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Abstract

Nongenetic, environmental factors contribute to maternal morbidity and mortality through chemical exposures via air,
water, soil, food, and consumer products. Pregnancy represents a particularly sensitive window of susceptibility during
which physiological changes to every major organ system increase sensitivity to chemicals that can impact a woman’s
long-term health. Nonchemical stressors, such as low socioeconomic status, may exacerbate the effects of chemical
exposures on maternal health. Racial/ethnic minorities are exposed disproportionately to both chemicals and non-
chemical stressors, which likely contribute to the observed health disparities for maternal morbidities and mortality.
Epidemiological studies linking exposures to adverse maternal health outcomes underscore the importance of envi-
ronmental health impacts, and mechanistic studies in model systems reveal how chemicals perturb biological pathways
and processes. Environmental stressors are associated with a variety of immediate maternal health impacts, including
hypertensive disorders of pregnancy, fibroids, and infertility, as well as long-term maternal health impacts, such as
higher risk of breast cancer and metabolic disorders. Identifying and reducing a pregnant woman’s environmental
exposures is not only beneficial to her offspring but also important to preserve her short- and long-term health.

Keywords: environmental exposures, maternal health, window of susceptibility, air pollution, endocrine-
disrupting chemical

Introduction

Research on environmental exposures of pregnant
women has focused on adverse health effects in their

offspring, but relatively few studies have focused on the
short- and long-term health of the mother. Preexisting con-

ditions with links to environmental exposures and maternal
gestational exposures pose risks to women’s health both
during pregnancy and after parturition. Environmental toxi-
cants that play a role in maternal health are ubiquitous, with
well over 70% of reproductive-age women and pregnant wo-
men having detectable levels of phenols, such as bisphenol A,
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persistent organic pollutants (POPs), and polycyclic aromatic
hydrocarbons.1 Levels of these toxicants are often higher in
nonwhite women2; and these chemical stressors, in combi-
nation with nonchemical stressors, such as neighborhood
conditions, contribute to health disparities in maternal mor-
bidity and mortality, as well as to long-term postpregnancy
health. In this review, we consider the role of environmental
exposures on fertility, pregnancy, maternal morbidities, and
women’s health beyond the postpartum period. Examples
from both environmental epidemiology and fundamental
mechanistic research demonstrate a direct role of the envi-
ronment during this window of susceptibility, as well as in-
direct impacts on comorbidities or health effects later in life
(summarized in Table 1).

Maternal Environmental Health Disparities

A health disparity refers to differences in the prevalence of
health conditions that adversely affect disadvantaged popu-
lations.46 In the United States, racial/ethnic minorities, so-
cioeconomically disadvantaged populations, underserved
rural populations, and sexual and gender minorities are in-
cluded in this definition. Often these populations experience

higher disease incidence or prevalence, earlier onset, more
aggressive progression, and premature or higher mortality.46

Chemical and nonchemical exposures that adversely affect
maternal health are not randomly distributed across the popu-
lation; their distribution contributes to the widespread dis-
parities observed across the health conditions described in this
review. For example, racial/ethnic minorities live in largely
different physical and social environments compared with the
majority white population,47 and racial differences in exposure
to stressors emanating from institutional, personally mediated,
and internalized discriminatory policies and practices lead to
differential risk across the life span, including during the re-
productive period.48 Such conditions may subsequently con-
tribute to the disproportionately increased risk of adverse
maternal health behaviors (e.g., disrupted sleep) and outcomes
(e.g., preeclampsia), along with a cascade of suboptimal health
consequences (e.g., cardiovascular disease).2,49–51 Chemical
exposures are higher, or their reported associations tend to be
stronger, among racial/ethnic minorities compared to white
populations for cardiometabolic health outcomes, such as
obesity, hypertension, type 2 diabetes mellitus, chronic kidney
disease, and cardiovascular disease.2,20,52–58 For example, a
recent review of the effects of synthetic chemicals on cardio-
metabolic health among vulnerable populations (defined
broadly as pregnant women and children, the economically
disadvantaged, and racial/ethnic minorities) found associations
of some POPs (e.g., perfluoroalkyl/polyfluoroalkyl substances)
and non-POPs (i.e., phenols, phthalates, and parabens) with
gestational diabetes and dysregulated glucose metabolism.44

Racial/ethnic minority women generally have a higher body
burden of exposures from consumer products, occupations, and
residential characteristics.50,51 Exposure to potentially dan-
gerous beauty product-related chemicals during reproductive
ages can result from discriminatory practices and policies re-
lated to the marketing of chemical products to racial/ethnic
minorities (e.g., hair relaxers with lye) and product preferences
to achieve a culturally desirable Eurocentric beauty standard
will influence product uptake/usage of hair relaxers and skin
lighteners.57 Disparate exposure to endocrine-disrupting che-
micals (EDCs) can occur through discriminatory racial resi-
dential and labor market segregation policies and practices.
Such practices place racial/ethnic minorities in closer prox-
imity to sources of water and air pollution, and these minorities
are less likely to benefit from remediation efforts after con-
tamination is identified in a community.59 Higher consumption
of EDC-containing processed foods is due to ‘‘food deserts’’
or ‘‘food swamps,’’ with fewer healthy options available in
low-income neighborhoods. Limited resources also drive the
purchasing of cheaper, more chemically laden consumer
products.56 An important pursuit of minority health research is
to identify health burdens of racial/ethnic minority groups that
stem from environmental exposures and social disadvantages
arising from discriminatory policies and practices that con-
tribute to maternal health disparities.46

Hypertensive Disorders of Pregnancy

Hypertensive disorders of pregnancy (HDP) comprise a
spectrum of pregnancy complications that include gestational
hypertension, preeclampsia/eclampsia, and chronic hyperten-
sion with/without superimposed preeclampsia and are leading
causes of maternal morbidity and mortality.60 In addition to

Table 1. Examples of Environmental Stressors

Linked to Maternal Health Outcomes

and Potential Moderating Factors
a

Environmental
stressors Maternal outcomes

Air pollution Hypertensive disorders of pregnancy3,4

Polycystic ovarian syndrome5

Subfertility6–9

Miscarriage10,11

ART failure12–17

Metals Hypertensive disorders of pregnancy18,19

Uterine fibroids20–23

Subfertility24–26

Miscarriage27,28

Cardiometabolic health29

PFASa Breast development and lactation30–32

Breast cancer33,34

Cardiometabolic health35

Persistent
pesticides
(DDT
and DDE)

Lactation impairment36

Breast cancer risk in mother
and female offspring37

Persistent
pollutants
(dioxin/PCBs)

Breast cancer risk in mother
by 50 years of age38

Mammary development and lactation39

EDCs (e.g.,
phthalates,
phenols)

Uterine fibroids40–42

Thyroid function, glucose metabolism
and obesity, fertility,
and carcinogenesis43

Potential moderators
Race/ethnicity Cardiometabolic health44

Uterine fibroids45

aMost exposures were associated with more adverse outcomes,
but the strength and direction of effect varies. See cited references
for details.

ART, assisted reproductive technology; DDE, dichlorodiphenyl
dichloroethene; DDT, dichlorodiphenyltrichloroethane; EDC,
endocrine-disrupting chemical; PCB, polychlorinated biphenyl;
PFAS, perfluoroalkyl substance.
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pregnancy and postpartum complications, women who experi-
ence HDP are at significantly higher risk for diseases later in
life.61,62 Risk factors for HDP include comorbidities (e.g., dia-
betes) and maternal age >40 years; however, most cases of
preeclampsia (the most common type of HDP) occur among
first-time pregnancies with no other known risk factors,63 sug-
gesting a potential role of environmental exposures.

Air pollution has been the primary focus of many studies of
HDP. Traffic emissions (e.g., particulate matter, nitrogen
oxides) have been classified by the National Toxicology
Program as a presumed hazard for HDP.3 Fewer studies have
evaluated other environmental contaminants, limiting the
ability to draw definitive conclusions. Evidence of an asso-
ciation with preeclampsia exists for cadmium and other
heavy metals, POPs such as perfluoroalkyl substances
(PFAS), and plasticizers (e.g., phthalates).18,64 Despite the
disproportionate burden of chemical exposures, few studies
of HDP or other cardiometabolic health outcomes have fo-
cused on racial/ethnic minority populations.44

The clinical manifestations of preeclampsia are largely at-
tributed to (i) placental dysfunction due to incomplete re-
modeling of the uterine spiral arteries early in pregnancy and
subsequent reduction of blood supply and nutrients to the fe-
toplacental unit; and (ii) dysregulated maternal hemodynamics.
Numerous environmental factors plausibly could contribute to
the onset and/or progression of either of these processes.

Remodeling of the spiral arteries is critical to the proper
exchange of oxygen and nutrients to the fetus and removal of
waste from the fetus during pregnancy. Improper remodeling
leads to hypoxia of the placenta and the subsequent release of
factors that activate oxidative stress and inflammation path-
ways. Many environmental contaminants cross the placenta
and can disrupt the proper trophoblast migration and invasion
necessary for spiral artery remodeling and, thus, normal
placentation.65,66 Epidemiologic studies demonstrate asso-
ciations between contaminant exposures and angiogenic
factors that are strong biomarkers of implantation and pla-
cental development67,68 and epigenetic changes that may
reflect perturbations in normal processes.69

Many environmental contaminants, particularly air pol-
lutants and heavy metals, have been linked to elevated blood
pressure in both pregnant and nonpregnant populations.3,70 In
response to the growing demands of the fetus, maternal
hormones mediate hemodynamic changes to increase blood
volume and cardiac output while decreasing vascular resis-
tance. Furthermore, endothelial cells play a critical role in
these processes by sensing blood composition and by pro-
viding a physical barrier to the improper movement of water,
ions, proteins, and cells from the blood into the vessel walls.
Oxidative stress and inflammation play a causal role in en-
dothelial cell dysfunction,71 and these pathways may be
highly sensitive to environmental exposures. Epidemiologic
evidence linking environmental exposures to HDP and the
biological plausibility based on mechanistic studies support
an important role for the environment in the etiology of HDP.

Breast Development and Health

The breast has the longest developmental window of any
organ in women; beginning in the early prenatal period,
continuing throughout puberty, with completion during the
first full-term pregnancy.72 During pregnancy, the breast is

particularly vulnerable to toxicant exposure as the body is
undergoing complex changes in nutrient and toxicant me-
tabolism and hormonal shifts.73–75 Pregnancy as a window of
susceptibility for toxicant exposure adversely altering the
human breast is understudied.58,74,76–78

Breast-specific glandular morphology and function are
altered by exposure to environmental toxicants. Laboratory
animal data demonstrate that dioxins and perfluorooctanoic
acid (PFOA) interfere with maternal breast development
during pregnancy and impair lactation.30,39 Recent evidence
suggests that PFOA and related chemicals also may shorten
lactation or inhibit milk production in women,31,32 similar to
dichlorodiphenyl dichloroethene.36 Breast density, a mor-
phological factor strongly related to later breast cancer risk,
has been poorly studied for environmental influences during
this critical window of pregnancy.

Chemicals may alter epigenetic mechanisms to influence
both transient and persistent effects on the breast. The breast
undergoes a well-characterized differentiation process during
pregnancy,72,79 and exposures, such as to EDCs, during this
critical window can affect breast growth and differentia-
tion.76 Morphological and cellular changes during pregnancy
are linked to alterations in the epigenome, because chromatin
structure is directly linked to development and cell fate.79

Pregnancy-associated epigenetic signatures in the breast and
other tissues persist after breast involution.80,81 In addition,
some chromatin remodeling complexes are responsive to es-
trogen and progesterone,82,83 which are increased in pregnancy.
Thus, during pregnancy, the breast is rewriting its epigenetic
program to form new structures and complete its develop-
ment.84 Therefore, environmental contaminants, particularly
during pregnancy, may act on the breast through numer-
ous mechanisms—including endocrine disruption, alterations
in chromatin structure, and cell-type-specific aberrations—
to alter future risk of developing breast cancer.

Pregnancy is not only the last period of breast maturation
for women but also the first developmental window for her
offspring. For example, exposure to environmental chemicals
during pregnancy—such as DDT, polychlorinated biphenyls,
and polyfluoroalkyl and PFAS—alter breast cancer risk in
perimenopausal female offspring.33,34,37,38 Diethylstilbestrol
(DES), a drug prescribed for women from 1938 to 1971 to
prevent miscarriage, exemplifies how pregnancy is a sus-
ceptible time period for breast development in women and
their daughters. One in six (vs. one in eight in the general
population) DES-prescribed pregnant women developed
breast cancer (relative risk = 1.27, 95% confidence interval
[CI] = 1.07–1.52),85 and a higher breast cancer risk in DES
daughters over 40 years of age also is reported (hazard
ratio = 1.82, 95% CI = 1.04–3.18),86 among numerous other
adverse health outcomes. Nongenetic risk factors, including
contaminant exposures that can alter genetic and epigenetic
programming to promote breast tumorigenesis, may con-
tribute to observed racial disparities of earlier age of onset
and higher rates of more aggressive breast cancer subtypes in
African American women.87

Subfertility, Pregnancy Complications,
and Maternal Morbidity

Environmental exposures can interfere with a woman’s
fertility either directly, via disrupted endocrine signaling or
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reproductive axis function, or indirectly, via their influence
on health conditions, such as polycystic ovarian syndrome
(PCOS) or uterine fibroids, that can reduce fertility and in-
crease maternal morbidity. Subfertility can compel the use of
assisted reproductive technologies (ART), which increase
morbidities, including Caesarean delivery, preeclampsia,
hemorrhage, HDP, gestational diabetes, placental abnor-
malities, thromboembolism, and maternal death.88–92

Links have been documented between environmental
exposures and conditions that impact fertility and maternal
morbidity. Air pollution, including NO2 and PM2.5, has
been associated with increased risk of PCOS.5 Uterine fi-
broids, benign tumors of the uterine muscle, may be
influenced by environmental exposures as epidemiologic
and laboratory studies indicate that EDCs and metals could
play a role.21–23,40–42 Compared to white women, African
American women have earlier onset of fibroids and worse
symptomatology, resulting in an increased risk of preg-
nancy bleeding and Caesarean delivery.45

Air pollution has been directly associated with reduced
fertility.6 Specifically, NO2,7 PM2.5,7 and metals12,24–27 have
been associated with reduced conception rates, infertility, or
increased pregnancy loss. Exposure to NO2 and ozone, par-
ticularly around ovulation, may reduce conception.8 Traffic
pollution has been associated with increased risk of miscar-
riage among nonsmokers10 and an increased risk of infertility
more broadly.9 Subfertility caused by air pollution may lead
women to ART, which is less successful for exposed women.
NO2 and PM2.5 are associated with increased ART cycle
failure rates.13 Carbon monoxide14 and PM2.5

15 are associ-
ated with decreased conception rates. Decreased live birth
rates are associated with NO2,12,15,16 SO2,17 ozone,15 and
PM2.5.13 An ecologic association between air pollutant peaks
and monthly in vitro fertilization pregnancy failure rates has
been observed.11

Metabolic Disorders

Metabolic disorders during pregnancy can impact a
woman’s short-term and long-term physiology. Women with
gestational diabetes have a seven-fold increase in the risk of
type 2 diabetes after the gestational period and the postpar-
tum incidence of metabolic syndrome is as high as
12%.88,93,94 The increase in metabolic syndrome also is ob-
served in women without gestational diabetes and is greater
among women with high prepregnancy body mass index95 or
elevated diastolic blood pressure during pregnancy.29 Un-
equal burden of exposure to chemicals, such as EDCs, is an
underresearched contributor to the unequal burden of meta-
bolic disease risk in Latinos, African Americans, and low-
income populations.56

Exposure to environmental contaminants during preg-
nancy is implicated in metabolic changes. Repeated exposure
to such EDCs as phthalates, parabens, and phenols results in
dysregulated glucose metabolism/tolerance or changes in
maternal thyroid hormone levels during pregnancy.44,52,96–98

In addition, both experimental and epidemiologic evidence
suggests that PFAS and certain metals are metabolic dis-
ruptors that may adversely influence cardiometabolic health,
interfere with glucose control, and increase risk of hyper-
tension and hyperlipidemia.29,35 The impact of EDCs on
thyroid function, glucose metabolism and obesity, fertility,

and carcinogenesis mainly occurs through epigenetic mech-
anisms,43 and their contributions to maternal metabolic issues
likely impact long-term maternal health versus immediate
postpartum effects.99

Conclusion

Environmental exposures co-occurring in varying mix-
tures in the air we breathe, the food we eat, and beyond can
affect maternal morbidity and mortality. Environmental
health is an important component of maternal health, and
observed health disparities in maternal health may be driven
by elevated exposures to chemical and nonchemical
stressors. In this review, we illustrate specific examples of
maternal vulnerabilities to chemical exposures in preg-
nancy. HDP have been linked to a variety of environmental
exposures, and mechanistic studies underscore the potential
for such exposures to disrupt placentation and hemody-
namic regulation. Breast development, particularly during
the critical window of pregnancy, is sensitive to perturba-
tion by environmental contaminants, which may contribute
to impaired breastfeeding and later breast cancer risk.
A variety of environmental exposures may lead to sub-
fertility, increasing the risk of ART treatments, which are
accompanied by numerous maternal health risks. Altera-
tions during pregnancy may permanently alter metabolic
and cardiovascular function.

Future research is needed addressing knowledge gaps in
maternal environmental health to better understand preg-
nancy as a susceptible window and to understand the mech-
anisms underlying increased risk of disease (e.g., diabetes,
cardiovascular events, obesity, or breast cancer). The ma-
ternal exposome must be assessed to characterize how the
milieu of chemical and nonchemical stressors we encounter
throughout life can adversely impact maternal health through
exposure-outcome pathways. Capturing environmental ex-
posures across diverse racial/ethnic populations in big data
initiatives, such as the All of Us Research Program, will be
crucial for accelerating maternal environmental health re-
search. Biomarkers of exposure may inform the path for
personalized exposure monitoring and interventions to pre-
vent adverse maternal health outcomes. These efforts will
require collaborative science across a variety of disciplines,
with the ultimate goal of disseminating research that informs
policy to prevent maternal mortality and morbidity.

In sum, these few examples show the ability of prenatal
environmental exposures to exert influence on maternal
morbidity and mortality across the life course. By taking
steps to identify and reduce exposures in this critical window,
pregnant women, aided by their health care providers, can
protect their own health, not just the health of their children.

Resources for more information on environmental health
issues relevant to pregnant women include the following:

National Institute of Environmental Health Sciences

� https://factor.niehs.nih.gov/2020/1/papers/traffic/index
.htm

� https://factor.niehs.nih.gov/2019/12/community-impact/
apple/index.htm

� https://niehs.nih.gov/health/topics/population/whealth/
index.cfm

� https://niehs.nih.gov/health/topics/agents/cosmetics/index
.cfm
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� https://niehs.nih.gov/health/materials/environmental_
factors_and_breast_cancer_risk_508.pdf

� https://niehs.nih.gov/health/materials/endocrine_disrupt
ors_508.pdf

� https://niehs.nih.gov/health/materials/flame_retardants_
508.pdf

� https://niehs.nih.gov/health/materials/perfluoroalkyl_and_
polyfluoroalkyl_substances_508.pdf

� https://niehs.nih.gov/health/materials/partnerships_for_
environmental_public_health_peph_508.pdf

Partnerships for Environmental Public Health

� https://niehs.nih.gov/research/supported/translational/
peph/resources/index.cfm

Centers for Disease Control and Prevention

� https://cdc.gov/reproductivehealth/maternalinfanthealth/
pregnancy-relatedmortality.htm

� https://cdc.gov/reproductivehealth/maternalinfanthealth/
severematernalmorbidity.html

� https://cdc.gov/mmwr/volumes/68/wr/mm6835a3.htm?s_
cid=mm6835a3_w

� https://cdc.gov/vitalsigns/maternal-deaths/
� https://cdc.gov/mmwr/volumes/68/wr/mm6818e1.htm?s_

cid=mm6818e1_w
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