Skip to main content
. 2020 Sep 13;34(1):5–16. doi: 10.1111/sdi.12915

TABLE 2.

Key publications of AI applications in kidney disease

Author, year AI techniques No of patients Outcome predicted Performance Clinical application use
Akbilgic et al 16 2019 Random Forest 27 615 Risk of death AUROC: 0.70‐0.76 NA
Goldstein et al 32 2014 Random Forest 826 Sudden cardiac death AUROC: 0.78‐0.79 NA
Mezzatesta et al 33 2019 Support Vector Machine 1216 Cardiovascular disease

Accuracy: 92.15%‐92.25%

AUROC: 0.50‐0.74

Precision: 72%‐89%

Recall: 73%‐94%

NA
Chauhan et al 39 2020 Random Forest 1369 CKD progression

AUROC: 0.77‐0.80

PPV: 62% in high‐risk group

NPV: 92%‐96% in low‐risk group

NA
Norouzi et al 42 2016 Artificial Neural Networks 465 CKD progression

MSE: 58.63‐64.00

MAE: 4.77‐5.93

NMSE: 4.77%‐4.88%

NA
Barbieri et al 46 2016 Artificial Neural Networks 752 Anemia management MAE: 0.59 g/dL Yes
Zhang et al 74 2017 Random Forest 83 Immune fingerprints

AUROC: 0.993

Sensitivity: 98.5%

Specificity: 92.6%

NA

Abbreviations: AI, artificial intelligence; AUROC, area under the receiver operating curve; MAE, mean absolute error; MSE, mean square error; NMSE, normalized MSE; NPV, negative predicted value; PPV, positive predicted value.