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Abstract

BACKGROUND—The systematic evaluation of the results of time-series studies of air pollution 

is challenged by differences in model specification and publication bias.

METHODS—We evaluated the associations of inhalable particulate matter (PM) with an 

aerodynamic diameter of 10 μm or less (PM10) and fine PM with an aerodynamic diameter of 2.5 

μm or less (PM2.5) with daily all-cause, cardiovascular, and respiratory mortality across multiple 

countries or regions. Daily data on mortality and air pollution were collected from 652 cities in 24 

countries or regions. We used overdispersed generalized additive models with random-effects 
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meta-analysis to investigate the associations. Two-pollutant models were fitted to test the 

robustness of the associations. Concentration–response curves from each city were pooled to allow 

global estimates to be derived.

RESULTS—On average, an increase of 10 μg per cubic meter in the 2-day moving average of 

PM10 concentration, which represents the average over the current and previous day, was 

associated with increases of 0.44% (95% confidence interval [CI], 0.39 to 0.50) in daily all-cause 

mortality, 0.36% (95% CI, 0.30 to 0.43) in daily cardiovascular mortality, and 0.47% (95% CI, 

0.35 to 0.58) in daily respiratory mortality. The corresponding increases in daily mortality for the 

same change in PM2.5 concentration were 0.68% (95% CI, 0.59 to 0.77), 0.55% (95% CI, 0.45 to 

0.66), and 0.74% (95% CI, 0.53 to 0.95). These associations remained significant after adjustment 

for gaseous pollutants. Associations were stronger in locations with lower annual mean PM 

concentrations and higher annual mean temperatures. The pooled concentration–response curves 

showed a consistent increase in daily mortality with increasing PM concentration, with steeper 

slopes at lower PM concentrations.

CONCLUSIONS—Our data show independent associations between short-term exposure to 

PM10 and PM2.5 and daily all-cause, cardiovascular, and respiratory mortality in more than 600 

cities across the globe. These data reinforce the evidence of a link between mortality and PM 

concentration established in regional and local studies. (Funded by the National Natural Science 

Foundation of China and others.)

THE ADVERSE HEALTH EFFECTS OF SHORT-term exposure to ambient air pollution 

are well documented.1–3 Particulate matter (PM), especially, arouses public health concerns 

because of its toxicity and the widespread human exposure to this pollutant. PM, which 

includes inhalable particles with an aerodynamic diameter of 10 μm or less (PM10) and fine 

particles with an aerodynamic diameter of 2.5 μm or less (PM2.5), is emitted from 

combustion sources or formed through atmospheric chemical transformation. Given the 

extensive evidence regarding their effects of health, the daily and annual mean 

concentrations of PM10 and PM2.5 are regulated according to the World Health Organization 

(WHO) Air Quality Guidelines4 and standards in major countries.

Numerous time-series studies have examined the associations between short-term PM 

exposures and daily mortality.5–9 However, most evidence has been obtained from studies in 

single cities, regions, or countries, and there are challenges in comparing these results and in 

synthesizing effect estimates because of different modeling approaches and potential 

publication bias. These limitations can be addressed by performing international, multicenter 

studies that adopt the same analytic protocol and model specifications to estimate globally 

representative associations of PM10 and PM2.5 exposures with daily mortality. We 

established the Multi-City Multi-Country (MCC) Collaborative Research Network to 

perform a global assessment of the effects of weather or climate on mortality.10,11 This 

network allowed us to examine and compare the associations of PM concentrations with 

daily all-cause, cardiovascular, and respiratory mortality at the global, regional, and country 

level with the use of a standardized analytic framework.
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METHODS

DATA COLLECTION

We obtained health and environmental data from the MCC database, which has been 

described previously.10,12 The current analysis was limited to locations that had available 

data on air pollution (652 urban areas in 24 countries or regions, with the data covering the 

period from 1986 through 2015) (Table S1 in the Supplementary Appendix, available with 

the full text of this article at NEJM.org). Data on mortality were obtained from local 

authorities within each country. Causes of death were classified according to codes in the 

International Classification of Diseases, 9th Revision (ICD-9) or 10th Revision (ICD-10), 

whichever was available. In each location, mortality was represented by daily counts of 

either death from nonexternal causes (ICD-9 codes 0 to 799 and ICD-10 codes A0 to R99) 

or, when such data were unavailable, daily counts of death from any cause. We also collected 

mortality data for two main causes of death: cardiovascular disease (ICD-10 codes I00 to 

I99) and respiratory disease (ICD-10 codes J00 to J99).13

We obtained daily data on PM10 in 598 cities and on PM2.5 in 499 cities. Data on both 

pollutants were available in 445 cities in 16 countries or regions. The geographic 

distributions of the cities that had data on PM10 and PM2.5, as well as the annual mean PM 

concentrations over the period studied for each city, are provided in Figure 1 and Figure 2, 

respectively (also see the interactive map, available at NEJM.org). Daily data on gaseous 

pollutants (ozone, nitrogen dioxide, sulfur dioxide, and carbon monoxide) were obtained 

where available. We also collected data on the daily mean temperature and daily mean 

relative humidity. To avoid potential consequences of including outlying values of exposure 

data, we used trimmed data, in which the highest 5% and lowest 5% of PM10 and PM2.5 

measurements were excluded.14

STATISTICAL ANALYSIS

The associations of PM10 and PM2.5 concentrations with daily all-cause, cardiovascular, and 

respiratory mortality were assessed in separate analyses with the use of a standard time-

series approach. We followed a two-stage analytic protocol, which had been developed and 

widely applied in previous multicity time-series studies.15,16

In the first stage, we estimated city-specific associations of PM concentration with mortality 

using quasi-Poisson generalized additive models. In accordance with the approaches used in 

previous studies,16,17 the following covariates were included in the main model: a natural 

cubic smooth function with 7 degrees of freedom (df) per year to control for underlying time 

trends in mortality, an indicator day-of-week variable to account for short-term weekly 

variations, and natural spline functions with 6 df for temperature and 3 df for relative 

humidity to control for potentially nonlinear confounding effects of weather conditions in 

areas where such data were available. To determine an appropriate lag time (i.e., the number 

of days between exposure and the estimated effect) for PM and temperature to be used in the 

main analyses, we compared a variety of lag days using generalized cross-validation scores.

In the second stage, we used random-effects models to pool the estimates of the city-specific 

associations of PM concentrations with mortality.18 We then reported the pooled estimate 
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and related 95% confidence intervals as the percentage change in daily mortality per 10-μg-

per-cubic-meter increase in PM concentrations. Between-city heterogeneity was quantified 

with the use of the I2 statistic.

In addition to the main model described above, we fitted two-pollutant models, each of 

which included adjustment for one of four gaseous pollutants. The association of PM 

concentration with mortality was considered robust if the effect estimates in the single-

pollutant and two-pollutant models were not significantly different, as determined with a 

paired z-test.

Using the aforementioned two-stage approach, we also performed regional analyses, with 

the regions grouped according to WHO region and according to the gross domestic product 

(GDP) per capita (Table S2 in the Supplementary Appendix), and likelihood-ratio tests were 

used to determine whether the differences between regions in associations of PM with 

mortality were significant. To further explore potential effect modifications, we fit meta-

regression models with annual mean concentrations of PM and copollutants, annual mean 

temperature, latitude of locations, WHO region and region classified according to the GDP 

per capita, rates of missing data on daily mortality and PM10 and PM2.5 concentrations, and 

GDP per capita.

To estimate the overall shape of the associations between PM10 and PM2.5 concentrations 

and mortality at the global or country level, we plotted concentration–response curves using 

the same approach that was used in previous studies.16,19 In brief, we replaced the linear 

term of PM in the main model with a B-spline function with two knots at the 25th and 75th 

percentiles of the mean PM concentrations across all cities.

We performed several sensitivity analyses. First, in fitting the concentration–response 

curves, we placed knots at different PM values. Second, we tested the potential confounding 

effect of humidity in cities that had available data on this variable by comparing the results 

of models that adjusted for humidity with the results of models that did not in a paired z-test. 

Third, we restricted the analyses to data available after the year 2000.

We conducted all statistical analyses with R software, version 3.3.1 (R Foundation for 

Statistical Computing), using the mgcv package for fitting main models and the rmeta 

package for performing random-effect models. A P value of less than 0.05 was considered to 

indicate statistical significance. More details are presented in the Methods section in the 

Supplementary Appendix.

RESULTS

DESCRIPTIVE ANALYSES

The final analysis included 59.6 million deaths from any cause or nonexternal causes, 20.1 

million deaths from cardiovascular diseases, and 5.6 million deaths from respiratory diseases 

(Table S1 [nontrimmed data] and Table S3 [trimmed data] in the Supplementary Appendix). 

On average, the annual mean concentration of PM10 in 598 cities was 56.0 μg per cubic 

meter (median, 44.3 μg per cubic meter [range, 11.0 to 295.0; interquartile range, 37.9 to 
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70.1]), and the annual mean concentration of PM2.5 in 499 cities was 35.6 μg per cubic 

meter (median, 31.9 μg per cubic meter [range, 4.1 to 116.9; interquartile range, 21.5 to 

43.5]). PM10 was strongly correlated with PM2.5, with a mean Pearson correlation 

coefficient of 0.78. The mean Pearson correlation coefficients between PM10 and gaseous 

pollutants were 0.46 with nitrogen dioxide, 0.20 with ozone, 0.38 with sulfur dioxide, and 

0.40 with carbon monoxide. The corresponding coefficients between PM2.5 and gaseous 

pollutants were 0.48, 0.22, 0.40, and 0.45. Other descriptive statistics and the correlations 

between daily mean PM concentrations and weather variables are summarized in the Results 

section in the Supplementary Appendix.

REGRESSION ANALYSES

The choice of a 2-day moving average for PM concentration, which represents the average 

over the same and previous day (lag 0 to 1 day), and a 4-day moving average for 

temperature, which represents the average of the same and previous 3 days (lag 0 to 3 days), 

generated the smallest mean generalized cross-validation scores (Tables S4 and S5 in the 

Supplementary Appendix). These moving averages were then applied in subsequent 

analyses. For both PM10 and PM2.5, the associations were significant on lag 0 day and then 

attenuated substantially on lag 1 to 2 days; the estimates of the associations were strongest 

on lag 0 to 1 day (Table S4 in the Supplementary Appendix).

Overall, we observed positive and significant associations between PM10 and PM2.5 

concentrations and all-cause mortality (Table 1). In 598 cities that had data on PM10, an 

increase of 10 μg per cubic meter in the PM10 concentration was associated with an increase 

of 0.44% (95% confidence interval [CI], 0.39 to 0.50) in a pooled estimate of daily all-cause 

mortality. In 499 cities that had data on PM2.5, the same increase in the PM2.5 concentration 

was associated with an increase of 0.68% (95% CI, 0.59 to 0.77) in a pooled estimate of 

daily all-cause mortality. The country-specific estimates of the percentage change in daily 

all-cause mortality showed considerable variations, ranging from 0.03% (for Colombia) to 

1.32% (for Australia) in association with a 10-μ-per-cubic-meter increase in PM10 

concentration and ranging from 0.03% (for Portugal) to 2.54% (for Greece) in association 

with the same increase in PM2.5 concentration. Estimates of the effect in France, Estonia, 

and Switzerland were close to the global median estimate of 0.46% in association with PM10 

concentration; estimates of the effect in Switzerland and South Africa were close to the 

global median estimate of 0.80% in association with PM2.5 concentration.

In cause-specific analyses, an increase of 10 μg per cubic meter in PM10 concentration (in 

528 cities) was associated with an increase of 0.36% (95% CI, 0.30 to 0.43) in daily 

cardiovascular mortality and an increase of 0.47% (95% CI, 0.35 to 0.58) in daily respiratory 

mortality. The corresponding increases in daily cardiovascular and respiratory mortality for 

the same increase in PM2.5 concentration (in 488 cities) were 0.55% (95% CI, 0.45 to 0.66) 

and 0.74% (95% CI, 0.53 to 0.95%) (Figs. S1 and S2 in the Supplementary Appendix). In 

445 cities that had data on both PM2.5 and PM10, the percentage increases in all-cause 

mortality per 10-μg-per-cubic-meter increase in PM2.5 concentration were larger than those 

with the same increase in PM10 concentration, both in the pooled results and in most 

country-specific estimates (Fig. S3 in the Supplementary Appendix).
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Regional analyses indicated differences between areas (Table S6 in the Supplementary 

Appendix), with higher estimates of the effect in the region of the Americas and smaller 

estimates in the Western Pacific region. We observed stronger associations between PM10 

and PM2.5 concentrations and all-cause mortality in locations with lower annual mean 

concentrations of PM and higher annual mean temperatures (P<0.001 for all comparisons); 

there was no significant modification of the effect according to annual mean concentrations 

of PM and copollutants, latitude of location, WHO region and region classified according to 

the GDP per capita, rates of missing data on daily mortality and PM10 and PM2.5 

concentrations, and GDP per capita (P>0.05 for all comparisons).

In two-pollutant models (Table 2), the magnitude (i.e., the size of the estimated effect) of the 

associations of PM10 and PM2.5 concentrations on lag 0 to 1 day with all-cause mortality 

decreased, but all associations between PM and mortality remained significant after 

adjustment for gaseous pollutants. Notably, the estimates of the percentage change in 

mortality per 10-μg-per-cubic-meter increase in PM10 concentration decreased significantly 

after adjustment for nitrogen dioxide (difference of 35%; P<0.001) and sulfur dioxide 

(difference of 18%; P=0.007). Similarly, the percentage change in mortality with the same 

increase in PM2.5 concentration decreased by 36% after adjustment for nitrogen dioxide 

(P<0.001) and by 22% after adjustment for sulfur dioxide (P = 0.007).

The concentration–response associations of daily mean PM10 and PM2.5 concentrations with 

all-cause mortality were positive, and the curves showed a consistent increase with no 

discernible thresholds (Fig. 3). The slopes for both curves were steeper at concentrations 

lower than 40 μg per cubic meter for PM10 and lower than 20 μg per cubic meter for PM2.5. 

The slopes seemed to flatten at high ranges. In addition, positive associations were still 

detectable at levels below most global and regional air-quality guidelines or standards. 

Country-specific concentration–response curves are provided in Figures S4 and S5 in the 

Supplementary Appendix.

Sensitivity analyses confirmed these results. The use of alternative knots did not 

substantially change the shape of the concentration–response curves, and adjustment for 

humidity resulted in no significant changes (Figs. S6 and S7 and Table S7 in the 

Supplementary Appendix). Finally, the analysis in which the subset of data since the year 

2000 was used provided similar estimates. Estimates based on nontrimmed PM data are 

provided in Table S8 in the Supplementary Appendix.

DISCUSSION

Our study analyzed multisite data on air pollution and mortality in 652 cities across different 

countries and regions, although most countries and cities were in the northern hemisphere. 

Because the data from each city were analyzed according to the same protocol, the estimate 

of the percentage change in mortality per 10-μg-per-cubic-meter increase in PM 

concentration was based on a large data set. This study also provides the statistical power to 

examine the global concentration–response functions of particulate air pollution at both low 

and high baseline levels.
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In the analysis of PM10, we observed an increase of 0.44% in all-cause mortality per 10-μg-

per-cubic-meter increase in PM10 concentration. The magnitude of the association is 

generally similar to previous findings in other multicity or multicountry studies.7–9,20 For 

example, the Air Pollution and Health: A European and North American Approach 

(APHENA) study reported increases of 0.86%, 0.33%, and 0.29% in daily all-cause 

mortality in Canada, Europe, and the United States, respectively.9 The percentage increase in 

mortality for the same increase in PM10 concentration was 0.77% in the Multicity Study of 

Air Pollution and Mortality in Latin America (ESCALA),8 0.55% in the Public Health and 

Air Pollution in Asia (PAPA) study,7 and 0.19% in the reanalysis of the U.S. National 

Morbidity Mortality Air Pollution Study (NMMAPS).21

In the analysis of PM2.5, we observed an increase of 0.68% in all-cause mortality per 10-μg-

per-cubic-meter increase in PM2.5 concentration. Our estimates were somewhat smaller than 

those obtained from previous multicity studies and a meta-analysis that used data mainly 

from developed countries.22,23 This difference may be interpreted as reflecting the 

nonlinearity of our concentration–response curve, which indicated a steeper slope at lower 

concentrations. In addition, we found that the associations of mortality with PM 

concentrations were slightly stronger with PM2.5 than with PM10 in most countries and 

regions, which added to the evidence that PM2.5 accounted for a larger proportion of the 

effects of PM10 and PM2.5 combined.6 The stronger effects of PM2.5 may also be supported 

by the abundant evidence that this particulate fraction contains more small particles that can 

absorb toxic components from the air and penetrate deep into the lungs.24

The question of whether the observed associations for PM were independent from other 

pollutants is important for air-quality regulation and health-risk assessment. In our data, 

although the magnitude of the associations for PM10 and PM2.5 decreased in two-pollutant 

models, the associations for both remained significant, a finding that provides evidence of 

the independent health effects of PM. It is notable that the estimates of the percentage 

change in mortality per 10-μg-per-cubic-meter increase in PM10 and PM2.5 concentrations 

decreased more after adjustment for nitrogen dioxide and sulfur dioxide than after 

adjustment for ozone and carbon monoxide, a finding that may be interpreted as reflecting 

closer correlations of PM with nitrogen dioxide and sulfur dioxide caused by similar sources 

and seasonal patterns.

In accordance with the findings from the majority of previous studies, the concentration–

response curves between PM concentration and daily mortality derived from this global 

study showed a consistent increase without evidence of a threshold.16,19,22 In both curves, 

the percentage increase in mortality per unit change in PM concentration seemed to be 

smaller (i.e., the concentration–response curves seemed to flatten) at high ranges of daily 

mean PM concentration. This potential saturation effect may be explained by smaller effects 

of changes in daily mean PM concentration in cities with higher baseline levels of PM, as 

suggested in our meta-regression analyses. Furthermore, the higher proportion of young 

people in developing countries may decrease population susceptibility to PM, and less 

outdoor activity during days with high pollution levels may decrease exposure. Nevertheless, 

the concentrations of PM below the current air-quality guidelines and standards may still be 

hazardous to public health. However, associations estimated for extreme PM concentrations 
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are characterized by wider confidence intervals, with greater uncertainty about the actual 

mortality risk at such values. We should also be cautious about the uncertainty in the 

concentration–response curves, because they were pooled from cities or countries with 

diverse PM ranges and varying population susceptibility and data quality and 

representability.

We found significant evidence of spatial heterogeneity in the associations between PM 

concentration and daily mortality across countries and regions. A number of factors could 

contribute to this variability, including different PM components, long-term air pollution 

levels, population susceptibility, and different lengths of study periods. We also found that 

higher annual mean concentrations of PM10 and PM2.5 were accompanied by weaker 

associations with daily mortality, a finding that has been reported in previous studies.16,25 

The possible adaptive response to PM in populations living in areas with higher long-term 

exposure to PM may lead to smaller esti-mate-per-unit changes in exposure. In addition, we 

identified stronger associations of PM with mortality in regions with higher GDP per capita, 

which may also be in relation to lower long-term air pollution levels (Pearson coefficient, 

−0.68 for PM10 and −0.74 for PM2.5) and decreased population susceptibility due to higher 

socioeconomic status.26 The estimates of the association between PM and mortality in some 

countries (e.g., France, Finland, Sweden, and the United Kingdom) were smaller and not 

significant. These countries had fewer cities included and shorter periods evaluated, which 

may increase the statistical uncertainty in the estimation of the effect. Furthermore, these 

countries are generally located in areas with a low annual mean temperature, which may 

decrease the association between PM and mortality, as shown in meta-regression analyses. 

More interpretations on this issue are provided in the Discussion section in the 

Supplementary Appendix.

This study has several limitations. First, although the analysis included 24 major countries 

and regions on six continents, our findings cannot be interpreted as fully globally 

representative because the 652 cities were mainly located in East Asia, Europe, and North 

America, with a smaller number of cities in Latin America and Africa. Second, we relied on 

fixed-site environmental measurements, which could introduce exposure misclassification. 

Third, diagnostic or coding errors in health data are also inevitable in such a global study 

that spans multiple decades; the effects of these errors on our results are difficult to evaluate, 

which presumably makes the estimates of the effects on cause-specific mortality less reliable 

than those of effects on all-cause mortality. Fourth, there are some missing data, but their 

influence on our estimates was not substantial (see the Discussion section and Table S9 in 

the Supplementary Appendix).

Our multicountry time-series analysis provides evidence on positive associations between 

short-term exposure to PM10 and PM2.5 and daily all-cause, cardiovascular, and respiratory 

mortality. This study indicated independent associations of PM10 and PM2.5 concentrations 

with daily mortality after adjustment for gaseous pollutants. Further, concentration–response 

curves for the effects of PM on mortality showed a consistent increase, with flattening of the 

slopes at higher concentrations, and the associations were still detectable at concentrations 

below the current air-quality guidelines and regulatory limits.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Distribution of the Cities with Data on PM10.
Shown is the geographic distribution of the 598 cities in the 24 countries and regions that 

had available data on particulate matter with an aerodynamic diameter of 10 μm or less 

(PM10) and were included in the analysis. Also shown are the annual mean PM10 

concentrations. See the interactive map, available at NEJM.org.
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Figure 2. Distribution of Cities with Data on PM2.5.
Shown is the geographic distribution of the 499 cities in the 16 countries and regions that 

had data on particulate matter with an aerodynamic diameter of 2.5 μm or less (PM2.5) and 

were included in the analysis. Also shown are the annual mean PM2.5 concentrations. See 

the interactive map, available at NEJM.org.
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Figure 3. Pooled Concentration–Response Curves.
Shown are the pooled concentration–response curves for the associations of 2-day moving 

average concentrations of PM10 (Panel A) and PM2.5 (Panel B) with daily all-cause 

mortality. The y axis represents the percentage difference from the pooled mean effect (as 

derived from the entire range of PM concentrations at each location) on mortality. Zero on 

the y axis represents the pooled mean effect, and the portion of the curve below zero denotes 

a smaller estimate than the mean effect. The dashed lines represent the air-quality guidelines 

or standards for 24-hour average concentrations of PM10 or PM2.5 according to the World 

Health Organization Air Quality Guidelines (WHO AQG), WHO Interim Target 1 (IT-1), 

WHO Interim Target 2 (IT-2), WHO Interim Target 3 (IT-3), European Union Air Quality 

Directive (EU AQD), U.S. National Ambient Air Quality Standard (NAAQS), and China Air 

Quality Standard (AQS).
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