSE53757 dataset was then used to validate the expres-
sion level and clinical stage of TEK gene, demonstrating 
that TEK expression in ccRCC tissues was down-regu-
lated (p < 0.001) and significantly correlated with clini-
cal stage (p = 0.002) (Fig.  4i, j). In addition, the qPCR 
and IHC results of clinical tissue samples collected in 
our hospital further confirmed the above conclusions 
(Fig. 4k, l).

Immune infiltration of TEK
After identifying the prognostic value and clinical rel-
evance of TEK, we investigated TEK’s immune infiltra-
tion. From TIMER data, we downloaded the content of 
immune cells in each sample in TCGA and performed 
correlation analysis with TEK expression. Increased TEK 
expression was significantly associated with the infiltra-
tion of CD4+ T cells, CD8+ T cells, macrophages, neu-
trophils, and dendritic cells (p < 0.05) (Fig. 5a). Moreover, 
we analyzed the TEK gene in the TIMER database, and 
TEK expression was significantly related to purity (cor-
relation coefficients were − 0.139). Analysis of TIMER 
database showed that the increase of TEK expression was 
strongly correlated with the infiltration of B cells, CD4+ 
T cells, CD8+ T cells, macrophages, neutrophils, and 
dendritic cells (p < 0.05) (Fig. 5b).

Knockdown of TEK promoted ccRCC cell proliferation 
and migration
First of all, TEK knockdown efficiency was verified, and 
the results showed that siTEK-1 and siTEK-3 showed 
higher knockdown efficiency (Fig.  6a, b). MTT assay 
showed that TEK knockdown significantly promoted 
the proliferation of ccRCC cells (Fig.  6c). The immuno-
fluorescence staining of the proliferation marker Ki-67 
also proved that the knockdown of TEK could increase 
the number of Ki-67 positive cells (Fig. 6d). In addition, 
the results of the cloning formation assay indicated that 
knockdown of TEK could increase the cloning ability of 
ccRCC cells (Fig.  6e, f ). Transwell assay was then per-
formed to evaluate the effect of TEK on cell migration, 
and the results showed that TEK knockdown significantly 
improved the migration of ccRCC cells compared with 
the control group (Fig. 6g, h). In short, TEK knockdown 
could promote the proliferation and migration of ccRCC 
cells.

(See figure on next page.)
Fig. 3   Construction of immune genes risk model. a Multivariate analysis of the 12 immune genes that made up the risk model. b The risk index 
distribution of ccRCC patients in the training data set. c The survival status chart of ccRCC patients is based on the TCGA cohort. d The heatmap of 
12 hub immune genes is based on the TCGA cohort. e Risk model survival curve analysis. f ROC curve to verify the ability of the risk model to predict 
prognosis
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Fig. 4   Screening and validation of hub genes. a, b Univariate and multivariate analysis of overall survival rate of ccRCC patients. c–h Tissue 
expression difference analysis and survival analysis of three hub genes based on the TCGA cohort. i TEK mRNA expression difference was analyzed 
based on GSE53757 dataset. j Correlation analysis between TEK and pathological stages (based on GSE53757 dataset). k, l Analyze the differential 
expression of TEK in tumor and adjacent tissues by qPCR and IHC experiments
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TEK knockdown promoted the EMT and inhibited 
apoptosis in ccRCC cells by promoting AKT 
phosphorylation
Next, we evaluated the effect of TEK on apoptosis of 
ccRCC cells by flow cytometry, and the results showed 
that TEK knockdown could effectively inhibit apoptosis 
(Fig.  7a, b). qRT-PCR also confirmed the reduction of 
apoptosis-related genes in the TEK knockdown group 
(Fig.  7c). In order to explain the changes in cell pheno-
types caused by TEK knockdown, Western blot analysis 
was performed. First, we detected EMT-related proteins, 
and the results showed that TEK knockdown signifi-
cantly increased the expression of N-cadherin, Vimentin, 
β-catenin, and decreased the expression of E-cadherin 
(Fig. 7d). Consistent with flow cytometry analysis, West-
ern blot results showed that TEK knockdown increased 
the expression of c-Myc, Bcl-2 and Bcl-xL. In addition, 
down-regulation of TEK strongly induced phosphoryl-
ated AKT in ccRCC cells, which was consistent with our 
results of KEGG pathway analysis (Fig. 7e).

Discussion
More and more evidence shows that immune cells in the 
TME significantly affect tumor occurrence and develop-
ment [30]. RCC is characterized by high immunogenic-
ity, accompanied by obvious infiltration of immune 
cells. [31]. Tumor CD8+ T and NK cells are differenti-
ated effector cells with lysed particles [32]. In addition, 
some CD8+ T cells express tumor-reactive T-cell recep-
tor (TCR) when analyzed in vitro after exposure to IL-2 
[33] and mediate anti-tumor reactivity [32]. The high 
frequency of NK cells in lymphocyte infiltration seems 
to herald a better prognosis [34]. Nevertheless, tumors 

are growing despite potential tumor-reactive cytotoxic 
effector cell infiltration, suggesting that their anti-tumor 
activity is impaired within the TME.

In this study, bioinformatics methods were used to 
screen specific immune-related prognostic markers of 
ccRCC based on the TCGA database. On this basis, we 
screened 35  immune genes that are closely associated 
with prognosis through univariate cox prognostic analy-
sis, performed GO and KEGG analysis and constructed 
TF networks to further explore the molecular mecha-
nism of these genes. Then multivariate cox model was 
used to identify 12 hub genes related to the progress and 
prognosis of ccRCC patients, and the corresponding risk 
model was constructed. In addition, clinically related 
univariate, multivariate cox analysis and survival analysis 
indicated that TEK was an independent prognostic fac-
tor for ccRCC patients and further validated it. The clini-
cal correlation analysis further indicated that TEK was 
closely related to the clinicopathological traits of ccRCC. 
Importantly, through the Person’s correlation analysis, we 
demonstrated a high correlation between TEK expres-
sion and immune cell infiltration.

The Ang–Tie signaling system regulates blood and 
lymphatic growth. Angiopoietin-1 activates the tyros-
ine kinase receptor TEK (also known as Tie2) and is 
mainly expressed on endothelial cells. Activation and 
phosphorylation of TEK lead to downstream signal-
ing, promoting vascular maturation and endothelial 
cell survival [35]. Angiopoietin-1/TEK signaling is 
important for vascular integrity, TEK knockout results 
in a significant increase in metastatic tumor cells in 
the lung [36]. Furthermore, TEK activation normalizes 
the structure and function of tumor vessels, thereby 

Fig. 5   Immune infiltration of TEK.  a Correlation analysis between TEK and immune infiltration level of ccRCC was performed. b Based on the 
Timer database, the correlation between TEK and ccRCC immune infiltration level was shown. The generation of scatterplot had partial Spearman 
correlation and statistical significance
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Fig. 6   TEK knockdown promoted the proliferation and migration of ccRCC cells. a, b Verification of TEK-siRNA silencing efficacy on the mRNA and 
protein levels of ACHN cells and Caki-1 cells. c MTT assay detected the effect of TEK silencing on cell proliferation. d Immunofluorescence staining 
of Ki-67. e The cloning formation assay evaluated the effect of silencing TEK on cloning formation ability. f Statistical analysis of cloning formation 
assay. g The effect of TEK silencing on cell migration was evaluated by transwell assay. h Statistical analysis of transwell assay
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delaying tumor growth, slowing the metastatic pro-
cess and enhancing the response to concomitant cyto-
toxic treatments [37]. Hence, we could speculate that 
the decrease of TEK expression in ccRCC might be the 
main reason for tumor hypoxia and subsequent inva-
sion and metastasis, because the lack of TEK can cause 
the instability of blood vessels, resulting in impeded 
blood perfusion and increased permeability and leak-
age of blood vessels.

Other studies have shown that TEK activation favora-
bly changes TME and immune infiltration, polarizes 
tumor-associated macrophages (TAM) toward M1-like 

phenotypes and reduces regulatory T cell (Treg) infiltra-
tion [38]. According to the general concept, polarization 
towards the M1-like phenotype has anti-tumor effects 
[39], Tregs hinder defense against tumors [40]. In addi-
tion, TEK could enhance mast cell adhesion to VCAM-
1, mediating mast cell activation and contributing to the 
occurrence of immune response [41]. It can be seen that 
TEK may be used as a new immune-related biomarker 
to regulate the occurrence and development of ccRCC. 
Interestingly, HA et  al. performed a survival analysis 
of TEK and found that TEK in ccRCC can be used as a 
prognostic marker, consistent with our findings [42]. We 

Fig. 7   TEK could affect the EMT and apoptosis of ccRCC cells by regulating AKT phosphorylation. a Flow cytometry analyzed the effect of TEK 
knockdown on ccRCC cell apoptosis. b Statistical analysis of Flow cytometry analysis. c Analysis of mRNA levels of apoptosis-related genes in 
ccRCC cells after TEK knockdown. d Western blot analysis detected EMT-related proteins in TEK knockdown ccRCC cells. e Western blot analysis was 
performed to detect apoptosis-related proteins and phosphorylated AKT in TEK knockdown ccRCC cells
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have proved that TEK was significantly down-regulated 
in ccRCC tissues through qPCR and IHC experiments 
(Fig. 4k, l). In addition, in vitro experiments showed that 
TEK knockdown could promote the proliferation and 
migration of ccRCC cells, suggesting that TEK may be 
a good prognostic marker for ccRCC. Flow cytometry 
analysis showed that the down-regulation of TEK inhib-
ited cell apoptosis (Fig. 7a, b). Then we performed a cor-
relation analysis of apoptosis-related genes in the GEPIA 
database (Additional file  1: Fig. S5) and performed a 
qRT-PCR experiment (Fig. 7c). The results showed TEK 
gene is significantly related to apoptosis-related genes 
FAS, BAX, and c-Myc. To explain the effect of TEK on 
the migration of ccRCC cells, we completed Western 
blot assay and found that the down-regulation of TEK 
significantly affected the expression of EMT-related pro-
teins (Fig. 7d). According to the previous analysis of the 
KEGG pathway, the results showed that TEK is signifi-
cantly related to immune-related pathways, such as “Ras 
signaling pathway”, “PI3K-AKT signaling pathway” and 
“Rap1 signaling pathway”, which provided a certain basis 
for TEK to regulate immune-related pathways of ccRCC. 
In order to explore the regulatory effect of TEK on cell 
apoptosis, Western blot analysis showed that down-reg-
ulation of TEK could promote AKT phosphorylation and 
affect downstream apoptosis-related proteins, thereby 
inhibiting cell apoptosis (Fig. 7e). The above results indi-
cated that TEK knockdown promoted the proliferation 
and migration of ccRCC cells, and affected cell apoptosis 
by regulating the phosphorylation of AKT.

The major limitation of our study is the lack of suffi-
cient clinical cohorts to validate the accuracy of the risk 
model. Our next research plan is to validate the model 
through prospective studies and clarify TEK’s mecha-
nism of action on ccRCC progress through molecular 
biology experiments. In conclusion, we have constructed 
a risk model and identified TEK, an immune-related gene 
associated with the progression of ccRCC, which could 
play an important role in the risk assessment and prog-
nosis prediction of ccRCC patients.
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