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A B S T R A C T

In this paper, a new version of the well-known epidemic mathematical SEIR model is used to analyze the
pandemic course of COVID-19 in eight different countries. One of the proposed model’s improvements is to
reflect the societal feedback on the disease and confinement features. The SEIR model parameters are allowed
to be time-varying, and the ranges of their values are identified by using publicly available data for France,
Italy, Spain, Germany, Brazil, Russia, New York State (US), and China. The identified model is then applied
to predict the SARS-CoV-2 virus propagation under various conditions of confinement. For this purpose, an
interval predictor is designed, allowing variations and uncertainties in the model parameters to be taken into
account. The code and the utilized data are available on Github.
. Introduction

The SEIR model is one of the simplest compartmental models of
pidemics (Keeling & Rohani, 2008). It is a very popular model and
s extensively used in various settings (Wang et al., 2016). The SEIR
odel represents the development of the relative proportions of four

lasses of individuals in a population of constant size: the susceptible
ndividuals 𝑆, capable of contracting the disease and becoming infec-
ious; the asymptomatic (or exposed) 𝐸 and symptomatic 𝐼 infectious,
apable of giving the disease to susceptible; and the recovered 𝑅,
ermanently immune after healing or dying (if the number of deaths
s of particular interest, then an additional compartment 𝐷 can be
ncluded). This simple model depicts a generic behavior of epidemics
as a series of transitions between these compartments), and a related
dvantage consists of a small number of parameters to be identified
three transition rates 𝜎, 𝛾, and 𝑏). This latter is an essential point
n a virus attack when an insufficient amount of data is available. In
ay 2020, when the present paper was written, that was mainly the

ituation worldwide under the SARS-CoV-2 virus’s presence.
There exist many sorts and varieties of SEIR models (Keeling &

ohani, 2008) (e.g., in the most simplistic case, the classes 𝐸 and
are modeled at once, leading to a SIR model). A specificity of

OVID-19 pandemics is the global confinement imposed by most coun-
ries worldwide, influencing the virus dynamics (Das, Ghosh, Sen,

Mukhopadhyay, 2020). In recent literature, numerous approaches
ropose how to reflect the confinement characteristics in the mathe-
atical models (Dandekar & Barbastathis, 2020; Lopez & Rodo, 2020;
ussbaumer-Streit et al., 2020). In Efimov and Ushirobira (2020),

∗ Corresponding author.

we propose a slightly similar SEIR model to analyze the course of
SARS-CoV-2 in France.

This work aims to use a novel SEIR model to predict the outbreak
development with different quarantine restrictions. Our preliminary
attempts to identify such model parameters confirmed that their con-
stancy hypothesis is very restrictive, motivating us to consider time-
varying parameters (not much analyzed in the literature). An interval
predictor is then designed to realize an efficient and reliable prediction
for a SEIR model with time-varying parameters, whose set-membership
forecasting abilities perfectly suit the considered scenario. The stability
of the predictor and its inclusion capabilities are analytically evaluated.
The performance of the proposed approach is shown in numerical
experiments for some countries.

The plan of this paper is as follows. The new modified SEIR epi-
demic model is presented in Section 2, together with an analysis of
the model parameters and their admissible values ranges, found in the
literature. In Section 3, we describe the measured data applied for
the parameter identification and some hypotheses used in the sequel
(we fix the values of some parameters having a ‘‘physical" meaning
in order to be able to identify the remaining ones). The method for
parameter identification is presented in Section 4. An interval predictor
is designed in Section 5, allowing us to evaluate the present situation
under the variation of parameters and initial states. The application
results of the proposed identification routine and the interval predictor
are given in Section 6 for France, Italy, Spain, Germany, Brazil, Russia,
New York State (US), and China. The accuracy of the interval prediction
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is also evaluated using data for identification and another part for
verification. Final discussions and remarks are provided in Section 7.

2. Epidemic model and considerations

This paper proposes a modified SEIR discrete-time model based on
the one in Yang et al. (2020), where it has been used to model the
course of the epidemic of COVID-19 in China (other similar SIR/SEIR-
type models used recently for modeling SARS-CoV-2 virus can be found
in Ferguson et al., 2020; Gevertz, Greene, Hixahuary Sanchez Tapia, &
Sontag, 2020; Lourenco et al., 2020; Maier & Brockmann, 2020; Peng,
Yang, Zhang, Zhuge, & Hong, 2020). The model we propose in this
work is as follows (the impact of the natural birth and mortality is
not considered, since, for the short period of analysis studied here, the
population may be assumed quasi-constant):

𝑆𝑡+1 = 𝑆𝑡 − 𝑏

(

𝑝𝑡−𝜏𝑝𝐼𝑡 + 𝑟𝑡−𝜏𝑟𝐸𝑡

)

𝑁
𝑆𝑡, (1a)

𝐸𝑡+1 = (1 − 𝜎 − 𝜎′)𝐸𝑡 + 𝑏

(

𝑝𝑡−𝜏𝑝𝐼𝑡 + 𝑟𝑡−𝜏𝑟𝐸𝑡

)

𝑁
𝑆𝑡, (1b)

𝐼𝑡+1 = (1 − 𝛾 − 𝜇)𝐼𝑡 + 𝜎𝐸𝑡, (1c)

𝑅𝑡+1 = 𝑅𝑡 + 𝛾𝐼𝑡 + 𝜎′𝐸𝑡, (1d)

𝐷𝑡+1 = 𝐷𝑡 + 𝜇𝐼𝑡, (1e)

where 𝑡 ∈ N (the set of non-negative integers) is the time counted
in days (𝑡 = 0 corresponds to the beginning of measurements or
prediction), 𝑁 = 𝑆 + 𝐸 + 𝐼 + 𝑅 + 𝐷 denotes the total population, the
parameter 0 < 𝛾 < +∞ represents the recovery rate, 0 < 𝜇 < +∞
is the mortality rate, the parameter 0 < 𝑏 < +∞ corresponds to the
rate of the virus transmission from infectious/exposed to susceptible
individuals during a contact, 0 < 𝜎, 𝜎′ < +∞ are the incubation rates
at which the exposed develop symptoms or directly become recovered
without a viral indication, 0 ≤ 𝑝𝑡 < +∞ corresponds to the number of
contacts for the infectious 𝐼 (it is supposed that infected people with
symptoms are in quarantine, then the number of contacts is decreased),
𝑝𝑡 ≤ 𝑟𝑡 < +∞ is the number of contacts per person per day for the
exposed population 𝐸 (in the presence of confinement and depending
on its severity, this number is time-varying), and 𝜏𝑝, 𝜏𝑟 > 0 are the
delays in the reactions of the compartments on variations of quarantine
conditions (we assume that if 𝑡 < 𝜏𝑝 or 𝑡 < 𝜏𝑟, then 𝑝𝑡−𝜏𝑝 = 𝑝0 or
𝑟𝑡−𝜏𝑟 = 𝑟0, respectively). Compared to the model in Yang et al. (2020),
the inflow/outflow variables from/to other regions for each state are
not considered in our analysis.

In the model (1), for the brevity of introduction, we assume that the
parameters 𝜎, 𝜎′, 𝛾, 𝜇 and 𝑏 have constant values, and we revisit this
hypothesis later.

2.1. Societal feedback and confinement influence in the model

To consider society’s reaction to confinement and virus propagation,
we introduce the delays 𝜏𝑝 and 𝜏𝑟 in the seclusion inputs 𝑝𝑡 and 𝑟𝑡,
respectively.

The idea behind 𝜏𝑟 is that after the quarantine activation, several
days pass before changes in the disease propagation become detectable
(such an effect can be easily observed in the data for all analyzed
countries). Roughly speaking, the increase in the number of infected
individuals 𝐸 and 𝐼 is predefined by the number of contacts in the
previous days, when the confinement was not yet imposed, for example.

We assume that during the phase of active lockdown, 𝑟𝑡−𝜏𝑟 = 𝑝𝑡−𝜏𝑝
always holds, i.e., the number of contacts for asymptomatic 𝐸 and
symptomatic 𝐼 infected populations is the same (when the society
follows Governments requirements).

The delay 𝜏𝑝 is used to model the clustering effect of the confine-
ment: under restrictions on displacement activities, people are com-
pelled to stay in their neighborhood and visit a limited number of
478
Fig. 1. A schematic representation of our new modified SEIR model.

attractions (such as shops, pharmacies, hospitals). So the population
can be considered to be divided into smaller groups. After some time
the chances to meet an infected person start to decay (e.g., there is no
infected person in such a group, or the individual was isolated, or the
whole group can be infected, but in any case, the virus propagation is
almost stopped).

Remark 1. A different way of including societal feedback on the
current SARS-CoV-2 virus development is the substitution:

𝑏 ⟶ 𝑏
1 + 𝜂𝐼𝑡

,

where 0 < 𝜂 < +∞ is a tuning parameter. In this case, we model the
effect of natural augmentation of confinement strictness. Many factors
can lead to this increase; for instance, society becomes aware of the
problem following the increased number of infected or dead people
(the variable 𝐼 implicitly represents them, or it can also be explicitly
replaced with 𝐷). To this end, we decrease the virus transmission rate
𝑏 with the growth of the number of infected/dead individuals. This
variant has been tested, but we prefer to use the delays 𝜏𝑝 and 𝜏𝑟 since,
in this case, the parameter identification is more straightforward.

Compared to our proposed model, the main shortcoming of other
models in the literature is that they do not consider the societal
feedback and delays in their computation. The countries examined
in the present paper have adopted different policies all through the
pandemics, and to consider such factor seems indeed quite valuable.

2.2. Model parameters

Therefore, the SEIR model (1) has seven parameters to be identified
or assigned: 𝜎, 𝜎′, 𝜏𝑝, 𝜏𝑟, 𝛾, 𝜇 and 𝑏.

2.2.1. Generic observations
The parameters 𝜎, 𝜎′, 𝛾, 𝜇 and 𝑏 represent, respectively, the rate

of changes between the states 𝐸 to 𝐼 , 𝐸 to 𝑅, 𝐼 to 𝑅, 𝐼 to 𝐷 and 𝑆
to 𝐸 (as in Fig. 1). The parameters 𝜎 and 𝜎′ have a physical meaning:
𝜎 = 1

𝑇𝑆
and 𝜎′ = 𝜅

𝑇𝑆
, where 𝑇𝑠 is the average duration of the virus

incubation period after contamination, which can be well identified in
patients, and 𝜅 ∈ [0, 1) is the ratio of recovering period for the patients
with the mild form of COVID-19, which can also be found in sufferers.
Similarly, the delays 𝜏𝑟 and 𝜏𝑝 are of order 𝑇𝑠, and have a natural
origin. The numbers of contacts in 𝑝𝑡 and 𝑟𝑡 (with or without (relaxed)
confinement) can be evaluated heuristically based on the population
density and social practices (for prediction, different profiles can be
selected for testing).

2.2.2. Known or accepted quantities
The incubation period 𝑇𝑠 that is widely papered in the literature

for COVID-19 studies, is considered to be between 2 and 14 days
Yang et al., 2020), or in more specialized research, between 2 and 12
ays (Lauer et al., 2020), so we assume
1 ≤ 𝜎 ≤ 1 .

12 2
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It also implies that the delays can be selected in the corresponding
limits:

2 ≤ 𝜏𝑟 ≤ 12, 𝜏𝑟 + 2 ≤ 𝜏𝑝,

where the condition 𝜏𝑝 > 𝜏𝑟 entails that the clustering starts to be
important after the effect of confinement becomes significant (adding
an incubation period).

The numbers of contacts have to be selected separately for each
country. For example, we may take the values of Yang et al. (2020)
and make some reduction related with a smaller population density in
the considered countries:

𝑝𝑄 = 3 (number of contacts in quarantine),
𝑝𝑁 = 15 (number of contacts in normal mode),
𝑝𝑅 = 10 (number of contacts in relaxed quarantine),
𝑝𝐶 = 0.1 (number of contacts under clustering).

Then the input 𝑝𝑡 ∈ {𝑝𝑄, 𝑝𝐶} and 𝑟𝑡 ∈ {𝑝𝑄, 𝑝𝑁 , 𝑝𝑅, 𝑝𝐶} for all 𝑡 ∈ N.
The identification of the model parameters may be performed using

statistics published by authorities.1 As a worthy remark, many research
works devoted to the estimation and identification of SIR/SEIR models
were developed by now, and several in the last few years, such as Bli-
man, Efimov, and Ushirobira (2018), Cantó, Coll, and Sánchez (2017),
d’Onofrio, Manfredi, and Poletti (2012), Magal and Webb (2018) and
Ushirobira, Efimov, and Bliman (2019), to mention a few.

2.3. Uncertainty and prediction

Since the measured data and parameters contain numerous un-
certainties and perturbations, it is challenging to carry out a reason-
able prediction based on the simulation of such a model with fixed
parameters (also considering the model simplicity and generality).
However, the interval predictor and observer framework (Efimov &
Raïssi, 2016; Gouzé, Rapaport, & Hadj-Sadok, 2000; Mazenc & Bernard,
2011; Mazenc, Dinh, & Niculescu, 2014; Raïssi, Efimov, & Zolghadri,
2012) allows a set of trajectories corresponding to the interval values
of parameters and inputs to be obtained, increasing the model validity
without augmenting its complexity. This approach has already been
applied to different SEIR models (see, e.g., Aronna & Bliman, 2018;
Degue, Efimov, & Iggidr, 2016; Degue & Le Ny, 2018). In this paper,
we apply the interval predictor method for the considered SEIR model
(1) to improve its forecasting quality by assuming that the parameters
𝜎, 𝜎′, 𝛾, 𝜇 and 𝑏 are time-varying.

Remark 2. It is essential to emphasize that the interval predictor
framework used here is not the only method oriented toward improving
prediction reliability when using SEIR models. Usually, as in Ferguson
et al. (2020), Hu et al. (2020), Lourenco et al. (2020), Maier and
Brockmann (2020), Peng et al. (2020) and Yang et al. (2020), stochastic
and agent-based simulation procedures are used. In those cases, by
assuming that the parameters and initial conditions are distributed with
some given probability, multiple numerical experiments are done to
restore the system’s possible trajectories. Such a methodology needs
more computational effort for its realization. Additional information
on the probability distribution for all parameters and variables is nec-
essary, demanding either extra hypotheses or more measured data for
estimation. As the SARS-CoV-2 virus attack currently demonstrates, it is
difficult to obtain such data quickly during the epidemic development.
Contrarily to these approaches, the interval predictor method does not
use these extra assumptions on probability distributions. It has also
been proposed to estimate a guaranteed interval, including trajectories

ith minimal computational effort, by the cost of a more complex
athematical analysis and design (Efimov & Raïssi, 2016).

1 As in the Report13 by the Imperial College London, for example.
479
3. Used dataset and associated parameters

Let I , D , and R represent the number of total detected infected,
deceased and recovered individuals, respectively (these information
are published by authorities). Not all cases can be detected and doc-
umented by public health services, so there is a ratio between popula-
tions 𝐼 and I , 𝑅 and R, 𝐷 and D , which is denoted in this work by
. The interval of admissible values for 𝛼 is estimated from different
ources as follows2:

≤ 𝛼 ≤ 25.

ormally, such a ratio 𝛼 has to be time-varying and different for 𝐼 ,
𝐷 and 𝑅. Due to strict and similar requirements of health services in
almost all considered countries, in this paper, we take the following
hypotheses:

𝐼𝑡 = 𝛼1(I𝑡 − D𝑡 − R𝑡), 𝑅𝑡 = 𝛼2R𝑡, 𝐷𝑡 = 𝛼3D𝑡, (2)

.e., the number of active infected cases and the related recovered
ndividuals can be masked due to the complexity of examination and
he actual confirmation of the virus presence. At the same time, the
vailability or not of post-mortem tests can influence the number of
egistered deaths. A further reason is that in many cases, the virus
ymptoms result in a mild reaction of patients (approximately 80%
f cases, see the sources above), hence maybe with no official virus
onfirmation in such a situation. In this work, we assume the following
alues for these parameters:

2 = 𝛼1, 𝛼3 = 1,

hen, roughly speaking, such a choice corresponds to the registration
f deaths exactly (see also Lourenco et al., 2020) with the same error
or recovered and infected individuals (the exclusion was made only
or the US). CMMID describes a technique to identify 𝛼1 from the
easurements of I , R and D (see the footnote) giving for France (in

uly 30th):

1 = 1.78.

o, by fixing 𝛼1, 𝛼2, and 𝛼3,3 the three variables of the model (1), 𝐼 , 𝐷,
and 𝑅, are available from the beginning of the epidemics via (2).

Remark 3. The measured information used in the paper are 𝐼 , 𝑅, and
𝐷 from (2), where the measurement noise can be modeled by time-
varying gains 𝛼𝑖, 𝑖 = 1, 2, 3, representing the different actual values
f populations in these compartments. Such noise characteristics are in
eneral unknown (country dependent), and it is difficult to estimate
hem during the outbreak. However, if we assume that the noise is
ounded, then instead of the exact values of 𝐼 , 𝑅, and 𝐷, their intervals
ave to be considered, [𝐼, 𝐼], [𝑅,𝑅], and [𝐷,𝐷], corresponding to
ossible true values of these variables. Using such intervals would lead
o interval estimates for parameters (with the methods applying below).
o simplify the presentation and the computations, it is assumed in this
ork that the measured quantities in (2) are noise-free, resulting in the

dentification of guess values for the parameters. Finally, for prediction,
he intervals around the guesses are calculated for all initial conditions,
arameters and inputs, which takes into account the presence of the
oise in (2) and other uncertainties or complexity effects.

2 See, for example, thesearguments, or a dedicated analysis in the Report13
y the Imperial College of London, the works in Bohk-Ewald, Dudel, and
yrskyla (2020) and Magal and Webb (2020), a report by CMMID, or this

rticle by University of Melbourne.
3 A way to determine 𝛼 is given in https://github.com/sebastianhohmann.
3

https://www.imperial.ac.uk/mrc-global-infectious-disease-analysis/covid-19/report-13-europe-npi-impact/
https://slatestarcodex.com/2020/03/19/coronalinks-3-19-20/
https://www.imperial.ac.uk/mrc-global-infectious-disease-analysis/covid-19/report-13-europe-npi-impact/
https://cmmid.github.io/topics/covid19/global_cfr_estimates.html
https://pursuit.unimelb.edu.au/articles/modelling-the-spread-of-covid-19
https://github.com/sebastianhohmann
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Fig. 2. Variation of the number of contacts 𝑝𝑡−𝜏𝑝 and 𝑟𝑡−𝜏𝑟 .

3.1. Fixed values of parameters

Note that model (1) is not identifiable with respect to all seven
parameters simultaneously for the given set of measured outputs (𝐼 , 𝑅,
and 𝐷) and inputs (𝑝 and 𝑟). Hence, it is necessary to fix the values
of some of them, those with a physical meaning, for instance, and
reconstruct the sets of admissible values for others. To this end, we
select an average value for the incubation rate:

𝜎 = 1
7

to simplify further identification (the variation in this value can be
taken into account later in the interval predictor), then

𝜎′ = 𝜅𝜎, 𝜅 = 0.1,

and we assume that there is a very slow transfer from exposed 𝐸 to
recovered 𝑅 directly without symptom exposition. The delays’ nominal
values are chosen as

𝜏𝑟 = 5, 𝜏𝑝 = 𝜏𝑟 + 20,

and the algorithm for their identification is discussed below. The pro-
cedure for identifying 𝛾, 𝜇, and 𝑏 is also given in the next section.

3.2. Scenario of confinement

In Ferguson et al. (2020), the theory of a cyclic application of
quarantine regimes of different severity is evaluated for COVID-19. By
iterating the periods of complete isolation for everybody (suppression),
which decelerates the virus advancement, with a time of mild regula-
tion (mitigation), which allows the economy balance to be maintained
on an arguable level, and when only fragile parts of the population
are isolated, it is possible to attenuate the material consequences of
epidemics while decreasing the load on health services. Following this
idea, for simulation, we consider a cyclic scenario of confinement (e.g.,
with 8 weeks of strict quarantine and 4 weeks of a relaxed one),
which is further periodically repeated. For the chosen model, this
scenario impact only the input variables 𝑝𝑡−𝜏𝑝 and 𝑟𝑡−𝜏𝑟 , an example of
their behavior is shown in Fig. 2 (by red dash and blue solid lines,
respectively).

Remark 4. In other words, 𝑟𝑡 and 𝑝𝑡 can be considered as a sort of
control for the virus propagation, by imposing different periods and
strictness levels for the confinement for compartments 𝐼 and 𝐸. A
more detailed analysis may also take into account age or geographic
distribution.

4. Parameter identification

In this section, we assume that the parameters have constant values,
which allows us to apply efficient methodologies for their identifica-
tion. Next, we use these values as the nominal or average quantities
passing to time-varying parameters.
480
For the parameter identification, we assume that the incubation
rates 𝜎 and 𝜎′ are fixed as above and that the symptomatic infectious
𝐼𝑡, the dead 𝐷𝑡, and the recovered 𝑅𝑡 persons are measured for the first
𝐽 > 0 days of the virus attack as in (2) for 𝑡 = 0, 1,… , 𝐽 .

We begin by discussing approaches to the identification of the
delays 𝜏𝑝 and 𝜏𝑟. Then, the method for identifying the mortality rate
𝜇, the recovery rate 𝛾, and the infection rate 𝑏 is presented. Finally,
the model (1) with the parameters’ obtained values is validated by
simulations in Section 6.

4.1. Delay identification

We propose two approaches for the estimation of 𝜏𝑝 and 𝜏𝑟.

4.1.1. Method 1
From the dynamics of (1b), the increment of 𝐸𝑡 (i.e., 𝐸𝑡+1 − 𝐸𝑡) is

directly proportional to 𝑝𝑡−𝜏𝑝 and 𝑟𝑡−𝜏𝑟 . The number of contacts 𝑟𝑡−𝜏𝑟
instantaneously changes its value after the imposition of the quarantine
(it jumps from 𝑝𝑁 to 𝑝𝑄). Since 𝜏𝑝 > 𝜏𝑟 and 𝑝𝑡−𝜏𝑝 = 𝑟𝑡−𝜏𝑟 in confinement,
the signals 𝑝𝑡−𝜏𝑝 and 𝑟𝑡−𝜏𝑟 jump next from 𝑝𝑄 to 𝑝𝐶 , and the same occurs
after the suppression of the confinement (from 𝑝𝐶 to 𝑝𝑄 or 𝑝𝑅), see
Fig. 2. It implies that the increment of 𝐸𝑡 shows discontinuities in these
time instants. The variable 𝐸𝑡 is not available for measurements, but
the same (filtered) behavior is also observed in the increment of the
variable 𝐼𝑡. Since both variables, 𝐼𝑡 and 𝐸𝑡 in (1) have an exponential
rate of changes, then the signal

𝑑𝐼𝑡 = ln(𝐼𝑡) − ln(𝐼𝑡−1)

for 𝑡 = 2,… , 𝐽 should have a step-like form (the logarithm of the
increment of an exponentially growing or decaying signal is a constant)
with the change of value in the time instant 𝑡𝑐 ≥ 2, when a modification
of the confinement rules starts to influence the variable 𝐼𝑡. Therefore,
the delay can be estimated as (with a mild ambiguity in this work, we
use the same symbol to denote a parameter and its estimate)

𝜏𝑟 = 𝑡𝑐 − 𝑡′,

where 𝑡′ ≥ 0 is the instant of application of the new confinement rule.
Hence, to estimate the value 𝑡𝑐 , the following algorithm is proposed:

𝑡𝑐 = argmin
𝑡=3,…,𝐽

√

√

√

√

𝐽
∑

𝓁=2
|𝑑𝐼𝓁 − 𝑑𝐼 𝑡

𝓁|
2, where 𝑑𝐼 𝑡

𝓁 =

{

1
𝑡−2

∑𝑡−1
𝑠=2 𝑑𝐼𝑠 , if 𝓁 < 𝑡

1
𝐽−𝑡+1

∑𝐽
𝑠=𝑡 𝑑𝐼𝑠 , if 𝓁 ≥ 𝑡

is a step-like varying signal, which jumps at the instant 𝑡. This ap-
proach’s main drawback is the noise in the measurements (as for any
approach that indirectly uses a derivative estimation).

Remark 5. Note that if the values of 𝛾 and 𝜇 are known (see be-
low how we can estimate them), then using (1c) the variable 𝐸𝑡 =
1
𝜎

(

𝐼𝑡+1 − (1 − 𝛾 − 𝜇)𝐼𝑡
)

can be reconstructed from the measurements,
and the same approach can be applied to the increment 𝑑𝐸𝑡 = ln(𝐸𝑡) −
ln(𝐸𝑡−1), which explicitly depends on 𝑝𝑡−𝜏𝑝 and 𝑟𝑡−𝜏𝑟 . Unfortunately,
we have very noisy data for COVID-19, so the calculated variables 𝐸𝑡
contain many perturbations, and the above (derivative-based) approach
does not provide a reliable estimation using 𝑑𝐸𝑡.

4.1.2. Method 2
This method also uses the estimated values of 𝐸𝑡 (see (3) for the

detailed description), but it does not use (approximated) derivatives.
The idea of this approach is based on the observation that a straight
line can approximate ln(𝐸𝑡) (the variable 𝐸𝑡 is exponentially growing)
for any constant values of 𝑝𝑡−𝜏𝑝 and 𝑟𝑡−𝜏𝑟 :

ln(𝐸𝑡) = 𝑎𝑡 + 𝑏,

for some 𝑎, 𝑏 ∈ R. Such an approximation filters the noise contrarily
to the derivative-based method presented in the previous subsection.
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Then the initial phase of the epidemics can be decomposed on three
intervals of time:

T1 = [0, 𝑇1 + 𝜏𝑟), T2 = [𝑇1 + 𝜏𝑟, 𝑇1 + 𝜏𝑝), T3 = [𝑇1 + 𝜏𝑝, 𝑇2],

where 𝑇1 is the day of confinement activation, 𝑇2 is the day of commu-
tation to the relaxed quarantine, and on each interval

ln(𝐸𝑡) = 𝑎𝑖𝑡 + 𝑏𝑖,

for 𝑡 ∈ T𝑖 and some coefficients 𝑎𝑖, 𝑏𝑖 ∈ R with 𝑖 = 1, 2, 3, is a reliable
approximation. The coefficients 𝑎𝑖, 𝑏𝑖 can be calculated using the Least
Square Method (LSM), or any other approach of solving this system of
linear equations with known reconstructed values of 𝐸𝑡. Next, we can
calculate the instants of these lines intersection:

𝜏𝑟 =
𝑎2𝑏1 − 𝑎1𝑏2
𝑎2 − 𝑎1

− 𝑇1, 𝜏𝑝 =
𝑎3𝑏2 − 𝑎2𝑏3
𝑎3 − 𝑎2

− 𝑇1.

Note that the intervals T𝑖, 𝑖 = 1, 2, 3 are unknown (their definitions
epend on the values of 𝜏𝑝 and 𝜏𝑟), then we can introduce two tuning
arameters 𝑍 ∈ (0, 𝜏𝑟) and 𝐽𝑍 ∈ (0, 𝐽 ) such that

1̂ = [0, 𝑍), T̂2 = [𝐽𝑍 −𝑍, 𝐽𝑍 ), T̂3 = [𝐽 −𝑍, 𝐽 ]

re the estimates for T1, T2 and T3, respectively, which are utilized
or calculation of 𝑎𝑖, 𝑏𝑖. These auxiliary parameters can be rather easily
elected having the plot of ln(𝐸𝑡) in sight.

This method provides rather good guesses for 𝜏𝑝 and 𝜏𝑟, as we
emonstrate at the end of this section. In general, these estimates are
ery sensitive to the noise.

.2. Rates identification

From Eq. (1e), we can identify the value of the mortality rate 𝜇:

=
𝐷𝑡+1 −𝐷𝑡

𝐼𝑡
,

whose LSM estimation is

𝜇𝑘 =
∑𝐽−𝑘−1

𝑡=0 𝐼𝑡(𝐷𝑡+1 −𝐷𝑡)
∑𝐽−𝑘−1

𝑡=0 𝐼2𝑡
or 𝑘 = 0, 1,… , 𝐾, where 0 < 𝐾 < 𝐽 − 1 is the number of the last days

used for identification (in this work we selected 𝐾 = 𝐽 − 10). Another
possible approach is the moving window estimation:

𝜇𝑘 =
∑𝑘+𝐾𝑤

𝑡=𝑘 𝐼𝑡(𝐷𝑡+1 −𝐷𝑡)
∑𝑘+𝐾𝑤

𝑡=𝑘 𝐼2𝑡
or 𝑘 = 0, 1,… , 𝐾 with 𝐾 = 𝐽−𝐾𝑤, where 𝐾𝑤 > 1 is the window length.

Then the average value is used for further analysis and design:

𝜇 = 1
𝐾 + 1

𝐾
∑

𝑘=0
𝜇𝑘.

Since 𝜎′ = 𝜅𝜎, multiplying Eq. (1c) by 𝜅 and subtracting it from
(1d), we can identify the value of the parameter 𝛾:

=
𝑅𝑡+1 − 𝑅𝑡 − 𝜅𝐼𝑡+1 + 𝜅(1 − 𝜇)𝐼𝑡

(1 + 𝜅)𝐼𝑡
,

hose LSM estimation is

𝑘 =
∑𝐽−𝑘−1

𝑡=0 𝐼𝑡(𝑅𝑡+1 − 𝑅𝑡 − 𝜅𝐼𝑡+1 + 𝜅(1 − 𝜇)𝐼𝑡)

(1 + 𝜅)
∑𝐽−𝑘−1

𝑡=0 𝐼2𝑡
for 𝑘 = 0, 1,… , 𝐾, or the moving window estimation:

𝛾𝑘 =
∑𝑘+𝐾𝑤

𝑡=𝑘 𝐼𝑡(𝑅𝑡+1 − 𝑅𝑡 − 𝜅𝐼𝑡+1 + 𝜅(1 − 𝜇)𝐼𝑡)

(1 + 𝜅)
∑𝑘+𝐾𝑤

𝑡=𝑘 𝐼2𝑡
or 𝑘 = 0, 1,… , 𝐾 with 𝐾 = 𝐽 −𝐾𝑤. As for 𝜇 the average value is used
or further analysis and design:

= 1
𝐾
∑

𝛾𝑘.
481

𝐾 + 1 𝑘=0
Next, the sum of Eqs. (1c) and (1c) allows us to calculate the
related number of asymptomatic infectious (𝜎 and 𝜎′ are chosen, 𝜇 is
estimated):

𝐸𝑡 =
1

𝜎 + 𝜎′
(

𝐼𝑡+1 − (1 − 𝜇)𝐼𝑡 + 𝑅𝑡+1 − 𝑅𝑡
)

, (3)

while the number of susceptible individuals can be evaluated using the
total population:

𝑆𝑡 = 𝑁 − 𝐼𝑡 − 𝑅𝑡 − 𝐸𝑡 −𝐷𝑡. (4)

If we take into account (3) and (4), the state of (1) can be considered as
available for direct measurements, shifting the focus to the problems of
parameter identification and prediction explored in this work. At this
point, having derived quantities 𝐸𝑡, we can estimate the delays 𝜏𝑟 and
𝜏𝑝 using one of the methods presented above. From Eq. (1b), we can
derive the infection rate (for the selected values 𝑝, 𝑟, 𝜎 and 𝜎′):

𝑏 = 𝑁
𝐸𝑡+1 − (1 − 𝜎 − 𝜎′)𝐸𝑡
(

𝑝𝑡−𝜏𝑝𝐼𝑡 + 𝑟𝑡−𝜏𝑟𝐸𝑡

)

𝑆𝑡

,

whose LSM estimation is

𝑏𝑘 = 𝑁

∑𝐽−𝑘−1
𝑡=0

(

𝑝𝑡−𝜏𝑝𝐼𝑡 + 𝑟𝑡−𝜏𝑟𝐸𝑡

)

(

𝐸𝑡+1 − (1 − 𝜎 − 𝜎′)𝐸𝑡
)

𝑆𝑡

∑𝐽−𝑘−1
𝑡=0

(

𝑝𝑡−𝜏𝑝𝐼𝑡 + 𝑟𝑡−𝜏𝑟𝐸𝑡

)2
𝑆2
𝑡

for 𝑘 = 0, 1,… , 𝐾, or the moving window estimation version:

𝑏𝑘 = 𝑁

∑𝑘+𝐾𝑤−1
𝑡=𝑘

(

𝑝𝑡−𝜏𝑝𝐼𝑡 + 𝑟𝑡−𝜏𝑟𝐸𝑡

)

(

𝐸𝑡+1 − (1 − 𝜎 − 𝜎′)𝐸𝑡
)

𝑆𝑡

∑𝑘+𝐾𝑤−1
𝑡=𝑘

(

𝑝𝑡−𝜏𝑝𝐼𝑡 + 𝑟𝑡−𝜏𝑟𝐸𝑡

)2
𝑆2
𝑡

for 𝑘 = 0, 1,… , 𝐾 with 𝐾 = 𝐽 − 𝐾𝑤, then the identified value is again
the average of these estimates:

𝑏 = 1
𝐾 + 1

𝐾
∑

𝑘=0
𝑏𝑘.

Remark 6. Due to measurement noise, the derived values of 𝐸𝑡,
𝛾𝑘, and 𝑏𝑘 can be negative (that is physically impossible), then a
previous positive estimate can be taken into account, i.e., 𝐸𝑡 = 𝐸𝑡−1,
or only positive quantities for the average calculation can be used:
𝑏 = 1

𝐾+1
∑𝐾

𝑘=0 𝜚𝑘𝑏𝑘 with 𝜚𝑘 = 0.5(sign(𝑏𝑘) + 1) (it is 0 for negative 𝑏𝑘
nd 1 otherwise).

The results of identification for all considered countries, and simu-
ation and validation can be found in Section 6. Next, let us enlarge the
rediction’s validity based on (1) by considering intervals of admissible
alues for the parameters and initial conditions.

. Interval prediction

In the previous section, the values of parameters 𝑏, 𝛾, 𝜇, 𝜏𝑝, 𝜏𝑟 for
the model (1) were identified for selected guesses of 𝛼1, 𝛼2, 𝛼3, 𝜎, 𝜎′.
The model’s initial conditions, 𝑆0, 𝐼0, 𝐸0, 𝐷0, and 𝑅0, were chosen
from measured/reconstructed sets. However, as we can conclude from
the results of the identification (see Section 6), the variation of the
estimated values of 𝑏, 𝛾, 𝜇, 𝜏𝑝, 𝜏𝑟 is rather significant. It is related to
the model’s generic structure, uncertainties in the auxiliary parame-
ters’ values, and noises in the measured information, but not only. A
possible interpretation of these results is that the parameters have to
be considered time-varying in the model (1). Indeed, if we focus on
the mortality rate 𝜇: obviously, it does not stay constant during the
whole period of epidemics, and at the outbreak peak, its value is usually
higher since it is related to an increased load on the health system.
Unfortunately, practical identification and utilization of time-varying
parameters are rather tricky (additionally, it is difficult to forecast their
future values). However, for an interval prediction, we need just the
set of admissible values of the parameters (Efimov & Raïssi, 2016;
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Leurent, Efimov, Raïssi, & Perruquetti, 2019). The interval predictors
can generate the envelope of trajectories, including any possible run
with parameters and/or initial conditions taking values in the selected
intervals. Such an approach dramatically improves the validity of the
prediction. In such a case, we calculate/evaluate the sets of the resulted
trajectories.

Further in this section, we continue referencing the model (1)
assuming the parameters 𝜎, 𝜎′, 𝑏, 𝛾, 𝜇 to be time-varying (with a small
ambiguity, the notation is kept the same). The obtained nominal identi-
fied values of 𝜎, 𝜎′, 𝑏, 𝛾, 𝜇 are interpreted as the middles of the intervals
f admissible values for these parameters. We pursue to design an
nterval predictor that evaluates all possible trajectories for (1) with
uch time-varying parameters under interval inputs 𝑟𝑡 and 𝑝𝑡 (the pre-

viously selected values are also chosen as the middles of the admissible
sets) and interval initial conditions for the states (that represents the
measurement noise or time variation of 𝛼𝑖, 𝑖 = 1, 2, 3, see Remark 3).

.1. Explanation of idea

In the sequel, for two vectors 𝑥1, 𝑥2 ∈ R𝑛 or matrices 𝐴1, 𝐴2 ∈ R𝑛×𝑛,
the relations 𝑥1 ≤ 𝑥2 and 𝐴1 ≤ 𝐴2 are understood element-wise. Given
a matrix 𝐴 ∈ R𝑚×𝑛, define 𝐴+ = max{0, 𝐴} also element-wise and
𝐴− = 𝐴+ − 𝐴 (similarly for vectors).

Lemma 1 (Efimov & Raïssi, 2016). Let 𝑥 ∈ R𝑛 be a vector variable,
satisfying 𝑥 ≤ 𝑥 ≤ 𝑥 for some 𝑥, 𝑥 ∈ R𝑛.

(1) If 𝐴 ∈ R𝑚×𝑛 is a constant matrix, then
+𝑥 − 𝐴−𝑥 ≤ 𝐴𝑥 ≤ 𝐴+𝑥 − 𝐴−𝑥. (5)

(2) If 𝐴 ∈ R𝑚×𝑛 is a matrix variable and 𝐴 ≤ 𝐴 ≤ 𝐴 for some
𝐴,𝐴 ∈ R𝑚×𝑛, then

𝐴+𝑥+ − 𝐴
+
𝑥− − 𝐴−𝑥+ + 𝐴

−
𝑥− ≤ 𝐴𝑥 (6)

≤ 𝐴
+
𝑥+ − 𝐴+𝑥− − 𝐴

−
𝑥+ + 𝐴−𝑥−.

The idea of the interval prediction for a discrete-time system with
ime-varying parameters can be illustrated on a simple scalar case (all
quations of (1) can be rewritten is this form):

𝑡+1 = 𝑎𝑡𝑥𝑡 + 𝑑𝑡,

where 𝑥𝑡 ∈ R+ is a non-negative system state, whose initial conditions
belong to a given interval:

𝑥0 ∈ [𝑥0, 𝑥0],

𝑎𝑡 ∈ R+ and 𝑑𝑡 ∈ R are uncertain parameters and input, which also
take values in known intervals:

𝑎𝑡 ∈ [𝑎𝑡, 𝑎𝑡], 𝑑𝑡 ∈ [𝑑𝑡, 𝑑𝑡]

for all 𝑡 ∈ N. We assume that 0 ≤ 𝑥0 ≤ 𝑥0, 0 ≤ 𝑎𝑡 ≤ 𝑎𝑡 and 𝑑𝑡 ≤ 𝑑𝑡
are known for all 𝑡 ∈ N. The imposed non-negativity constraints on 𝑥𝑡
and 𝑎𝑡 correspond to the case of the model (1). We want to calculate
the lower 𝑥𝑡 and upper 𝑥𝑡 predictions of the state 𝑥𝑡 of this system
nder the introduced hypotheses on all uncertain variables, requiring
he relations:

≤ 𝑥𝑡 ≤ 𝑥𝑡 ≤ 𝑥𝑡 ∀𝑡 ∈ N.

pplying Lemma 1 to the term 𝑎𝑡𝑥𝑡 under introduced sign restrictions,
we obtain

𝑎𝑡𝑥𝑡 ≤ 𝑎𝑡𝑥𝑡 ≤ 𝑎𝑡𝑥,

hen a possible structure of interval predictor is as follows:

𝑡+1 = 𝑎𝑡𝑥𝑡 + 𝑑𝑡 and 𝑥𝑡+1 = 𝑎𝑡𝑥𝑡 + 𝑑𝑡.

To substantiate the desired interval inclusion for 𝑥𝑡 by 𝑥𝑡, 𝑥𝑡, we can
consider the lower 𝑒 = 𝑥 − 𝑥 and the upper 𝑒 = 𝑥 − 𝑥 prediction
482

𝑡 𝑡 𝑡 𝑡 𝑡 𝑡
errors, whose dynamics take the form:

𝑒𝑡+1 =
(

𝑎𝑡𝑥𝑡 − 𝑎𝑡𝑥𝑡
)

+
(

𝑑𝑡 − 𝑑𝑡
)

and 𝑒𝑡+1 =
(

𝑎𝑡𝑥𝑡 − 𝑎𝑡𝑥𝑡
)

+
(

𝑑𝑡 − 𝑑𝑡
)

.

Then it is easy to verify that the terms 𝑑𝑡−𝑑𝑡 and 𝑑𝑡−𝑑𝑡 are non-negative
by the definition of 𝑑𝑡, 𝑑𝑡, and the terms 𝑎𝑡𝑥𝑡 − 𝑎𝑡𝑥𝑡 and 𝑎𝑡𝑥𝑡 − 𝑎𝑡𝑥𝑡
ave the same property for 𝑡 = 0 by the definition of 𝑎𝑡, 𝑎𝑡 and 𝑥0, 𝑥0.

Therefore, 𝑒1 ≥ 0, 𝑒1 ≥ 0 (that implies 𝑥1 ∈ [𝑥1, 𝑥1]) and the analysis
can be iteratively repeated for all 𝑡 ∈ N. Obviously, the estimates 𝑥𝑡, 𝑥𝑡
re bounded provided that

𝑎𝑡 ≤ 1 − 𝜖

for some 𝜖 ∈ (0, 1), and the Lyapunov function 𝑉𝑡 = 𝑥𝑡 + 𝑥𝑡 can be used
to support this claim.

Let us apply this method to the model (1), where each equation
there has the form as above.

5.2. Equations of interval predictor and its properties

To this end, we assume that all parameters belong to the known
intervals (for simplicity we do not deviate the values of 𝜏𝑝, 𝜏𝑟 and 𝜅):

𝜎 ∈ [𝜎, 𝜎], 𝛾 ∈ [𝛾, 𝛾], 𝑏 ∈ [𝑏, 𝑏], 𝑝𝑡 ∈ [𝑝
𝑡
, 𝑝𝑡], 𝑟𝑡 ∈ [𝑟𝑡, 𝑟𝑡], ∀𝑡 ∈ N, (7)

ogether with the initial conditions in (1):

0 ∈ [𝑆0, 𝑆0], 𝐼0 ∈ [𝐼0, 𝐼0], 𝐸0 ∈ [𝐸0, 𝐸0], 𝐷0 ∈ [𝐷0, 𝐷0], 𝑅0 ∈ [𝑅0, 𝑅0], (8)

where non-negative values 𝜎, 𝜎, 𝛾, 𝛾, 𝑏, 𝑏, 𝑝
𝑡
, 𝑝𝑡, 𝑟𝑡, 𝑟𝑡, 𝑆0, 𝑆0, 𝐼0, 𝐼0,

𝐸0, 𝐸0, 𝐷0, 𝐷0 and 𝑅0, 𝑅0 are obtained from the ones used in the pre-
vious section by applying ±𝛿% deviation from those nominal quantities
(we can also use the variation of the identified values). Then, applying
the approach explained just above, we derive the equations of the
interval predictor:

𝑆𝑡+1 =

⎛

⎜

⎜

⎜

⎝

1 − 𝑏

(

𝑝𝑡−𝜏𝑝𝐼 𝑡 + 𝑟𝑡−𝜏𝑟𝐸𝑡

)

𝑁

⎞

⎟

⎟

⎟

⎠

𝑆𝑡, (9)

𝐸𝑡+1 =
(

1 − (1 + 𝜅)𝜎 + 𝑏
𝑟𝑡−𝜏𝑟
𝑁

𝑆𝑡

)

𝐸𝑡 + 𝑝
𝑡−𝜏𝑝

𝑏
𝐼 𝑡𝑆𝑡
𝑁

,

𝐼 𝑡+1 = (1 − 𝛾 − 𝜇)𝐼 𝑡 + 𝜎𝐸𝑡,

𝑅𝑡+1 = 𝑅𝑡 + 𝛾𝐼 𝑡 + 𝜅𝜎𝐸𝑡,

𝑡+1 = 𝐷𝑡 + 𝜇𝐼 𝑡,

𝑆𝑡+1 =

⎛

⎜

⎜

⎜

⎜

⎝

1 − 𝑏

(

𝑝
𝑡−𝜏𝑝

𝐼 𝑡 + 𝑟𝑡−𝜏𝑟𝐸𝑡

)

𝑁

⎞

⎟

⎟

⎟

⎟

⎠

𝑆𝑡,

𝐸𝑡+1 = min

{

𝑁,

(

1 − (1 + 𝜅)𝜎 + 𝑏
𝑟𝑡−𝜏𝑟
𝑁

𝑆𝑡

)

𝐸𝑡 + 𝑝𝑡−𝜏𝑝𝑏
𝐼 𝑡𝑆𝑡
𝑁

}

,

𝐼 𝑡+1 = min
{

𝑁, (1 − 𝛾 − 𝜇)𝐼 𝑡 + 𝜎𝐸𝑡

}

,

𝑅𝑡+1 = min
{

𝑁,𝑅𝑡 + 𝛾𝐼 𝑡 + 𝜅𝜎𝐸𝑡

}

,

𝐷𝑡+1 = min
{

𝑁,𝐷𝑡 + 𝜇𝐼 𝑡
}

,

where 𝑆𝑡, 𝑆𝑡, 𝐼 𝑡, 𝐼 𝑡, 𝐸𝑡, 𝐸𝑡, 𝐷𝑡, 𝐷𝑡 and 𝑅𝑡, 𝑅𝑡 are the lower and upper
interval predictions for 𝑆𝑡, 𝐼𝑡, 𝐸𝑡, 𝐷𝑡 and 𝑅𝑡, respectively.

heorem 1. For the model (1) satisfying the relations (7) and (8) with

𝑏 sup
𝑡∈N

𝑟𝑡 ≤ 1, 𝜎 ≤ 1
1 + 𝜅

, 𝛾 + 𝜇 ≤ 1, (10)

the interval predictor (9) guarantees the interval inclusions for the state of
(1) for all 𝑡 ∈ N:

𝑆 ∈ [𝑆 , 𝑆 ], 𝐼 ∈ [𝐼 , 𝐼 ], 𝐸 ∈ [𝐸 ,𝐸 ], 𝐷 ∈ [𝐷 ,𝐷 ], 𝑅 ∈ [𝑅 ,𝑅 ]
𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡
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with boundedness of all predictions for all 𝑡 ∈ N:

𝑆𝑡, 𝑆𝑡, 𝐼 𝑡, 𝐼 𝑡, 𝐸𝑡, 𝐸𝑡, 𝐷𝑡, 𝐷𝑡, 𝑅𝑡, 𝑅𝑡 ∈ [0, 𝑁].

Proof. By direct calculation and applying Lemma 1, we can check that

𝑏

(

𝑝
𝑡−𝜏𝑝

𝐼 𝑡 + 𝑟𝑡−𝜏𝑟𝐸𝑡

)

𝑁
≤ 𝑏

(

𝑝𝑡−𝜏𝑝𝐼𝑡 + 𝑟𝑡−𝜏𝑟𝐸𝑡

)

𝑁
≤ 𝑏

(

𝑝𝑡−𝜏𝑝𝐼 𝑡 + 𝑟𝑡−𝜏𝑟𝐸𝑡

)

𝑁
,

𝑏
𝑟𝑡−𝜏
𝑁

𝑆𝑡 − (1 + 𝜅)𝜎 ≤ 𝑏
𝑟𝑡−𝜏
𝑁

𝑆𝑡 − (1 + 𝜅)𝜎 ≤ 𝑏
𝑟𝑡−𝜏
𝑁

𝑆𝑡 − (1 + 𝜅)𝜎,

𝑝
𝑡−𝜏𝑝

𝑏
𝐼 𝑡𝑆𝑡
𝑁

≤ 𝑝𝑡−𝜏𝑝𝑏
𝐼𝑡𝑆𝑡
𝑁

≤ 𝑝𝑡−𝜏𝑝𝑏
𝐼 𝑡𝑆𝑡
𝑁

,

𝐸𝑡 ≤ 𝜎𝐸𝑡 ≤ 𝜎𝐸𝑡,

𝛾𝐼 𝑡 ≤ 𝛾𝐼𝑡 ≤ 𝛾𝐼 𝑡,

𝜇𝐼 𝑡 ≤ 𝜇𝐼𝑡 ≤ 𝜇𝐼 𝑡

ue to (7) and (8) for 𝑡 = 0. Since (recall that 𝑟𝑡 ≥ 𝑝𝑡, 𝐼 𝑡+𝐸𝑡 ≤ 2𝑁 , thus
𝑡 ≥ 0)

𝑏

(

𝑝𝑡−𝜏𝑝𝐼 𝑡 + 𝑟𝑡−𝜏𝑟𝐸𝑡

)

𝑁
≤ 𝑏𝑟𝑡−𝜏𝑟

𝐼 𝑡 + 𝐸𝑡
𝑁

≤ 2𝑏𝑟𝑡−𝜏𝑟 ≤ 2𝑏 sup
𝑡∈N

𝑟𝑡,

− (1 + 𝜅)𝜎 + 𝑏
𝑟𝑡−𝜏𝑟
𝑁

𝑆𝑡 ≥ 1 − (1 + 𝜅)𝜎,

we obtain that

1 ≥ 𝑏

(

𝑝𝑡−𝜏𝑝𝐼 𝑡 + 𝑟𝑡−𝜏𝑟𝐸𝑡

)

𝑁
, 1 + 𝑏

𝑟𝑡−𝜏𝑟
𝑁

𝑆𝑡 ≥ (1 + 𝜅)𝜎

due to (10), then as we demonstrated above

𝑆1 ∈ [𝑆1, 𝑆1], 𝐼1 ∈ [𝐼1, 𝐼1], 𝐸1 ∈ [𝐸1, 𝐸1],

𝐷1 ∈ [𝐷1, 𝐷1], 𝑅1 ∈ [𝑅1, 𝑅1],

and such a verification can be repeated for all 𝑡 ∈ N. In the same way
we can show that if the relations

0 ≤ 𝑆𝑡 ≤ 𝑆𝑡, 0 ≤ 𝐼 𝑡 ≤ 𝐼 𝑡, 0 ≤ 𝐸𝑡 ≤ 𝐸𝑡, 0 ≤ 𝐷𝑡 ≤ 𝐷𝑡, 0 ≤ 𝑅𝑡 ≤ 𝑅𝑡

are satisfied for some 𝑡 ∈ N, then they also hold for 𝑡 + 1 in (9).
To substantiate boundedness of the state of the interval predictor,

we can first consider a Lyapunov function candidate for the lower
bounds:

𝑉 𝑡 = 𝑆𝑡 + 𝐼 𝑡 + 𝐸𝑡 +𝐷𝑡 + 𝑅𝑡,

which is well-defined since, as we have shown above, all variables are
nonnegative for 𝑡 ∈ N. Next, the increment of this Lyapunov function
admits a non-positive upper estimate:

𝑉 𝑡+1 − 𝑉 𝑡 = −

(

𝑏𝑝𝑡−𝜏𝑝𝐼 𝑡 − 𝑏𝑝
𝑡−𝜏𝑝

𝐼 𝑡 + 𝑏𝑟𝑡−𝜏𝑟𝐸𝑡 − 𝑏𝑟𝑡−𝜏𝑟𝐸𝑡

)

𝑁
𝑆𝑡

−(𝛾 − 𝛾 + 𝜇 − 𝜇)𝐼 𝑡 − (1 + 𝜅)(𝜎 − 𝜎)𝐸𝑡

−(𝛾 − 𝛾 + 𝜇 − 𝜇)𝐼 𝑡 − (1 + 𝜅)(𝜎 − 𝜎)𝐸𝑡 ≤ 0,

hich implies boundedness of all variables 𝑆𝑡, 𝐼 𝑡, 𝐸𝑡, 𝐷𝑡, 𝑅𝑡. Applying
LaSalle Invariance Principle (La Salle, 1976), we conclude that all
trajectories converge to the set with 𝐼 𝑡 = 𝐸𝑡 = 0, that leads to the
ynamics

𝑡+1 = 𝑅𝑡, 𝐷𝑡+1 = 𝐷𝑡

reproducing a steady-state solution. Finally, the condition 2𝑏 sup𝑡∈N 𝑟𝑡 ≤
1 introduced in the formulation of the theorem results in

0 ≤ 1 − 𝑏

(

𝑝𝑡−𝜏𝑝𝐼 𝑡 + 𝑟𝑡−𝜏𝑟𝐸𝑡

)

𝑁
≤ 1

hat ensures the boundedness of 𝑆𝑡. Second, for the upper bound
ariables, consider a Lyapunov function candidate

𝑉 = 𝑆 + 𝐼 + 𝐸 +𝐷 + 𝑅 ,
483

𝑡 𝑡 𝑡 𝑡 𝑡 𝑡
Table 1
Time period.

Region N 𝛼1 𝜏𝑟 𝜏𝑝
France 67 064 000 1.78 5 25
Italy 60 359 546 4 10 30
Spain 46 600 396 6.7 8 30
Germany 46 600 396 1.02 3 21
Brazil 212 559 417 2.44 3 35
Russia 146 745 098 1.56 15 20
New York State 19 453 561 1.28 5 20
China 143 807 089 1.0 1 15

which is also well-defined and whose increment for non-saturated
dynamics in (9) admits an estimate:

𝑉 𝑡+1 − 𝑉 𝑡 =

(

𝑏𝑝𝑡−𝜏𝑝𝐼 𝑡 − 𝑏𝑝
𝑡−𝜏𝑝

𝐼 𝑡 + 𝑏𝑟𝑡−𝜏𝑟𝐸𝑡 − 𝑏𝑟𝑡−𝜏𝑟𝐸𝑡

)

𝑁
𝑆𝑡

+(1 + 𝜅)(𝜎 − 𝜎)𝐸𝑡 + (𝜇 − 𝜇 + 𝛾 − 𝛾)𝐼 𝑡 ≥ 0.

Hence, the upper bound variables 𝑆𝑡, 𝐼 𝑡, 𝐸𝑡, 𝐷𝑡, 𝑅𝑡 may become un-
bounded, and that is why the saturation is explicitly introduced for
𝐼 𝑡, 𝐸𝑡, 𝐷𝑡, 𝑅𝑡. For 𝑆𝑡, since

1 − 𝑏

(

𝑝
𝑡−𝜏𝑝

𝐼 𝑡 + 𝑟𝑡−𝜏𝑟𝐸𝑡

)

𝑁
≤ 1,

he variable stays always bounded. □

emark 7. The dynamics of lower and upper interval predictions are
nterrelated through the update equations of 𝑆𝑡, 𝑆𝑡. Thus, the predictor

(9) dimension is twice higher than in the system (1). The values of
the variables 𝑆𝑡, 𝑆𝑡 can be evaluated using the population equation
𝑆𝑡 + 𝐸𝑡 + 𝐼𝑡 + 𝑅𝑡 +𝐷𝑡 = 𝑁 :

𝑆𝑡 = 𝑁 − 𝐼 𝑡 − 𝐸𝑡 − 𝑅𝑡 −𝐷𝑡,

𝑆𝑡 = 𝑁 − 𝐼 𝑡 − 𝐸𝑡 − 𝑅𝑡 −𝐷𝑡,

which, however, does not isolate the dynamics of lower and upper
interval predictions. Also, preliminary simulations show that such mod-
ification leads to more conservative results, so we keep (9) for all
further utilization.

6. Numerical results

Table 1 gives the current population in each of the considered
countries and state,4 the parameter 𝛼1, and the delays 𝜏𝑟 and 𝜏𝑝, as from
uly 30th.

In this section, we introduce the used data together with the selected
arameters, identify the parameters (as illustrated for France in Fig. 3)
nd simulate the interval predictor (as in Fig. 6 together with the plots
f validation Fig. 7). The common parameters assigned to all countries
to simplify the analysis) are:

= 1
7
, 𝜅 = 0.1,

or chosen values of 𝑝𝑄, 𝑝𝑁 , 𝑝𝑅, 𝑝𝑀 .5 Adjusting these values for
ach country improves the forecast precision, but our goal here is
o illustrate the proposed method’s broad applicability for the virus
ropagation interval prediction.

For most countries, the first date of data acquisition is March 12th,
xcept for Italy (March 5th), New York State (March 16th), and China
January 16th). For all eight regions, the period considered for our

4 Source: www.en.wikipedia.org/wiki/.
5 Check the code in Github.

https://en.wikipedia.org/wiki/
https://github.com/EfDe2020/IP_COVID-19
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Fig. 3. The identified parameters for France.
Table 2
Parameters estimation.

Region 𝜇 𝛾 𝑏

France 5.3345 × 10−4 0.0184 0.0918
Italy 9.3987 × 10−4 0.0223 0.0159
Spain 10.00 × 10−4 0.0275 0.1041
Germany 8.9617 × 10−4 0.0693 0.1152
Brazil 12.00 × 10−4 0.0579 0.1473
Russia 8.5619 × 10−4 0.0152 0.0870
New York State 6.5199 × 10−4 0.0271 0.0815
China 10.40 × 10−4 0.0760 0.0238

analysis ended on July 30th. The data available from public sources
is provided in Github.

Applying the proposed procedure to the parameter identification
gives the results in Table 2.

6.1. Results of identification

For France, the obtained values 𝛾𝑘, 𝑏𝑘 and 𝜇𝑘 (solid lines) together
with the selected average estimates 𝛾, 𝑏 and 𝜇 (dot lines), and the signal
ln(𝐸𝑡) (solid line) with approximations 𝑎𝑖𝑡 + 𝑏𝑖 (dash lines) are shown
in Fig. 3. As we can conclude from these results, the identification of
the value of 𝛾 is relatively reliable and converging. The mortality rate
𝜇 follows the gravity of the outbreak (it was maximal during the most
severe virus propagation at the beginning of April). Also, the value of 𝑏
is more complicated to estimate since it depends on all quantities (we
stop the identification if 𝑝𝑡−𝜏𝑝 and 𝑟𝑡−𝜏𝑟 are sufficiently small to avoid
very noisy results; see the missing values in the plot). Finally, delays
𝜏𝑟 and 𝜏𝑝 are noticeable from the plot, and the line approximations are
reasonable (if at a stage some delay cannot be recognized, then we can
use a nominal value).

6.2. Simulation and validation

The simulation results, for France, of the model (1) with the identi-
fied parameters are given in Fig. 4 (for better visibility, all populations
are plotted in the logarithmic scale), a zoomed comparison of the
measured and reconstructed data is shown in Fig. 5 (as we can see, the
measured data for 𝐼 , 𝑅, and 𝐷 has a smooth shape, while the recon-
structed variable 𝐸, also used for identification, is rather noisy). In this
case, the model can approximate the virus propagation reasonably well
484
Fig. 4. The results of simulation for France with identified parameters.

since the identified parameters are consistent with France’s available
statistics.

The obtained curves also demonstrate the lack of efficiency of the
confinement. The number of asymptomatic infectious can be reduced
quickly, but symptomatic patients may persist a long time giving rise
to a second wave. This conclusion might be related to the model’s
probable weak validity for the decreasing phase of the outbreak.

6.3. Simulation and validation results of the interval predictor

For France, the simulation results of the interval predictor (9)
with 𝛿 = 7.5% is presented in Fig. 6 (the dashed and dotted lines
represent, respectively, upper and lower interval bounds, the solid lines
correspond to the average behavior, the circles depict measured and
reconstructed data points used for identification). The width of the
predicted interval of admissible values for the state of (1) is growing,
which is related with a high level of uncertainty reflected by 𝛿 and
chosen for these simulations (according to Theorem 1, the dynamics of
upper bounds of these variables are unstable, and the lower ones are
converging to zero). For the sake of brevity, the simulation results for
the remaining geographic regions are not presented here: the obtained
model follows well the measured statistics for all countries and state.

As we can conclude from these curves, under sufficiently significant
deviations of the parameters (which correspond to the amount and
quality of data publicly available), the confinement may slow down
the epidemics. The measurements are nearly included in the obtained
intervals validating the prediction (the value of 𝛿 was selected to

https://github.com/EfDe2020/IP_COVID-19
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Fig. 5. The results of verification with identified parameters.
Fig. 6. The results of simulation of (9) for France under ±7.5% variation of all parameters.
ensure this property). There are two variants of epidemic development
demonstrated in these results: optimistic, which corresponds to the
lower bounds of 𝐼 and 𝐸, and pessimistic presented by the respective
upper bounds.

To check the prediction accuracy, we can select a part of the data
for identification and another part for verification of prediction relia-
bility. Such validation results are shown in Fig. 7, where the interval
prediction for the infectious population 𝐼 is presented with a deviation
of all parameters. As previous, blue dashed and dotted lines correspond
do the upper 𝐼 and the lower bounds 𝐼 , the bold lines are calculated
using 𝐽 -1 day initial conditions), the blue circles and squares are the
measured information used for identification and validation, and the
red line is the average behavior. In the plot, only the data points
for 𝑡 = 0, 1,… , 𝐽 − 120 are used, shown by circles, and the interval
predictor is initiated with the data for 𝑡 = 𝐽 − 121. Then, square data
points (which were not taken into account during identification for
𝑡 = 𝐽 −120,… , 𝐽 ) can be compared with the predictor trajectories (bold
dashed and dotted blue lines and the red one). As we can see, the points
marked by squares are well included in the predicted interval, which
confirms the reliability of (9) at least for 120 days.

In general, further precision of the model and the parameters is
needed. However, as a recommendation after these preliminary sim-
ulations, the preservation of the quarantine rules is desirable (the simu-
lation clearly demonstrates the epidemics decreasing during lockdown
only). The model shows a relatively low decrease in the number of
infected individuals, then prolonging the isolation of the fragile part of
485
Fig. 7. Validation of prediction of 𝐼 for France with 𝐽 -120 points of data under
deviations of values of all parameters.

the population, and social distancing is reasonable (it is worth noting
that the value of 𝑝𝑅 is selected ad-hoc and probably too high).

In the sequel, an analysis of the model fitting to the data for
other countries and state is demonstrated in Figs. 8, 9, 10, 11, 12,
13, 14: blue dashed and dotted lines correspond to the upper 𝐼 and
the lower bounds 𝐼 (the bold lines are calculated using the last day
included in the identification data). The red line is the average, the blue
circles and squares are the measured information used for identification
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Fig. 8. Validation of prediction of 𝐼 for Italy with 𝐽 -60 points of data under deviations
of values of all parameters.

Fig. 9. Validation of prediction of 𝐼 for Spain with 𝐽 -60 points of data under deviations
of values of all parameters.

Fig. 10. Validation of prediction of 𝐼 for Germany with 𝐽 -90 points of data under
deviations of values of all parameters.

and validation. A reasonable fit of the model to the data for Italy is
demonstrated in Fig. 8. The square points belong to the middle of the
predicted interval in the plot.

For Spain, a good fit of the model to the data is demonstrated in
Fig. 9: the square points lie close to the middle of the predicted interval.
For Germany, the square points in Fig. 10 are not included at the end
in the predicted interval in the plot, which is related to the start of the
second wave that is noticeable from the data.

For Brazil, the square points belong to the predicted interval in the
plot, as shown in Fig. 11. A good fit of the model for Russia is shown
in Fig. 12, where the square points belong to the lower part of the
predicted interval in the plot.

A fit of the model for the NY State’s data is demonstrated in Fig. 13,
where the square points belong to the middle of the predicted interval
in the plot. A fit of the model to China’s data is demonstrated in Fig. 14,
where the square points are not included at the end in the predicted
interval in the plot, which is related to the start of the second wave
that is noticeable from the data. As for Germany, this issue originated
486
Fig. 11. Validation of prediction of 𝐼 for Brazil with 𝐽 -70 points of data under
deviations of values of all parameters.

Fig. 12. Validation of prediction of 𝐼 for Russia with 𝐽 -120 points of data under
deviations of values of all parameters.

Fig. 13. Validation of prediction of 𝐼 for NY State with 𝐽 -40 points of data under
deviations of values of all parameters.

because the model parameters were identified several months before
the beginning of the second wave, and in the end they lost their
validity. The societal feedback and reactions also changed at that time,
which is not reflected by the predictor’s inputs.

7. Conclusion

A simple new discrete-time SEIR epidemic model was identified
and used to predict the quarantine’s influence on the SARS-CoV-2
virus propagation in France, Italy, Spain, Germany, Brazil, Russia, New
York State, and China. An interval predictor method was developed to
analyze the COVID-19 course – whose ability to take into account the
sets of admissible values for initial conditions, inputs, and parameters
– enlarges the prediction performance. It was demonstrated that the
reliability of the interval prediction for 30−120 days is rather good, even
by such a simple model. The prediction showed that more extended
confinement might be a bit more efficient, but a more strict as possible
quarantine seemed to be advisable under the uncertainty level. The
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Fig. 14. Validation of prediction of 𝐼 for China with 𝐽 -120 points of data under
deviations of values of all parameters.

obtained results show that predicting the outbreak development with
reasonable accuracy is possible by selecting different contact profiles
between the countries’ compartments.

The eight considered countries can be divided into two groups: four
European states (France, Italy, Spain, and Germany) and China, where
the virus presence is already well developed with several weeks of
quarantine, and two BRICS countries (Brazil and Russia) with the US,
where the epidemics started later and somewhat general confinement
has also been imposed later. The identified models for these groups
of countries have common patterns (e.g., a significant variation of the
recovery rate 𝛾 for Brazil and Russia). Our prediction showed that in
European countries, the peak of infections occurred in April–May in
the optimistic scenario. Increased severity of the confinement could
significantly decrease the amplitude of the peak discharging the health
services load.

Machine learning tools can be further used to identify and optimize
the time profile for the confinement. Another possible direction of
improvement of the proposed approach is to consider a SEIR model
with population separation either by age or by region (or by both),
but this implies an increasing number of parameters to be identified
(that can be impossible) and also needs specially structured data to be
available. The introduction of delays in the proposed model dynamics
to better describe the virus propagation lags between compartments is
also a promising investigation area.
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